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Abstract: 

Rotating equipment, akin to human systems, necessitates diligent care and monitoring to ensure optimal 

functioning. Given that nearly half of rotating equipment failures can be attributed to bearing 

malfunctions, it is crucial to develop effective predictive solutions. One promising approach is developing 

a model capable of forecasting bearing deterioration once it enters the degradation stage. With the rise of 

artificial intelligence, numerous studies have sought to estimate bearing lifespan or detect deterioration. 

However, these methods often rely on continuous data collection, which is frequently unavailable in 

industrial settings. This paper introduces a relevance vector machine (RVM) model that effectively 

provides predictions utilizing limited historical data while also offering results with a defined confidence 

level. To validate this model, run-to-failure tests are conducted in the laboratory, complemented by 

vibration analysis of two electro-fans in an industrial environment. The model is developed through three 

stages: identifying the optimal health indicators marking the onset of degradation, determining the best 

indicators for describing the deterioration trend, and configuring the RVM through hyperparameter 

optimization. The model’s robustness is further evaluated against data reduction and measurement 

intervals, demonstrating superior predictive capabilities with accuracies exceeding 92.4% in laboratory 

data and over 91.1% in industrial data. 
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1. Introduction 

Rolling element bearings (REBs) are critical components in the operation of rotating machinery across 

various industrial sectors. They account for approximately 45% of failures in rotating equipment. REBs 

possess a finite lifespan, necessitating their replacement after a certain period of use. A key challenge lies 

in identifying the optimal replacement time. Premature replacement leads to an increase in inventory costs 

due to unused bearing life, while delayed replacement can result in secondary damage or catastrophic 

failure, compounding the risk of operational disruptions. Both scenarios are associated with significant 

financial losses for industries. Consequently, accurately predicting the remaining useful life (RUL) and 

monitoring the deterioration trends of REBs are essential for enhancing the reliability of industrial 

rotating equipment, enabling timely interventions. 

With advancements in technology and the emergence of artificial intelligence, a significant number of 

studies have been published concerning the prediction of RUL for REBs. Notably, Qin et al. (2020) [1] 

introduced a novel approach known as the Gated Dual Attention Unit (GDAU) neural network for RUL 

prediction. The GDAU model incorporates dual attention gates to forecast the health indicator sequence 

of an REB utilizing vibration data, achieving a mean absolute percentage error (MAPE) of 14.8% on the 

PRONOSTIA public dataset. Additionally, Wu et al. [2] implemented a long-term cascading 

convolutional memory network for RUL prediction, which effectively captures spatio-temporal 

correlations among features. To enhance the stability of the prediction results, they also employed a 

smoothing technique based on multiple averaging operations. 

In their 2021 study, Zeng et al. [3] employed an online transfer learning-based approach to predict the 

RUL of REBs. Their methodology effectively addressed several challenges, including the scarcity of run-

to-failure data, the variability of deterioration trends under differing conditions, and the incorporation of 

unlabeled online data. This approach integrated a deep learning model during the offline phase and fine-

tuning with unlabeled data during the online phase to enhance the accuracy of RUL estimations. 
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Consequently, their method achieved a maximum cumulative relative accuracy (CRA) of 84% on the 

PRONOSTIA dataset. Additionally, She et al. [4] proposed a bidirectional gated recurrent unit (BiGRU) 

method, utilizing the bootstrap technique to predict RUL and to compute the confidence interval (CI) of 

RUL, thus capturing prediction uncertainty. The results indicated that the BiGRU model attained the 

lowest MAPE of 6.1% for a bearing tested in their laboratory. 

In 2022, Liu et al. [5] introduced a data-driven approach for predicting the RUL of REBs in air engines. 

This method employed a deep convolutional neural network in conjunction with a particle filter. 

Validation of the approach was conducted using experimental data, resulting in a mean absolute error 

(MAE) of 2.2%. Similarly, Zhang et al. [6] developed a bearing life prediction method leveraging digital 

twin technology to enhance the accuracy of RUL predictions. Their approach incorporated unsupervised 

classification and an attention mechanism for feature extraction, culminating in the formation of a 

comprehensive digital twin dataset. The method’s validity was established using the authors’ testing 

setup. 

