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A B S T R A C T 

This paper examines the impact of orbit perturbations on satellite translational dynamics, encompassing both 

major and minor forces. The former category includes atmospheric drag, Earth oblateness, solar radiation, and 

third-body attractions. Atmospheric drag is based on a solar activity model and its rotation due to meridional 

and zonal winds. Earth oblateness is considered over a high order of Earth gravity harmonics, along with direct 

solar radiation pressure and the effect of third-body attraction, such as the Moon and Sun gravity, utilizing 

high-accuracy ephemeris. Minor force effects include Earth's solid tides resulting from the Sun and Moon 

attraction, the effect of reflected solar radiation pressure from the Earth (Albedo), and relativity effects. The 

three primary theories employed to expand equations are perturbed potential function, force components, and 

acceleration. An investigative study was conducted to analyze the budget of perturbations in orbital elements at 

various altitudes. This approach is applicable to high orbit injection, orbit transfer using low electrical 

propulsion, and high-precision missions. The research underscores the significance of possessing a precise 

perturbed dynamic model, which facilitates high-revolution orbit transfer. 

 

 

KEYWORDS 

Orbit Perturbations -Satellites Dynamics- Orbital elements- Orbit transfer 

 

 

 

 

 

 

 

 

 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



*Corresponding author’s email: k_raissi@aut.ac.ir 

2 

1. Introduction 

The unusual variations in orbital elements due to 

perturbations and satellite orbit cause different effects of 

orbital disturbances. The perturbed forces can be 

analyzed from different standpoints, such as considering 

conservative and non-conservative forces. During years, 

researchers have studied different models based on 

various functions of perturbations. Aerodynamic drag 

effect has been studied on the satellite lifetime based on 

a simple atmospheric model considering density 

changes with altitude, solar periodic activities as well as 

Earth oblateness. Results of the models have been 

compared with actual samples. [1], based on MSISE90, 

MSISE77, DTM77, J71 density model, presented a 

model for estimating the satellite lifetime and satellite 

impact point then tendered the accuracy of the model by 

comparing the results with the data of some low-altitude 

satellite. [2] studied the drag effect of atmosphere on 

NIMOSA satellite's perturbed acceleration and analyzed 

the satellite's lifetime based on changes in Ω and ω. [3] 

studied the drag effect with two density models, JR71 

and MSISE-90 and the changes in solar intensity on 11 

spherical satellites among which five satellites were 

below 400km, two 500 km satellite and three of them 

were between 750 to 850 km and one of them is about 

1500 km. Based on the analysis, the MSIS-90 model is 

acceptable and proper model for up to 800km height. 

Regarding the atmosphere rotation and atmosphere 

oblateness, [4], studied and analyzed the drag effect for 

Indian RS-7 satellite and [5] on the secular decay of the 

LARES semi-major axis too. These effects were used 

by incorporating the gravitational oblateness model of 

the Earth up to J6 with motion equation method of KS 

[6]. It should be noted that significant research activities 

have been carried out to improve the analytical solution 

of the drag effect [7]. In a recent article analyzing the 

effect of the atmosphere on orbital parameters, no 

emphasis was placed on the impacts of solar activity 

variations, existing models, changes in the drag 

coefficient, atmospheric rotation, or zonal and 

meridional winds, nor was the flight angle addressed 

[8]. As being specified, the analysis of atmosphere 

effect was done based on NRLMSIS-00 density model 

with various solar activity index, drag coefficient 

variation and the effects of rotational atmosphere and 

also the zonal and meridional winds were considered.  

Many have studied the effect of direct solar radiation 

pressure and presented various models so far. Some of 

these models are analytical and some are developed 

based on empirical models based on the observed data 

of satellites. [9], presented a model for studying the 

secular and short periodic effects of solar radiation 

pressure on spherical satellite based on Lagrange 

perturbation equations and got the normal forces and 

also reflected radiation from the Earth and considered 

the shadow model based on [10] suggestion and as a 

result, presenting other models like the accurate 

analytical model of SRP for GNSS, which was 

presented by [11] and is based upon simulating the solar 

photon flux with a pixel array. In addition, some 

empirical models were presented that addressing the 

model presented by [12], which is a new empirical 

model for GPS satellites. Based on the data of these 

satellites in interval of 4.5 years and after analysis, it 

was shown in these studies that this model, still being 

improved [13], can function up to 85% better than the 

best models. This effect is more significant in higher 

orbit objects, mainly including GEO satellites, 

spacecrafts, debris and space asteroids [14]. In this 

study, the analysis of the SRP effect based on the 

suggested source model [9] by Earth’s shadow has been 

done. 

   Scientists extensively studied the effect of Earth's 

gravitational field model and developed it based on the 

Earth’s harmonic. They extended these coefficients up 

to high order through satellite observations. However, in 

analytical study, the effect of high order harmonics has 

more important because the effect of J2 is about 400 

times greater than other zonal coefficients. Many 

researchers conducted analyses on the perturbed effects 

due to Earth oblateness, which we can be found in 

works such as [15-19]. They focused on the effects of 

J2, and someone such as [20] and   [21] developed this 

effect up to J6 and J8. In this study, perturbed 

acceleration on polar coordinate viewpoint is used to 

analyze the effect, and only the effect of zonal harmonic 

developed up to the order of 10 based on Legendre 

polynomial and generalization of it in an analytical way, 

and analyzed based on Gauss equation. [22] and [23] 

both found that this effect plays a crucial role in mission 

analysis accuracy and equipment calibration, 

respectively, such as determining the velocity of a 

planet's surface from orbital survey images captured by 

onboard cameras. 

