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The application of impulse loading is commonly observed in practice, and accurately estimating the 

corresponding response through numerical techniques poses significant challenges. This study introduces an 

analytical formulation to assess the dynamic responses of multi-degree-of-freedom (MDF) beams subjected to 

impact loading, utilizing the Laplace transform. By focusing on simple beam configurations, this research aims 

to illuminate previously unexplored aspects of the system's dynamic behavior under impulse loading. Throughout 

the investigation, any arbitrary or irregular impact loading in the time domain was transformed into the Heaviside 

step function using the Laplace transform technique. Initially, analytical forced-vibration responses 

corresponding to the impact loading were mathematically derived. Subsequently, the proposed forced-vibration 

formulation was validated through laboratory-scale experimental tests. The experimental data were also used to 

update the finite element model (FEM) for evaluating numerical responses using the Newmark HHT-alpha 

method under short-time loading. The results indicate that unconditionally stable schemes, such as Newmark 

HHT-alpha, encounter challenges related to numerical damping, amplitude decay, period elongation, and 

spurious frequency errors when subjected to impulse loading; however, the proposed method effectively 

mitigates these errors. The robustness of the proposed method was examined for unusual shock-type loads, and 

the results demonstrate that the error associated with traditional methods, such as the Newark HHT method is 

significantly high, with some cases exceeding 300 %. 

KEYWORDS.  Impact/ Impulse load, Laplace transform; Frequency Response Function, Model updating, 

Newmark average acceleration method    

1. Introduction 

Accurately estimating dynamic responses is a critical task across various engineering disciplines. Typically, 

numerical techniques are employed to assess vibration responses, with the finite element method (FEM) serving 

as a suitable tool for this purpose. It is essential to minimize modeling errors, which may arise from factors such 

as finite element mesh size, idealization, material properties, and inaccuracies in boundary conditions. 

Consequently, numerical model updating is an effective technique for obtaining reliable responses. This 

approach integrates the structural responses derived from FEM with the measured structural responses to refine 

the mathematical model. For estimating dynamic responses, the Newmark and HHT-alpha methods demonstrate 

commendable performance under regular loading, such as harmonic and earthquake excitations. However, the 
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Newmark average acceleration and HHT-alpha methods are inherently unconditionally stable and may not 

accurately estimate structural responses under short-duration or impact loadings; therefore, alternative methods 

should be considered. 

Many researchers have investigated the transient responses of structural systems subjected to impact 

loading. For instance, Tagarielli et al. assessed the vibration responses of composite sandwich beams under shock 

loading conditions [1] . Wan et al. evaluated the dynamic responses of clamped sandwich beams under impulse 

loading using both experimental and numerical methodologies [2]. Mazurkiewicz et al. correlated numerical 

results with experimental data for structural members subjected to impact loading[3]. Zhang et al. conducted an 

experimental study to evaluate the dynamic response of laminated glass under impulsive and blast loading[4]. 

Mohammad et al. presented an analytical model for a pipe subjected to an impulse load [5]. Stoynova and Christov 

estimated the transient responses of reinforced concrete (RC) beams under impact loads[6]. Børvik et al. provided 

finite element analyses of structural responses to planar blast loads [7]. Shiuh-Chuan and Ching-Chun proposed 

a model for the elastic responses of a composite shell structure subjected to impact loading[8].  

Model updating methodologies are typically categorized into Frequency Response Function (FRF)-based 

methods. Modal-based techniques rely on the characteristics of modal data obtained from experimental modal 

analysis. In contrast, FRF-based techniques identify unknown structural parameters by utilizing measured FRF 

information. Generally, the objective of the FRF-based model updating technique is to minimize the discrepancy 

between experimental and analytical input forces and output responses. Numerous researchers have employed 

vibration data for finite element model updating. For instance, Pradhan and Modak introduced a normal FRF 

approach to update the stiffness and mass matrices of structures[9]. Several studies have focused on updating 

damped models. Arora et al. and Yuan and Yu applied the FRF method to update finite element models in damped 

scenarios using vibration data [10, 11]. Yuan utilized vibration data subjected to base excitation to update an 

undamped system [12]. Additionally, Garcia and Santini implemented a model-updating scheme for updating 

damped structural systems [13].  

From an analytical perspective, several investigations have focused on model-updating techniques. 

Esfandiari et al.[14, 15], Sipple and Sanayei applied numerical techniques for model updating[16]. Li and Hong 

[17], and as well Weng et.al [18] implemented model reduction and an iterative approach to enhance the 

numerical model. Papadimitriou and Papdioti employed the mode synthesis technique for finite element (FE) 

model updating[19]. The minimum least-squares residual method for model updating was employed by Sarmadi 

et al. [20]and Wei et al. implemented the intrinsic chirp component decomposition method to update multi-

degree-of-freedom systems [21]. Furthermore, the incorporation of optimization methods in model-updating 

techniques is noteworthy. Christodoulou et al. [22] utilized a Pareto optimization approach for model updating, 

while Jung and Kim implemented a hybrid genetic algorithm for finite-element model updating [23]. 
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Additionally, Shabbir and Omenzetter applied the particle swarm optimization method for dynamic finite element 

model updating [24].   