In 2023, Li et al. [7] introduced a method for predicting the RUL that employs the GRU-DeepAR model 

with an adaptive failure threshold. Their experimental investigations and validations utilized the XJTU 

dataset and an accelerated test bench featuring an internal roller bearing. These experiments demonstrated 

the effectiveness of their proposed method compared to other predictive models, such as convolutional 

neural network (CNN) and long short-term memory (LSTM). Concurrently, Zhang et al. developed a new 

model comprising three components: a multiscale entropy-based feature selection for health index (HI), a 

Hodrick-Prescott filter process to ensure optimal performance with minimal fluctuations in HI. The model 

also includes a LSTM neural network combined with a particle filter algorithm for RUL prediction. The 

resulting root mean square error (RMSE) on the PRONOSTIA dataset was approximately 0.88. 

In 2024, Guo et al. [8] introduced a novel hybrid method that constructs a nonlinear health index using 

full ensemble empirical mode decomposition with adaptive noise and kernel principal component 
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analysis. Additionally, the 3σ criterion was employed for the health assessment of bearings. Deterioration 

modeling and probabilistic predictions of RUL were executed using a nonlinear Wiener process with 

random effects, guided by the authors’ laboratory test data. Meanwhile, Wen et al. [9] proposed a method 

combining the envelope spectral index, extended Kalman filter, and bearing fault frequency analysis, 

using Bayesian regression to estimate RUL. This approach effectively predicts early RUL with few 

observations, making it valuable for early-stage bearing health management. However, it is important to 

note that the primary focus of the research mentioned above was on RUL prediction, while the emphasis 

of the present paper is on predicting the deterioration trend. 

In conclusion, the literature review highlights that research aimed at predicting the lifespan of rotating 

equipment bearings typically necessitates the collection of online data. It also requires the application of 

sophisticated models to ensure accurate predictions using extensive historical datasets. However, the 

practicality of online data collection within industrial settings is frequently limited, underscoring the 

necessity for a RUL prediction model that requires minimal data. This study is centered on proposing an 

innovative method for developing a predictive model targeting bearing deterioration based on limited 

vibration history. The desired features of this model encompass not only effective performance under 

limited historical data but also the capability to predict the upcoming deterioration trend with a defined 

level of confidence. Additionally, it is designed for seamless application in both online and offline 

condition monitoring systems. To achieve these objectives, a machine learning-based algorithm, 

relevance vector machine (RVM), characterized by a probability distribution that ensures responses 

reflect the specified confidence level (CL) is employed. The distinct contribution of this research lies in 

its unique approach to training the model for the prediction of vibration conditions during subsequent data 

acquisition, thereby enhancing its applicability in a variety of monitoring contexts. Best HIs are 

strategically selected to detect the onset of fault (start of degradation stage of REB) and to articulate the 

deterioration trend, while the optimal quantity of data is meticulously determined to maximize the 

algorithm’s accuracy. To evaluate the efficacy of the proposed algorithm, laboratory experiments are 
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conducted to record the vibration behavior of a bearing through run-to-failure tests. The developed model 

subsequently serves as the basis for assessing the model’s performance using industrial data samples. 

This paper is structured as follows: Section 2 provides an overview of the test rig and details the run-to-

failure tests conducted on the bearings under laboratory conditions. It also includes data from two 

industrial cases of vibration corresponding to the damaged bearings. Section 3 is dedicated to a 

description of the methodology and the development of the predictive model. Then, it emphasizes the 

selection of the optimal HIs for identifying the onset of REB degradation stage and predicting 

deterioration trends. In Section 4, the results obtained from the laboratory dataset are presented, along 

with a determination of the optimal quantity of data required for accurate predictions. It also addresses the 

verification of the developed model using industrial data. Finally, a summary, conclusions, and 

suggestions for future research are provided. 

2. Data Collection 

This section introduces the collected data in the laboratory through the run-to-failure test of four bearings 

for developing the appropriate deterioration trend model prediction, and the collected data in the industry 

to verify the developed model. 