Many researchers have studied how gravitational 

force affects the direction of spacecraft and suggested 

different models. [24] attempted to produce long and 

short periodic components of the gravitational potential. 

Also, [25] evaluated the perturbed effect of attraction 

using classic mechanics and secular terms. Other studies 

such as, [26-33] used perturbed equations, potential 

functions and numerical methods to estimate this effect. 

Investigating the long-term effects of third-body 

attraction on a satellite around an oblate body for a high 

order expansion of disturbing function was done by 

[33]. Also [35] studied on satellite formations which 

were perturbed by lunar gravity to describe the relative 

motions and in designing frozen orbits. Recent studies 

have explored the gravitational perturbations induced by 

a third body, with particular emphasis on its orbital 
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inclination and eccentricity. While these investigations 

have examined variations in orbital dynamics and 

evaluated system sensitivity with respect to mentioned 

parameters, a comprehensive analysis of the underlying 

mathematical models remains lacking [36] and [37]. 

   The effects of small forces are frequently neglected in 

the comprehensive study of perturbations on satellite 

translational dynamics because they are of low order. 

They involve the effect of Earth's solid tides created by 

the gravity of the Sun and Moon, oceanic tides, general 

relativity effect, the impact of indirect solar radiation 

from the Earth (Albedo), and Yarkovsky effect. [38], 

[39], [40] and [41] presented the effect of Earth solid 

tides due to Sun and Moon gravity and the proper 

potential function for production. In addition, accurate 

analysis on Earth’s tides effect was done by [42] on 

LARES satellite. 

Einstein's discoveries have resulted in many 

attempts to expand the effect of the theory of general 

relativity on satellite motion equations, which were 

established using Newton's classical theory. Among 

these activities, [43] worked on a comparison of 

Newton and general relativity model in the motion of a 

particle in a gravitational field. [44] suggested the 

model of relativity equations of motion for Earth's 

orbits. [45] created the perturbed potential function and 

used Lagrange perturbed equations to establish the 

connection between changes in orbital elements over 

time. Additionally, recent activities, such as [46] and 

[47]’s actions, have had an impact on LEO and GPS 

satellites. In three distinct ways, relativity influenced the 

satellites in the equation of motion, signal propagation, 

and beat rate of the clocks. 

Scientists have carried out thorough investigations 

on the Yarkovsky force, a phenomenon that causes heat 

drag and influences asteroids and meteoroids. Also, [48] 

provides non-linear theory for coplanar cases and 

Yarkovsky diurnal effect on metric asteroids, while [49] 

studied the effect of Yarkovsky heat forces on the 

dynamics of asteroids and [50] presented an accurate 

model for Yarkovsky effect. In a recent study, [51] 

analyzed the orbital dynamics of asteroid (101955) 

Bennu, considering Yarkovsky and SRP effects. [52]'s 

investigation focused on an asteroid's movement under 

the Sun's gravity and perturbing acceleration. [53] 

aimed to explain this effect by analyzing the asteroid's 

radius and velocity vector. 

A review of existing literature reveals that most 

studies analyze only one or two perturbation effects, 

typically limited to specific models. The novelty of this 

research lies in its comprehensive approach, which 

integrates all perturbation effects (both major and 

minor) through diverse equation frameworks. 

Furthermore, it quantifies each perturbation's 

contribution and examines its variation with orbital 

altitude, a critical gap in current literature. 

Consequently, this study establishes a foundational 

reference for orbital mechanics practitioners, 

particularly in high-precision mission design. 

Long-duration, high-accuracy mission such as 

geostationary satellite station-keeping, constellation 

maintenance, and long-duration orbital transfers require 

rigorous analysis of minor perturbations. This need 

becomes particularly significant in low-thrust electric 

propulsion systems, where multi-revolution, long-

duration transfers amplify the influence of 

perturbations. 

2. Atmosphere Drag 

   Atmospheric drag plays a significant role in the 

lifetime of a satellite, which can be extended by raising 

its altitude. This factor is particularly crucial, below 600 

km. Due to the non-conservative force, the energy of the 

orbit decreases, leading to a decrease in the semi-major 

axis and eccentricity. The work done by drag on orbit is 
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The effect of drag, based on an exponential density 

model, is studied by [54]. Nevertheless, changes in 

latitude and longitude are the most important factors 

affecting the trend of density changes. The maximum 

density occurs at approximately 2pm local time, while 

the minimum density occurs at roughly 4am local time, 

as indicated by the contour of density change. Variance 

angle from the center of daytime bulge is the primary 

determinant of density. According to the [54], we have     

(3) 
  







 


H

rr
F 0

0 expcos1   

   The solar flux index changes during the day and 

night, depending on height, season, and year variation. 

It has a range of 60 to 250 in the unit of  

10−22Wm−2Hz−1 and is expressed as maximum and 

minimum. 

(4) 

F

F






1

1
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
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   The angular deviation of the satellite position to the 

day time bulge is ϕ, and [54] has explained the details 

about it in formula (3). φ0 is the density for ϕ = 90o in 

r0 in which often the initial position is perigee and r is 

the instantaneous position of the satellite. We can 

analyze the effect of density in the Gaussian equations 

and components of the force, which influences along the 

velocity vector in the opposite direction that we can 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



4 

 

consider as fT and the effect of the Lift could be 

considered as fN. 

(5) 

m
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V

m

D
f D

T

2

2

1
  

   The above equation showcases V is the satellite's 

velocity relative to the air and its orbit to Earth's center. 