2-1- Bearing run-to-failure test in laboratory 

Developing an intelligent bearing deterioration prediction model requires laboratory data under controlled 

conditions by performing run-to-failure (highly accelerated life) tests (HALT). For this purpose, this 

research is conducted in the condition monitoring laboratory, using the bearing test rig, which is seen in 

Fig. 1. The test rig consists of an electromotor as a driver, a hydraulic jack for applying the pressure load 

on the test bearing, two support bearings of the shaft, a tachometer for recording the speed, and 

accelerometers for recording the vibrational signals. The magnetic accelerometer sensors are placed on 

the test bearing housing. Technical info of the accelerometers, test bearing, and operating condition of the 

test are listed in Table 1. Run-to-failure tests are performed for four deep groove ball bearings. To speed 

up the test, a hole with a diameter of 3 mm is created in the outer rings of the bearings, as seen in Fig. 2. 
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This hole is not an artificial defect, although it may cause nearby failures. The purpose was to induce 

vibrations for earlier failure in controlled laboratory conditions, a common practice in bearing failure 

testing. 

Table 1. Technical specification of the experimental test 

Parameter Unit Value 

Electromotor nominal power kW 1.5 

Electromotor nominal speed RPM 3000 

Applied pressure load on the test bearing kN 1.2 

Accelerometer sensitivity mV/g 100 

Accelerometer resonant frequency kHz 30 

Accelerometer range g ±80 

Test bearing type - Deep groove ball bearing 

Test bearing bore diameter mm 50 

Test bearing outside diameter mm 90 

Test bearing width mm 20 

Test bearing dynamic load rating kN 37 

Test bearing static load rating kN 23.2 

 

a)       b)  

Fig. 1. Bearing test rig in the condition monitoring center: a) Schematic view b) Real view 

 

 
Fig. 2. The hole created in the outer ring of the bearing to speed up the run-to-failure test (highly accelerated life test: HALT) 
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Each test has been stopped in such a way that, in addition to a significant increase in acceleration, the 

noise of the test bearing has increased sharply. The vibration level at test termination varies between 

samples, and decisions for test stoppage are made by experts based on observed conditions. So, there is no 

fixed vibration amplitude threshold for stopping the test. The run-to-failure time for each test bearing is 

listed in Table 2. It must be noted that all bearings were tested under the same speed (3000 RPM) and 

load (1.2 kN), yet their failures occurred unpredictably at different times due to factors like microscopic 

defects, manufacturing variations, and uncontrollable operating environments.  

Table 2. Run-to-failure time for each tested bearing (Speed = 3000 RPM, and Load = 1.2 kN) 

Test Bearing Number Run-to-Failure Time 

1 3 days + 18 hr + 11 min 

2 2 days + 15 hr + 25 min 

3 22 hr + 34 min 

4 1 day + 22 hr + 59 min 

 

As an illustration, Fig. 3 presents the time waveform of the bearing vibrations recorded at the start of the 

test and at the end, along with the corresponding kurtogram image. The time response reveals an increase 

in vibration amplitude of up to six times with highly impulsive behavior, as well as the progression of 

failure until the bearing reaches the fourth stage of its failure can be seen in the kurtogram, which has 

exposed the entire frequency range to random vibrations with considerable increment in the kurtosis. 

 

2-2- Damaged bearing in industry 

The industrial data used in this article is taken from a Petrochemical Company in Arak. The data collected 

is related to the bearing of electro-fans. Specification of the machines and bearing information of them are 

given in Table 3. It has been observed that the geometric and load characteristics of industrial bearings 

differ significantly from those of laboratory bearings (Table 1). Consequently, it is anticipated that the 

developed model is expected to be capable of estimating the deterioration trend for various REBs. The 

trend of changes in vibration velocity and acceleration recorded for these bearings, from the onset of the 

degradation stage od REB through to the replacement and subsequent data, is illustrated in Fig. 4. The 
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increase in the vibration amplitude of the bearings is clearly visible in the acceleration diagrams. 

Following the replacement of the bearings and their subsequent disassembly, it was observed that the first 

bearing exhibited an inner ring failure, while the second bearing demonstrated failures in both the inner 

and outer rings, as depicted in Fig. 5. 

 

a)   b)  

c)   

d)  

Fig. 3. Test bearing acceleration vibration signal: a) Time waveform at the start of Degradation trend b) Time waveform at the 

end of the test c) Kurtogram at the start of Degradation trend d) Kurtogram at the end of the test 
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Table 3. Technical specification of the industrial machines selected for model verification 

Parameter Unit First Data Second Data 

Power kW 132 132 

Speed RPM 1485 1485 

Bearing type - Deep groove ball bearing Spherical roller bearing 

Test bearing bore diameter mm 120 75 

Test bearing outside diameter mm 215 130 

Test bearing width mm 40 31 

Test bearing dynamic load rating kN 146 217 

Test bearing static load rating kN 118 240 

 
 

a)   b)  

Fig. 4. Vibration trend of the bearings selected from industrial data for model verification: a) First bearing b) Second bearing- red 

plot: velocity, mm/s, black plot: acceleration: m/s2 

 

a)         b)  

Fig. 5. Damaged elements the bearings selected from industrial data for model verification: a) First bearing b) Second bearing  

 

3. Prediction of Deterioration Trend 

The focus of this section is to present a model for predicting deterioration trends in REBs utilizing 

vibration signals. This model becomes applicable after the onset of the degradation stage of the REB, at 

which point the bearing can no longer be classified as healthy, necessitating monitoring it to prevent 

catastrophic failure. Initially, a suitable HI is identified to determine the onset of the degradation stage. 

Subsequently, an appropriate feature is selected to effectively characterize the deterioration trend of the 
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REB. In conclusion, this section describes the proposed model, which is based on RVM and is capable of 

providing results with a specified CL. 

3-1- Onset of degradation stage health indicator 

The indices of root mean square (RMS), Peak, Crest Factor, and Kurtosis are calculated for four bearings 

tested in the laboratory throughout the entire data collection period (Fig. 6) using the vibrational 

acceleration signals. The separation between health and degradation stages for the trends of all 

aforementioned features is based on the outlier detection algorithm extracted from the normal distribution. 

This approach is a straightforward and effective method for identifying anomalies in the data. Since the 

initial unhealthy condition typically appears as an outlier compared to normal behavior, this algorithm is 

well suited to detect it. The method works as follows: 

 Assumption of Normality: We begin by assuming that data collected from a healthy bearing 

follows a normal (Gaussian) distribution. 

 Dynamic Parameter Estimation: At each time step during data collection, we calculate the mean 

(average) and standard deviation of all the data recorded up to that point. These statistics 

represent the current estimated parameters of the healthy data’s normal distribution. 

 Outlier Evaluation: When a new data point is collected, its value is compared against the current 

mean and standard deviation. If the new data lies within three standard deviations of the mean 

(the typical range for about 99.7% of normal data), it is considered part of the healthy condition. 

However, if it lies beyond this range—meaning its distance from the mean is greater than three 

times the standard deviation—this data point is flagged as an outlier, suggesting a deviation from 

normal (healthy) behavior. Such a point is taken to represent the onset of an unhealthy state or 

early failure. 

To identify the earliest onset of failure more reliably, several signal features derived from the vibration 

data, including RMS, Peak, Crest Factor, and Kurtosis, are evaluated. The red lines in Fig. 6 indicate the 
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determined points marking the onset of degradation for each feature across the tested bearings. It can be 

observed that the Peak feature is the most effective indicator for determining onset of degradation. 

 

a)  

b)  

c)  

d)  

Fig. 6. Determining onset of degradation stage HI for four tested bearings based on: a) RMS b) Peak c) Crest Factor d) Kurtosis 

 

3-2- Deterioration trend indicator 

Given that the Peak, RMS, and Crest Factor indices are widely utilized in the industry, a comparison of 

these three indices is conducted to assess their effectiveness as degradation trend indicators. Ideally, the 
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health index should exhibit an upward trajectory over time, indicating that the desired trend indicator is 

increasing. As illustrated in Fig. 5, the RMS index successfully fulfills this requirement, demonstrating a 

consistent increasing trend over time with less variability compared to the other indices. 