However atmospheric rotation's impact is also 

important. In fact V is 

(6) cos; rVVvV AA   

Where ω represents the angular velocity of the 

atmosphere relative to the Earth's axis, φ denotes the 

geocentric latitude, and υ corresponds to the satellite's 

velocity vector. By reducing the complexity based on 

the relationship of parameters in the formed spherical 

triangle between satellites, also  wu and 

neglecting small terms like as 22wr respect to V2 

(7) 

Fvi
v
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p

p 2

2

22 cos1 













  

   Therefore, the connection between drag and satellite 

velocity in relation to inertia can be expressed as:  

(8) 
 

2

1 2

DFSCvD 
 

Another significant point for analyzing the drag effect 

considered in this paper is the inequality of drag force 

vector with the radial component. The velocity vector of 

the satellite has a flight angle ψ to the radial direction, 

so the Gauss equations define the relationship between 

fT and fN  force components based on the flight angle ψ 

and true anomaly θ, which can be expressed as follows: 

(9) 
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   The effect of aerodynamic normal force (fn) on the 

orbital plane can be examined by analyzing the rotation 

of the atmosphere and meridional winds. Since 𝑣 is in 

orbital plane and 𝑉𝐴 makes an angle such as 𝛾′  with the 

orbital plane, the vertical component of 𝑉could be 

considered as: 

(11)   sincossin rwVV An  

And by using the trigonometric relations, 

(12) uirwVn cossin  

And the result will be,  

(13) 
uirw

F

v
fn cossin

2




 

   To analyze the effects of meridional wind, assume 

that the vector VA will make an angle like α in respect of 

West–East line. So the velocity of the meridional wind 

VASinα after simplifying and its correlation with the 

inertial speed and orbital elements is: 

(14) 

  
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
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2/122 sinsin1
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2 ui
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F

v
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  

   The formula (14) is the result of perpendicular force 

caused by zonal and meridional winds and ϕ implies the 

meridional wind's angular rate. The speed of 

atmospheric wind is roughly 500 ms−1 estimated based 

on experimental data, while the speed of meridional 

winds is estimated to less than 100 ms−1. 

 

3. Direct solar radiation pressure 

Solar radiation pressure can cause a force on the 

satellite surface that is proportional to, 

(15) 

2

6
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   The number of CP  absorbent and reflective objects 

can be anywhere from 0 to 2 and A is perpendicular 

plane of the satellite to the sun. Often, the effects of 

radiation for orbits with high altitude are very 

important. The relative position of the Sun, satellite and 

the Earth in various instances which leads to shadow 

effects, has striking and remarkable 

influences. Different models have been developed to 

analyze the solar radiation impact that all of them were 

based on force component and the only difference is 

modeling of eclipse influence. 

   The structure of equations in some phrasings includes 

the analytical effect of shadows, with the main body of 

the equation expressing the two real anomaly entrance 

and exit angles of the satellite as it enters and exits the 

shadow of the Earth, as found in [55]. Nonetheless, 

according to another model used to analyze this 

disturbance effect [56], it is assumed that the shadow of 

the Earth is cylindrical and by checking the position of 

the Sun and the satellite's entrance and exit angles 

instantaneously, the value of 𝐹𝑆𝑅 will be zero during the 

shadow interval. 

(16) 
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Mentioned parameters indicated )(,)(  TS

 

and

)(W , are force components of direct solar radiation in 

the radial direction, perpendicular to the radius and are 

perpendicular to the plane respectively. 
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      which 𝜆⨂ = 𝜃⨂ + 𝜔⨂,  is the angle between the 

Sun position vector and the vernal equinox and also  𝜀 is 

the obliquity of the Sun to the equator which has the 

average value of  23.45𝜊. 

   For analyzing the shadow instantaneous effect, we 

refer to the pattern in [55]. This presentation suggests 

that assuming the Earth's shadow as cylindrical, the true 

anomaly angle (𝜃) corresponds to the angle of the 

satellite's entry and exit to the shadow, which satisfies 

this equation. 
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   in which 𝑅𝐸
2 is the radius of the Earth at the equator, 

(𝑒) eccentricity of satellite orbit, 𝑝 = 𝑎(1 − 𝑒2), 𝛽1and 

𝛽2 are 
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 𝑅⃗ 𝑆 is the Sun position vector in the inertial system and 

𝑃⃗  and 𝑄⃗  are 
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   The angle of shadow entry and exit can be calculated 

by arranging function (24) and solving the derived 

equation using recursive methods such as Newton-

Raphson with constraints. 

(28)   01 22  DxCBxAxxf  

   In the earlier equation 𝑥 = 𝑐𝑜𝑠𝜃 and the condition for 

the answer is the following terms 𝑓(1)𝑓(−1) ≤ 0, 

−1 ≤ 𝑥 ≤ 1, then solving method such as Newton are 

used. 
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To ensure the equation has been solved correctly, a 

momentary check is necessary. 

(30)   ToleranceDesiredxf   

4. Earth Oblateness 

As the influence of the Earth on the object is a 

conservative force and impact, we use the potential 

function gradient like 𝑉(𝑟) = −𝜇 𝑟⁄ . The model 

described earlier would only be usable if the Earth was a 

complete spherical and was a homogeneous in mass 

distribution, whereas it is not like that, it needs to define 

the potential function for our planet. Supposing the 

Earth elliptical, we can generalize the potential function 

with a factor like 𝛽(𝑟, 𝜑, 𝜆) which is a function of 

position and geocentric latitude and longitude, as 

described in [57]. 
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   Calculating the coefficients of equations based on 

Earth gravity harmonics, solving Laplacian equations, 

and using spherical coordinates, we can determine the 

potential function, which can be expressed by the 

following series. The method of producing the potential 
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function and adjusting the coefficients is explained in 

[58]. 
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   By matching the spherical harmonics Snm  and Cnm  
to the Legendre polynomial series, the coefficients are 

classified into three categories representing the Earth, 

which Pn
m is the Legendre polynomial. Conservative 

forces can be expressed as a force component pattern. 