3-3- Deterioration trend predictor 

Support vector machine (SVM) and RVM are two well-known machine learning methods with 

application in regression that are effective facing limited historical data. The key distinction between 

them lies in their underlying principles, with SVM being a modified version of the least squares method, 

while RVM is rooted in probabilities. RVM is a Bayesian sparse kernel technique that shares many of the 

characteristics of the SVM whilst avoiding its principal limitations, like representing decisions rather than 

posterior probabilities, owning more hyperparameters, and centering on training data points in kernel 

selection. RVM gives sparser solution with shorter testing time and fewer required trainings samples [10]. 

Considering normal distribution (N), a conditional distribution (p) for a real-valued target variable t, given 

an input vector x, takes the form [11]: 

 
1( | , , ) ( | ( ), )i i

i

p t x w N t w x       (1) 

in which, β is noise precision and ϕi represent kernels. Detailed formulation of RVM model can be found 

in [11]. Because deterioration trend prediction of REBs is nonlinear in nature and the processes of erosion 

and failure are complex accompanied with uncertainties, the CL is used for prediction. Two CLs of 95% 

and 68% are used in this research for presenting the results. It is important to note that, given that the 

output of the RVM model (Eq. (1)) follows a normal probability distribution, the model can yield outputs 

corresponding to various CLs obtained from this distribution. The hyperparameter of the RVM is 

achieved through Grid Search optimization method. The best kernel is chosen among linear, polynomial, 

Sigmoid, and radial-basis function (RBF) kernels.  
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In prior studies addressing the prediction of deterioration processes, the conventional methodology 

involved fitting a curve to recorded vibrational trend over time, subsequently utilizing this extrapolation 

to estimate the duration until the critical failure threshold is attained. This approach, illustrated 

schematically in Fig. 7.a, necessitated a substantial amount of data to adequately fit the curve, while 

failing to account for the inherent fluctuations in vibration responses over time, resulting in limited 

accuracy. In contexts where the dataset derived from equipment vibration history is sparse and the 

intervals between data collection are considerable, it is essential to recognize that alterations in the 

bearing failure stage will manifest distinct vibration trends compared to preceding stages. Consequently, 

applying a general curve to model the vibration trend is impractical. This highlights the imperative for an 

algorithm that is more responsive to variations in vibration behavior. 

a)  

b)  

Fig. 7. Visual explanation of deterioration trend predictors: a) Classic mathematical extrapolation of historical vibration 

acceleration peak trends, b) Proposed adaptive algorithm that selects the optimal number of historical data points and employs an 

averaging method with optimized kernel and hyperparameters to improve prediction accuracy 

 

Fig. 7.b provides a visual representation of the functionality of the proposed adaptive algorithm. 

Following the identification of the onset of degradation stage, the algorithm leverages a series of trend 

points to predict the response at the subsequent data acquisition point. This capability enables condition 
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monitoring experts to anticipate the vibrations expected in the next data collection, thereby enhancing the 

precision of equipment condition assessments. The research aims to determine the minimum number of 

data points required to accurately predict the response for subsequent vibration data acquisitions. 

Moreover, the proposed RVM algorithm is designed to provide response prediction with a specified CL, 

thereby improving the robustness of predictive maintenance strategies. 

In this research, the initial 80% of the data is used to train the model, while the remaining 20% is reserved 

for testing. After the model is trained with the training data, it employs the developed algorithm to make 

predictions on the test data. The model predicts future data points by considering both the data it has 

previously predicted and a specified amount of earlier data. It must be noted that the term “adaptive” is 

used to describe the proposed model is because of how the input and output data are categorized during 

training (see Fig. 7.b). This data engineering classification allows the model to respond flexibly to 

changes in vibration levels. 

According to Zeng et al.'s article [3], it seems that cumulative relative accuracy (CRA) is a good measure 

to evaluate the accuracy of the model. Because it calculates the relative accuracy between all real data and 

predicted data. For this reason, it is more appropriate to evaluate the accuracy of the prediction of the 

deterioration trend. This evaluation criterion is calculated using the following formula [3]: 

 
1

1
1

i i
N

p

i
i

y y
CRA

N y

 
  
 
 

   (2) 

in which, N is the number of data, yi is the actual value of i th data and yi
p is the predicted value of ith data.  

4. Results and Discussion 

The outcomes of implementing the proposed model in Section 3-3 are organized into six distinct 

subsections. Firstly, an appropriate kernel is chosen, and its hyperparameters are optimized. 

Subsequently, the model’s sensitivities to data reduction and data measurement interval are evaluated, 
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with the objective of developing a model that maintains acceptable performance with a limited historical 

dataset, thereby ensuring its applicability in industrial settings. Then, the superiority of the selected RVM 

model is demonstrated in comparison to the conventional SVM enhanced by the bootstrapping technique. 

Finally, the performance results of the optimized model on both laboratory and industrial data are 

presented and thoroughly discussed. 

4-1- Kernel Selection and hyperparameters optimization 

Fig. 8 presents the results of the model’s predictions, utilizing a dataset of 500 observations to predict the 

vibration response at subsequent time intervals, employing both linear and RBF kernels. In the graph, the 

blue plot represents the training data, while the orange plot corresponds to the testing data. The green line 

illustrates the model’s predictions. It is noteworthy that the performances of the two polynomial and 

sigmoid kernels were found to be inadequate; consequently, their results have not been included. A 

comparison of the two graphs indicates that the RBF kernel demonstrates superior predictive capability 

for the deterioration process. Therefore, the subsequent sections of this article concentrate on optimizing 

the model through the selection of this kernel. 

a)         b)  

Fig. 8. Models’ prediction by observing 500 previously recorded acceleration data using: a) Linear kernel b) RBF kernel 

 

To ensure that the developed model achieves its optimal performance, it is essential to evaluate and adjust 

its hyperparameters until the most favorable outcomes are obtained. By employing the Grid Search 

optimization method, the model consistently achieves a measurement accuracy of approximately 93% and 
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an R² score of 80% across various previous data observations. The maximum deviation observed in 

prediction accuracy is 0.09%, which can be considered negligible. The model’s response after 

hyperparameter optimization is depicted in Fig. 9. In this Fig., the blue and green plots represent the 

actual training and testing data, while the orange and red plots illustrate the model’s predictions for these 

datasets, respectively. A comparison with Fig. 8.b clearly demonstrates a significant improvement in the 

model’s prediction accuracy following the optimization process. 

 

Fig. 9. Models’ prediction using RBF kernel after hyperparameter optimization: acceleration vibration RMS vs. time 

 

4-2- Model sensitivity to data reduction 

As illustrated in Fig. 8, the model’s predictions are based on an analysis of 500 previous data points. 

However, in real-world industrial settings, such extensive datasets are often unavailable. For rotating 

equipment monitored offline, data collection intervals can vary significantly depending on the 

equipment’s sensitivity; these intervals may occur weekly, monthly, annually, or even less frequently. In 

contrast, laboratory data in this research has been collected every minute. To align the laboratory data 

collection with industrial practices, a data reduction method is employed.  
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This paper approaches this challenge from two perspectives. First, by recognizing that the longer intervals 

between data acquisition in industrial settings result in fewer data points in degradation stage of REBs 

available for predicting bearing deterioration. Thus, the model must be capable of making accurate future 

predictions with a limited amount of past data; this is the focus of this section. The second perspective 

addresses how the model can maintain accurate predictions even as data acquisition intervals increase, 

which is discussed in the Section 4.3. 