The force components derived from a non-spherical 

Earth model are analyzed using a spherical system to 

study the Gaussian Equation. Zonal harmonics are the 

only components included, as well as Legendre's 

polynomials and their extension described in [55] are 

used. 
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   In which 𝑃𝑛   is Legendre polynomial and 𝑃𝑛́   is 

the combination of the Legendre polynomial  

(36) c
 

and          ui sinsin              

5. The effect of third body 

The third body produces an additional gravitational 

effect to that of the Earth. 
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   Potential function (38) in [59] is based on the 

viewpoint of Kozai - Kaufman in which subscript 3 

belongs to perturbed object, 𝜇3 is the constant 

gravitational parameter and  𝑚3  is the  body mass of 

the third object (Sun or Moon). The distance of a 

satellite from the center of the Earth (r),   and third 

object from the Earth center (r3), along with the angle 

between their vectors (ψ), can be used to expand the 

potential function. By using the orbital elements of both 

objects, the potential function based on Kozai and 

Kaufman's viewpoint can be produced. 
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and 𝐴 = 𝑃⃑⃗. 𝑒3,
  
𝐵⃑⃗ = 𝑄⃑⃗. 𝑒3 and 𝑃⃑⃗, 𝑄⃑⃗

  
  are the unit vectors 

of perifocal coordinate system which had been 

mentioned in relation   (27) and (28) and vector e⃗⃑3 is the 

unit vector directed to the  third object. 
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𝑢3, 𝑖3, Ω3 are respectively the argument of latitude, 

inclination and RAAN of the third object . By 

expanding A2 + B2, A2 − B2 using the series and 

working on the potential function (39), the Lagrange 

equations can be derived to study the changes in orbital 

elements due to third body gravity. 

(40) 
0

dt

da  

(41) 
 IMWse

dt

de


8

15


 (42) 

 































iIMWIMOe

IPOe

s

i

dt

di

cos
2

5

2

3
1

csc

4

3

2

2



 

(43) 



















































IMCIMS
i

i
e

IPCIPS
i

i
e

sdt

d

sin

cos

2

5

sin

cos

2

3
1

4

3

2

2



 

(44) 
   

dt

d
i

BABAs
dt

d














cos

2

5
1

2

3

2

3 2222


 

(45) 
 

 

   
























































22222

222

222

2

5
1

2

3

2

3

4

15

1
2

3

2

3
1

2

BABAs

BAe

BAe

n
dt

dM



  

   so 𝑆 = √1 − 𝑒2, 𝛾 =
𝑛3

2

𝑛
(
𝑎3

𝑟3
)
2

𝑅𝑚  and 𝑅𝑚 is the 

mass ratio. So if the Moon is the third object 𝑅𝑚 =

1/27, for the Sun  𝑅𝑚 = 1  and parameters IMW, IMS, 

IMC, IMO, IPO, IPS and IPC are: 
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6. Earth Solid Tides 

The Sun and Moon's gravitational forces cause the Earth 

to experience solid tides, resulting in changes in its 

shape similar to an elastic body. The potential function 

and the harmonics of Earth's gravity will undergo 

changes from the normal mode.  

Table 1- Gravitational forces applied to the Moon and 

Earth by gravitation body 

Moon Gravitational force 

due to the Earth 

1.82×1018 N 

Earth Gravitational force 

due to the Moon 

6.69×1018 N 

Earth Gravitational force 

due to the Sun 

3.02×1018 N 

   Earth experiences 3.5 times more gravitational force 

from the Moon than the Moon experiences from the 

Earth, and 2 times more than the Sun's gravitational 

force. The impact of the Moon's gravity on Earth is vital 

compared to the Sun's. A potential function presents 

changes over times that depend on spherical gravity 
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harmonics. Most articles and patterns give more 

importance to the gravitational effect of the Moon, 

whereas [38] and this article present both the effects of 

the Sun and Moon's gravity simultaneously. 

(54) 
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that indicators 𝑊𝑠 and 𝑊𝑚 will be the Moon and Sun 

effects and in equation (56), 𝑓𝑚
∗  and 𝜔𝑚 are respectively 

the true anomaly and argument of perigee of the Moon 

(55) 
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   If the alteration in the shape of the Earth occurs 

entirely along the line connecting the Moon and Earth 

or the line connecting the Sun and the Earth, and there is 

no variation in the phase, then we can apply the 

parameters in equation (56) in this manner: 

(56) 
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   By utilizing the potential function  and the Lagrange 

equations, we can study and model the variations in 

perturbed orbital elements as opposed to changes in the 

Earth's shape due to gravitational forces from the Sun 

and Moon. Different sources such as [60] have 

presented the pattern of solid tides on Earth and their 

effects on the perturbed acceleration in the inertial 

system. [60] have explained how the potential function 

is affected by changes in the Earth's shape and how this 

affects the spherical gravity harmonics coefficient. 

   Disturbed acceleration in an inertia system for 

analyzing the Cowell method, expressed, and it leads to 

equation (57), 

(57) 
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In which index 𝑆 and 𝑚 indicate the effects of the 

Sun and the Moon and this pattern only consist of 𝐽2  

major effects and 𝜃  is the angle between the satellite 

position vector 𝑟 and the Sun or Moon position vector 

𝑟𝑠,𝑚 in inertial system and 𝑅𝑒 is the radius of the Earth 

in equator. 

7. General relativity effects 

The general theory of relativity proposed by Einstein 

revealed that Newton's law of gravitation is not precise 

and requires revision in extremely strong gravitational 

fields. According to Newton, light always moves in a 

straight line, but Einstein proved that when light passes 

near an object with a significant gravitational field, its 

direction is shifted.  

In the Earth's reference frame, the primary relativistic 

effects affecting satellite trajectories can be categorized 

into three main components. The first is the Schwarzschild 

effect, caused by Earth's static gravitational field. The 

second is the Lense-Thirring effect (or frame-dragging), 

arising from Earth's rotation distorting spacetime and the 

third is the de Sitter effect (geodetic precession), resulting 

from Earth's orbital motion around the Sun. 
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(58)

 

 

The first line describes the so-called Schwarzschild term 

, the second is the frame-dragging gravitomagnetic 

Lense–Thirring effect, whereas the third corresponds to 

the de Sitter effect. 

Many analyses, particularly those examining the 

contributions of these effects in GNSS satellites, 

indicate that the first effect (Schwarzschild) is 

significantly more substantial than the subsequent two. 

On Galileo satellites E14, the Schwarzschild 

accelerations on Galileo E14 range between 123.3×10−12 

and 388.3×10−12 m·s−2, see Fig. 1. The de Sitter 

accelerations are between −5.6×10−12 and −25.3×10−12 

m·s−2, whereas Lense–Thirring are between 0.7×10−12 

and 4.6×10−12 m·s−2. Hence, for Galileo satellites, the 

Schwarzschild accelerations introduce stronger 

perturbations than de Sitter and the Lense–Thirring 
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effect by two and one order of magnitude, respectively. 

Therefore, in this study, we focus on the first effect, and 

the derivation of the equations is based on this 

consideration [47]. 

   The summary of general relativity is that mass tells 

space-time how to curve. Using of general relativity 

theory equations allows modeling of this question, 

which is unanalyzable by Newton's laws. In [45] , a 

perturbed potential function resulting from general 

relativity effects is explained. [61] Study contains the 

development of a perturbed force component based on 

Gauss equations. 
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Thus, assume 𝑐 the speed of light, 𝑅𝑒 the Earth 

radius and 𝜔0 angular speed of Earth rotation 
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   Cowell method in orbital elements variation can be 

used to study the effect of relativistic effects based 

on perturbed acceleration in inertial frame [47] and 

[59]. 

8. Albedo 

Satellites are subject to indirect solar radiation effects, 

as well as direct effects called Albedo. The satellite is 

affected by this effect caused by the reflection of direct 

solar radiation from the Earth and is greatly influenced 

by factors such as clouds and atmosphere. According to 

most references, including [55], these radiations are 

found along the radiant and consist of approximately 

30% direct solar radiation. Assuming the above, we can 

analyze the effect of the albedo pattern using Gauss 

equations. 

(67) 0;0;3.0  ntalbedor fff  

9. Fundamental Theory of Orbit Perturbations 

Generally, the equations and analysis methods for 

disturbed orbital effects are divided into three 

categories: Lagrange equations, equations of Gauss, and 

Cowell method. Lagrange equations use disturbed 

potential function V specific to conservative forces, 

making analysis of non-conservative forces impossible. 

The satellite is subject to a constant gravitational 

parameter −μ/r3  at all times. The perturbed force on 

the satellite is believed to be a gradient of a potential 

function. The partial derivatives of the disturbed 

potential function are assumed to be equal to the 

perturbed acceleration. 
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   Gauss equation states that the perturbed forces can be 

both conservative and non-conservative. If the 

components of the disturbed forces are available on 3 

along the radial 𝑓𝑟, tangential 𝑓𝑡 and 𝑓𝑛 perpendicular to 

the orbit,  you can analyze the orbital elements by Gauss 

equations and the process of equation production is 

mentioned in [51] and [52] by details. 
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   We can investigate the change of orbital elements by 

solving the main equation including disturbed 

acceleration in inertial system with the Cowell  method 

(70). However, the initial conditions to solve the main 

equation in the inertial frame are the vectors 𝑟0 and 𝑟̇0. 

So at the beginning we have to transform the initial 

conditions of orbital elements (𝑎0, 𝑒0, 𝑖0, 𝜔0, Ω0, 𝜃0) to 

position vector of 𝑟0 ,and initial speed 𝑟̇0 in inertial 

system, then solving equation (69) and by instant 

producing r


 and r

 in inertial system, we can transform 

vectors 𝑟  and 𝑟̇ with another process to orbital elements 

(𝑎, 𝑒, 𝑖, 𝜔, Ω, 𝜃)  which is stated by details in [62] and 

[63]. 

 

10. Simulation 

Three orbit types have been studied and simulated to 

investigate all discussed perturbation influences in this 

paper. "Table 2" characteristic and a collective feature 

based on an artificial satellite can be found in the three 

type orbit studied.  

Table 2- Characteristics of the orbits 

Orbit C Orbit B Orbit A Properties 

GPS(km) MEO(km)   LEO (km) 

rp=20138 rp=11940 hp=245 i=55o 

ra=20225 ra=12060 ha=378 0  
a=20182 a=12000 a=6689.63 Kgm 27  
e=0.00218 e=0.005 e=0.00994 Dim: 40Cm3 

 

 

   The initial parameters for solving the perturbed 

equation are identical to the initial conditions of the 

orbits. The selected time is chosen for the actual 

detumbling process time of a sample LEO satellite, 

which lasts about 4 orbits, and has no other reason. 

Changes in all the graphs of  a are measured in meters, 

while changes in  (i, Ω, ω,M)  are measured in degrees. 