To address the question raised in Fig. 7.b regarding the optimal number of inputs for the model, Fig. 10 

presents the results for models developed using three, four, and five input data points, achieving 

accuracies of 93.20%, 93.17%, and 93.11%, respectively. These results indicate that reducing the number 

of inputs enhances the model’s ability to accurately track fluctuations in the response, compared to 

models with a greater number of inputs. Consequently, a model utilizing three data inputs has been 

selected for the next stage of development. 

a)  b)  c)  

Fig. 10. Models’ prediction (acceleration vibration RMS vs. time) using RBF kernel after hyperparameter optimization 

considering: a) three b) four c) five previously recorded vibration data 

 

4-3- Model sensitivity to data measurement interval 

This section introduces a model designed to operate with the maximum measurement interval for data 

collection. To implement this approach, a specific time interval is established prior to training the model 

and making predictions. For example, if the chosen interval is every 10 minutes, the model computes the 

average of every 10 data points, replacing the original 10 data points with this average value. This 
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averaging process is applied to the entire dataset, generating a new dataset that reflects the desired time 

interval. Predictions are then made based on this reduced dataset. 

Fig. 11 presents the predictions generated by the RVM model using three previous data points across time 

intervals of 10 minutes, 30 minutes, 1 hour, and 5 hours. In this Fig., the purple and green lines represent 

the actual training and testing data, while the orange and red lines signify the model’s predictions, 

respectively. The model demonstrates strong predictive accuracy for the 10-minute and 30-minute 

intervals; however, it does not perform as well at the 1-hour and 5-hour intervals. It appears that the 

model utilizing a data collection interval of 30 minutes exhibits a delay in its predictions. As a result, a 

10-minute interval has been selected as the preferred model for validation in the subsequent sections. 

 

a)   b)  

c)       d)  

Fig. 11. Models’ prediction (vibration RMS vs. time) using RBF kernel after hyperparameter optimization by observing three 

previously recorded vibration data in time intervals of: a) every 10 minutes b) every 30 minutes c) every hour d) every five hours 
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4-4- Comparison of the model with other machine learning method 

Section 3.3 outlined the rationale for employing the RVR model in this paper. This section illustrates the 

superior predictive capability of the RVR model compared to the SVR model, as depicted in Fig. 12, 

through the implementation of an alternative machine learning approach. Given that the SVR model does 

not yield a confidence level, it has been integrated with the bootstrapping method. The green and blue 

lines in the plots represent the training and testing data, respectively, while the blue line, accompanied by 

the confidence interval, denotes the predictions. It is obvious that the SVR model, which produces results 

with a CL of 68%, generates predictions over a wider range. In contrast, the RVR model offers greater 

certainty and higher accuracy in its predictions. Additionally, the RVR model has a lower computational 

cost, whereas the SVR model incurs a higher computational cost due to combination with bootstrapping. 

 

a)       b)  

Fig. 12. Comparison of models’ acceleration vibration trend prediction: a) RVM b) SVM + Bootstrapping 

 

4-5- Model verification using laboratory data 

Fig. 13 presents the results obtained from the developed model for estimating the bearing deterioration 

trend, evaluated at two CLs: 68% and 95%. The model’s accuracy in predicting the vibration response 

during subsequent data acquisitions, as assessed using the CRA criterion defined in Eq. (2), yielded 

values of 92.4%, 93.0%, 60.3%, and 93.9% for the four bearings tested under laboratory conditions. 

Notably, for bearing No. 3, the model demonstrated proficiency in accurately tracking the deterioration 
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trend during a portion of the testing data; however, as the bearing transitioned into the fast degradation 

phase, the prediction model exhibited a lag in correlating with the observed increase in vibration 

amplitude. This observation underscores the necessity of delineating the bearing degradation into two 

distinct phases: slow and fast degradation. The results indicate that the model proposed in this study is 

effectively applicable to the slow degradation phase, achieving an accuracy exceeding 92.4% in this 

domain of laboratory data.  

 

a)  

b)  

Fig. 13. Models’ deterioration trend prediction with three previously recorded vibration data in 10-minute time interval, and RBF 

kernel using Grid Search optimization method for laboratory dataset for two confidence levels (CL): a) CL = 68% b) CL = 95% 

 

Another observation from the deterioration prediction analysis of bearing No. 2 is that, in scenarios where 

the equipment is classified as critical within the factory, the upper bound of the response prediction at a 

specified confidence level can be reported as the predicted response. This approach enhances the accuracy 

of the deterioration estimate for this bearing, increasing it from 93.0% to 94.7%. 