All charts show the deviation of orbital elements from 

their initial value (α − α0)  . Simulations have been 

executed in Simulink environment. The choice 

between explicit and implicit methods depends on 

the stiffness of the problem, computational efficiency, 

and accuracy requirements. For most orbital mechanics 

problems (e.g., satellite propagation, interplanetary 

trajectories, use ODE45 (RK4) or ODE113 (Adams). 

For stiff problems (e.g., low-perigee orbits, high 

eccentricity, drag-dominated cases), 

use ode15s (BDF) or ODE23t (Trapezoidal). For high-

precision long-term simulations (e.g., space debris, 

lunar missions). In Summary Explicit 

methods (ODE45, ODE113) are preferred for most 

orbital ODE) are needed for stiff 

cases (e.g., atmospheric drag, high-fidelity 

perturbations) and Hybrid approaches (e.g., variable-

step solvers) often work best in practice. Since this 

study did not impose specific constraints on 

computational time, and to prevent unwanted errors in 

long-term effects including shadow effects and third-

body perturbations, it was decided to use variable time 

step for all calculations. The solver was selected 

automatically. Numerical simulations demonstrate 

robust stability with adaptive time-stepping, but 

enforcing a minimum time step (Δt ≥ 1000 s) in long-

term analyses leads to divergence in some cases. This 

highlights the importance of temporal resolution in 

maintaining numerical stability, as constrained step 

sizes can fail to capture critical dynamics, resulting in 

solution instability over extended durations. 
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11. Results 

Through the utilization of the patterns to examine the 

effect of perturbations and the simulation output, as 

indicated in "Figure 1", one can detect the impact of 

drag in the LEO orbit, which leads to a decrease in 

energy and orbit altitude. It is clear that secular changes 

occur in the semi-major (a) axis and eccentricity (e). 

Additionally, the sensitivity analysis to variations in the 

drag coefficient and solar activities sweeping is 

presented in "Figure 2" and "Figure 3". 

Taking into consideration the regional and 

meridional winds, it can also be noted that small 

changes occur on inclination (i) and longitude of 

ascending node (Ω)   that these changes will be of great 

importance in the long term.  Nonetheless, the reduction 

of orbit altitude may result in a shorter orbit lifetime, 

particularly for satellites with low eccentricity that have 

a lifespan ending at an altitude of 120 km.  Table 3 

demonstrates that if the amount of drag coefficient (Cd)    

increases, the lifetime of satellite decreases and by 

increasing the value of solar flux index (F10.7), the 

lifetime of the satellite would decrease too. For better 

understanding, due to the dependence of perturbations 

on orbital height, the variations in orbital elements 

caused by drag are presented for Orbit A, along with 

other relevant diagrams for Orbit B. 

 

 

Table 3- Initial estimates of orbit lifetime (days) 
(M=16kg ; S=0.16m2) 

F10.7=80 F10.7=120 F10.7=180 F10.7=250 
 

60 39 25 17 Cd=2 

55 35 23 16 Cd=2.2 

50 33 21 14 Cd=2.4 

46 29 19 13 Cd=2.6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- Sample variation of orbit height, hp and ha 

during lifetime (Cd=2.6, F10.7=250) 
 

 
 

Figure 2- Variations in OE of Orbit B were evaluated 

through systematic sweeps of (F10.7) 

 
Figure 3- Variations in OE of Orbit B were evaluated 

through systematic sweeps of (Cd) 
 

The impact of direct solar radiation for LEO orbit is 

shown in "Figure 4" that these changes for reflection 

coefficient value of (Cp = 1).  

 

Figure 4-Variation of OE caused by direct solar 

radiation in orbit B 

 

Figure 5- Variation of OE caused by Earth 

oblateness  up to J10 in orbit B 
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Figure 6- Variation of OE caused by Moon 

gravity in orbit B 

 

Figure 7- Variation of OE caused by Sun 

gravity in orbit B 

 
Figure 8- Variation of OE caused by solid tides due to 

Moon in orbit B 

 
Figure 9- Variation of OE caused by solid tides due to 

Sun in orbit B 

 
Figure 10- Variation of OE caused by General 

Relativity in orbit B 

 
 Figure 11- Variation of OE caused by 

solar radiation reflected in orbit A 
 

 

 

Consequently, "Figure 5" displays how the Earth's 

oblateness can cause fundamental variations for the 

secularity of changes (ω,Ω,M) and high periodic 

changes on (a). 

The outcome of the third body, such as the Moon in 

"Figure 6" and the Sun in "Figure 7", shows that while 

these adjustments are slight and the impact of the Moon 

is much greater, the long-term tendency of changes in 

the time span is of paramount importance. 

The solar and lunar gravitational force, relative to 

their positions on the Earth, can impact the Earth's shape 

and orbital elements. Depending on the position of the 

Sun and Moon relative to Earth, their gravity can impact 

the planet's shape. Earth solid tides on orbital elements 

depicts in the "Figure 8" and "Figure 9". 

 "Figure 10" displays the effects of general relativity, 

which have minor changes. However, the impact of 

solar radiation reflected from the Earth (Albedo) also 

brings about long-term shifts in semi-major axis and 

periodic alterations in eccentricity and other orbital 

elements. This impact, as stated in "Figure 11", is much 

smaller than the impact of solar radiation pressure.  

"Table 4" to "Table 9" illustrates the most 

significant fluctuations in orbital elements for three 

orbit types, rather than all disruptions. 
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Table 4- Maximum changes of orbital elements in orbit A 

Δa (m) Δe Δiº Perturbations 

15427.2 1.7×10-3 4.6×10-2 Earth Oblateness1 

205.12 1.85×10-5 2.32×10-5 Atmosphere 

Drag1 

101.432 5.67×10-5 3.27×10-4 Direct solar 

radiation2 

0 2.15×10-8 4.13×10-5 Moon Gravity2 

0 0 0 Sun Gravity2 

0.288 5.54×10-8 2.07×10-6 solid tides due to 

the Moon3 

0.113 1.51×10-8 5.2×10-7 solid tides due to 

the Sun3 

0.179 4.4×10-8 2.34×10-6 solid tides due to 

the Sun & Moon3 

4.7×10-3 4.04×10-9 3.34×10-

13 
General 

relativity3 

0.902 6.77×10-6         0 Albedo1 

Superscripts: 1.Gauss method,  2. Lagrange method, 3.Cowell method 
 

 

 

Table 5- Maximum change of orbital elements in orbit A  

ΔΩ  ωΔ ΔM Perturbations 

1.1 30.31 33.28
 

Earth Oblateness1 

1.88×10-6 2.52×10-2 3.07×10-2 Atmosphere 

Drag1 

2.21×10-4 7.8×10-3 2×10-2 Direct solar 

radiation2 

4.81×10-5 7.6×10-5 5.65×10-5 Moon Gravity2 

9.93×10-11 1.8×10-10 5.51×10-

10 
Sun Gravity2 

2.37×10-7 1.84×10-4 7.57×10-5 solid tides due to 

the Moon3 

7.82×10-6 9.28×10-5 2.85×10-

10 
solid tides due to 

the Sun3 

7.6×10-6 1.54×10-4 4.7×10-5 solid tides due to 

the Sun & Moon3 

1.09×10-12 2.47×10-5 1.2×10-6 General 

relativity3 

0 1.9×10-3 1.83×10-3 Albedo1 
Superscripts: 1.Gauss method,  2. Lagrange method, 3.Cowell method 

 

 

 

Table 6- Maximum change in orbital elements in orbit B 

Δa (m) Δe Δiº Perturbations 

7932.5 5.1×10-4 1.32×10-2 Earth Oblateness1 

0 0 0 Atmosphere 

Drag1 

314.66 8.24×10-5 5.91×10-4 Direct solar 

radiation2 

0 2.6×10-8 9.93×10-5 Moon Gravity2 

0 0 0 Sun Gravity2 

0.1576 1.72×10-8 2.68×10-7 solid tides due to 

the Moon3 

6.07×10-2 3.56×10-9 1.16×10-7 solid tides due to 

the Sun3 

9.72×10-2 1.37×10-8 3.32×10-7 solid tides due to 

the Sun & Moon3 

7.09×10-4 2.21×10-9 3.98×10-

13 
General 

relativity3 

1.1088 9.23×10-6 0 Albedo1 

Superscripts: 1.Gauss method,  2. Lagrange method, 3.Cowell method 

 

 

Table 7- Maximum changes of orbital elements in orbit B  

ΔΩ  Δω  ΔM Perturbations 

0.143 7.67 7.94 Earth Oblateness1 

0 0 0 Atmosphere 

Drag1 

7.22×10-4 4.19×10-2 4.63×10-2 Direct solar 

radiation2 

1.15×10-4 1.77×10-4 1.39×10-4 Moon Gravity2 

2.42×10-10 4.34×10-

10 
4.25×10-

10 
Sun Gravity2 

4.97×10-8 1.09×10-4 8.94×10-6 solid tides due to 

the Moon3 

1.01×10-6 5.51×10-5 3.41×10-6 solid tides due to 

the Sun3 

9.91×10-7 8.89×10-5 5.53×10-6 solid tides due to 

the Sun & Moon3 

1.09×10-12 2.55×10-5 3.23×10-8 General 

relativity3 

0 1.14×10-2 1.13×10-2 Albedo1 
Superscripts: 1.Gauss method,  2. Lagrange method, 3.Cowell method 
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𝑎 (%) 

𝑒 (%) 

𝑖 (%) 

Ω (%) 

𝜔 (%) 

𝑀 (%) 

 

𝑎 (%) 

𝑒 (%) 

𝑖 (%) 

Ω (%) 

𝜔 (%) 

𝑀 (%) 

 

𝑎 (%) 

𝑒 (%) 

𝑖 (%) 

Ω (%) 

𝜔 (%) 

𝑀 (%) 

 

Table 8- Maximum changes of orbital elements in orbit C 

Δa (m) Δe Δiº Perturbations 

4625.1 1.79×10-4 4.6×10-3 Earth Oblateness1 

0 0 0 Atmosphere 

Drag1 

1227.1 1.13×10-4 1.4×10-3 Direct solar 

radiation2 

0 2.47×10-8 2.16×10-4 Moon Gravity2 

0 1.28×10-15 0 Sun Gravity2 

9.3×10-2 6.09×10-9 4.57×10-8 solid tides due to 

the Moon3 

3.6×10-2 1.26×10-9 3.31×10-8 solid tides due to 

the Sun3 

5.7×10-2 4.82×10-9 5.06×10-8 solid tides due to 

the Sun & Moon3 

2.56×10-

4 
1.31×10-9 4.4×10-13 General 

relativity3 

1 1.14×10-5 0 Albedo1 
Superscripts: 1.Gauss method,  2. Lagrange method, 3.Cowell method 

 

 

 

 

Table 9- Maximum changes of orbital elements in orbit C  

ΔΩ  Δω  ΔM Perturbations 

2.19×10-2 4.17 4.19 Earth Oblateness1 

0 0 0 Atmosphere 

Drag1 

2.1×10-3 0.243 0.246 Direct solar 

radiation2 

2.52×10-4 4.58×10-4 3.34×10-4 Moon Gravity2 

5.39×10-10 10-9 1.09×10-9 Sun Gravity2 

1.41×10-8 8.79×10-5 1.51×10-6 solid tides due to 

the Moon3 

1.55×10-7 3.78×10-5 5.97×10-7 solid tides due to 

the Sun3 

1.42×10-7 7.1×10-5 9.17×10-7 solid tides due to 

the Sun & Moon3 

1.45×10-12 3.38×10-5 3.69×10-9 General 

relativity3 

0 7.22×10-2 7.44×10-2 Albedo1 
Superscripts: 1.Gauss method,  2. Lagrange method, 3.Cowell method 

 

In conclusion, the influence of every disturbance on 

each orbital element is shown in Figure 12 to Figure 19 

separately considering the changes in the type of orbit 

(A, B & C). A comprehensive analysis will aid in better 

understanding of these disturbances and their budgets 

on each orbit element. 