4-6- Model Verification using Industrial Data 

To complete the verification of the developed model’s performance, the industrial data presented in 

Section 2-2 is utilized for the evaluation. Fig. 14 illustrates the prediction results for two industrial 
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datasets, assessed at a CL of 68%. Given the inherent uncertainties associated with industrial data, it is not 

feasible to report a 95% confidence level. The prediction accuracies for the two datasets are 89.9% and 

95.7%, respectively, while the accuracies for the upper bounds are 91.1% and 95.5%. These findings 

confirm the effectiveness of the proposed model in accurately predicting the slow deterioration of 

bearings in an industrial setting. 

 

a)         b)  

Fig. 14. Models’ deterioration trend prediction with three previously recorded vibration and RBF kernel using Grid Search 

optimization method for industrial dataset, considering the confidence level of 68% for: a) 1st bearing b) 2nd bearing 

 

4-7- Model Strengths and Limitations 

The model developed in this study aims to predict bearing deterioration in industrial environments, 

specifically designed to operate effectively with limited data. It has been trained to estimate the 

deterioration trend over time accurately by using minimal recorded data, capturing the largest possible 

intervals between offline/ periodic condition monitoring measurements. The model demonstrates strong 

performance in estimating bearing deterioration using online condition monitoring, effectively tracking 

the deterioration progression. However, for offline monitoring, it is crucial to have recorded at least the 

minimum required number of data points to ensure reliable estimation. Bearing degradation can be 

categorized into two phases: slow (gradual) and fast degradations. The model is best suited for monitoring 

slow degradation.  
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During fast degradation, the measurement intervals must be shortened to maintain the minimum data 

points needed for accurate modeling. To address fast degradation scenarios, it is recommended to 

integrate this model with a fast degradation detection algorithm. This integration can alert condition 

monitoring experts to reduce data acquisition intervals, ensuring sufficient data for continued accurate 

estimation. It is also important to note that in critical equipment, bearings are often replaced promptly 

upon detecting fast degradation, aligning with the model’s primary purpose of estimating gradual wear. 

Additionally, the introduced model presents deterioration estimates with confidence intervals, allowing 

users to select appropriate confidence levels based on equipment sensitivity, thereby tailoring predictions 

to specific operational requirements. 

Another challenge in model development pertains to the model’s sensitivity to amplitude fluctuations in 

the vibrational trends of bearings. While the model generally operates independently of equipment type, it 

encounters difficulties with high-frequency vibration content found in gearboxes exhibiting gear mesh 

frequency or pumps and fans with blade pass frequency. In such cases, pre-processing is necessary to 

isolate the bearing-related components of the vibration signal. Following this processing stage, the 

developed model can be effectively utilized. Addressing this issue is a key objective for future 

enhancements to the model. 

5. Summary/ Conclusion 

This paper has focused on the development of a predictive model applicable for forecasting the 

deterioration trend of REBs after they enter the degradation stage. The objective has been to develop a 

robust model capable of functioning effectively with minimal data available following the onset of 

degradation, while also providing results accompanied by a confidence level, addressing the inherent 

uncertainties present in industrial environments. To achieve these objectives, the RVM model has been 

selected and its hyperparameters have been optimized. This model has been specifically designed to 

evaluate the slow degradation stage of REBs and can predict the vibrational amplitude for future data 
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measurements. Key health indicators have been identified to determine the start of the degradation stage 

and facilitate trend prediction. The Peak and RMS values have been derived from the acceleration 

vibration signals. The RBF kernel has been determined to be the most effective for tracking vibration 

trends. Remarkably, the developed model requires only three input data points to generate predictions. 

Comparative analyses have demonstrated the proposed model’s lower computational cost and higher 

accuracy relative to SVM model. Validation through run-to-failure test data from the laboratory has 

yielded an average accuracy of 96.7%, indicating significant effectiveness. Additionally, when applied to 

industrial data from two electro-fans, the model has achieved an average accuracy of 93.3% using a 

confidence level of 68%, underscoring its practicality in real-world applications. Future research will 

focus on integrating the developed model into condition monitoring software for industrial use, 

incorporating continuous learning mechanisms to further enhance predictive accuracy by collecting data 

over time. 
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