 

Figure 12– Orbit perturbation budgeting on (a) in orbit 

A,B & C 

 

Figure 13– Orbit perturbation budgeting on (a) in orbit 

A,B & C 

 

Figure 14– Orbit perturbation budgeting on (e) in orbit 

A,B & C 
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Figure 15– Orbit perturbation budgeting on (e) in orbit 

A,B & C 

 

 

Figure 16– Orbit perturbation budgeting on (i) in orbit 

A,B & C 

 

Figure 17– Orbit perturbation budgeting on (i) in orbit 

A,B & C 

 

 

Figure 18– Orbit perturbation budgeting on (Ω) in orbit 

A,B & C 

 

  Figure 19– Orbit perturbation budgeting on (Ω) in 

orbit A,B & C 

 
 

 

 

  Figure 20– Orbit perturbation budgeting on (𝝎) in 

orbit A,B & C 
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Figure 21– Orbit perturbation budgeting on (𝝎) in orbit 

A,B & C 
 
 

 

 

Figure 22– Orbit perturbation budgeting on (𝑴) in orbit 

A,B & C 

 

Figure 23– Orbit perturbation budgeting on (𝑴) in orbit 

A,B & C 

12. Conclusions 

This study presents a comprehensive analysis of 

orbital perturbation effects across different altitude 

regimes, providing significant insights for spacecraft 

mission design and control. Our investigation reveals 

that Earth's oblateness (J₂ effect) represents the 

dominant perturbation source, with its influence 

decreasing as orbital altitude increases. Atmospheric 

drag proves most significant below 600 km, remains 

considerable up to 1000 km, and becomes negligible 

beyond this threshold. In contrast, solar radiation 

pressure emerges as the primary perturbing force in 

higher orbits, particularly in GEO and beyond. While 

third-body gravitational effects from the Sun and Moon 

exhibit direct proportionality to altitude, relativistic 

effects and Earth solid tides demonstrate an inverse 

relationship with altitude. 

These findings have important implications for 

mission design, particularly for high-precision systems 

such as spatial telescopes and SAR satellites. Such 

applications require careful, perturbation-aware design 

of sensor systems, control architectures, and orbital 

maintenance strategies. Special consideration must be 

given to both Nadir-pointing systems, which are 

vulnerable to perturbation-induced pointing errors, and 

repeat-ground-track orbits that require precise 

perturbation compensation. For electric propulsion 

missions, the study highlights their heightened 

sensitivity to minor perturbations due to low thrust-to-

perturbation ratios and multi-revolution trajectory 

characteristics. The established perturbation hierarchy 

enables optimization of thruster sizing, maneuver 

scheduling, and fuel budgeting. 

From a theoretical perspective, this work contributes 

three key elements: first, a validated perturbation 

hierarchy for mission designers; second, altitude-

dependent quantitative perturbation models; and third, a 

perturbation-aware control system framework. 

Practically, the results establish new benchmarks for 

precision orbital mechanics that are particularly relevant 

to Earth observation and communication constellations, 

scientific missions requiring ultra-stable orbits, and 

future space infrastructure deployment. 

Building on these findings, future research will 

focus on developing optimal LEO-to-GEO transfer 

trajectories using hybrid electric-chemical propulsion 

systems. This will involve implementing heuristic 

optimization techniques for perturbation-compensated 

trajectory design, multi-objective mission planning, and 

robust orbital control under uncertainty, with extensions 

to cis-lunar station-keeping and interplanetary trajectory 

design. The comprehensive understanding of altitude-

perturbation relationships presented in this work bridges 

the gap between perturbation theory and mission-ready 
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solutions, offering both fundamental advances and 

deployable tools for next-generation space systems. 

Nomenclature 

Satellite Area A  

Semi-major Axis a  

Light Speed c  

Drag Coefficient 
DC  

Tesseral spherical harmonics Coefficient 
nmC  

Solar Radiation Pressure Coefficient 
PC  

Drag D  

Eccentric Anomaly E  

Eccentricity e  

Solar Flux Index F  
Normal Force Component 

Nf  

Radial Force Component 
Rf  

Tangential Force Component 
Tf  

Solar Radiation Force 
SRF  

Height H  
Angular Momentum h  
Inclination i  

Mean Anomaly M  

mass m  

Mean Motion n  

Legendre polynomial Coefficient m

nP  

Solar Radiation Pressure 
SRP  

Earth Radius 
ER  

Radius r  
Perigee radius 

pr  

Sectorial spherical harmonics Coefficient 
nmS  

Velocity V  

Angular Velocity of Atmosphere w  

True Anomaly   

Longitude   

Body Attraction Constant   

Density   

Satellite Velocity v  

Perigee Velocity pv  

Longitude     

Angle Between two Body   

Longitude of Ascending Node   

Argument of Periapsis   

Angular Speed of Earth Rotation 
0  
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