To the best of the authors' knowledge, the transient responses of MDF systems utilizing the Newmark 

HHT-alpha techniques under impact loads are unreliable when finite element modeling is employed [25]. 

Consequently, alternative methods should be adopted to accurately assess the dynamic responses to such loads. 

In light of this, the authors propose an analytical method to achieve this objective.  

For the forced vibration response, the beam was excited using a hammer. Due to the irregular nature of the 

hammer load, an analytical Heaviside loading function is proposed in the time domain to replace instead of any 

arbitrary and irregular loadings.  

Then, a numerical model of the beam was developed using finite element methods (FEM), from which modal 

data were extracted based on frequency response functions (FRF). The numerical model was then updated using 

the particle swarm optimization (PSO) technique. After the update, the numerical responses of the beam subjected 

to impulse loading were computed using the Newmark HHT-alpha schemes, and the results were compared with 

experimental tests. The numerical results indicate that the Newmark HHT-alpha method faces challenges related 

to numerical damping, amplitude decay, period elongation, and spurious frequency errors when subjected to 

impulse loading. Ultimately, the beam responses to the hammer load were calculated analytically by employing 

the proposed method, and the results were again compared with experimental data to validate the proposed 

approach. 

2.  Problem description 

This section presents analytical free and forced vibration responses of an aluminum beam subjected to impulse 

loadings. Here, the forced vibration response, Z(t), in the time domain is transformed to Z(s) using the Laplace 

transform and then reverted to the time domain through the application of the inverse Laplace transform. 

Ultimately, the beam's responses to impact loading are calculated analytically by employing the superposition 

principle on the separated responses. 

2-1. Free vibration response 

The modal information in the analysis of free vibration, including natural frequencies and mode shapes, was 

determined by solving the differential equation associated with the beam under investigation. The study focused on 

a cantilever beam with a rectangular cross-section, a length denoted as L, and a mass M located at its free end. 

(Figure 1)  
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Fig.1 Analytical model of the present study 

 

The forced vibration equilibrium equation of the Euler-Bernoulli beams is obtained as Eq.(1) 
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In Eq. (1),  ρA denotes the mass per unit length, while p(x, t) represents the applied load on the structure. The 

variable y (x, t) indicates the displacement in the y-direction. In the free-vibration analysis, the right-hand side 

of Eq.(1) is zero. Consequently, Eq. (1) for free vibration is expressed as Eq.(2). 
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The separation variable method  is employed to solve Eq.(2), is expressed as Eq.(3) 
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The free vibration equation denoted as Eq. (2), is rewritten into two distinct equations as Eq. (4). One equation is 

expressed in the time domain as z(t), while the other is represented in the space domain as  x   
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The new parameters are defined as Eq.(5) 
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The responses of equations (4) are available as Eq.(6).   
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Here, ( )z t is the time domain response, and  x  refers to the mode shape of the beam. The coefficients 
iG  

were derived from the boundary conditions and ,A B  were determined based on the initial conditions of the 
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model. As illustrated in Figure 1, both deflection and slope are zero at the supports of the beam. Consequently, 

Eq.(7) can be expressed as follows:  
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Based on Eq.(7), the mode shape, Eq.(8), is rewritten as follows: 
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The boundary conditions of the cantilever beam with a concentrated mass M at the free end are written as 

Eq.(9). 
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By substituting Eq. (9) into Eq.(8), equations (10) through (12) are derived. 
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The parameters βl   α ml / Mλ  4 2/β ω EI / m  are substituted into equations (10) and (12), and Eq.(13) 

can be obtained. 
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The eigenvalues ( ) of the system are determined when the determinant of Eq.(13) is set to zero, as expressed 

in Eq.(14). 

   

    

2

2 2

cos cosh (cos cosh ) sin sinh

sinh sin sin sinh cos cosh 0

      

      

     

     
 (14) 

Equation (15) represents the simplified form of Eq.(14). The eigenvalues (
n )  of the beams were determined by 

solving the nonlinear Equation (15). To obtain all roots of this nonlinear equation, a specialized numerical solution 

technique was employed [26].  
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The frequencies of vibration (
n ) in each mode are determined according to Eq.(16).   
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The values of coefficients 
1 2,G G  must be known to determine the mode shapes corresponding to each vibration 

mode. Here, 
1G is set to 1.0, and the general values  

nG are derived from Eq.(17) 
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Finally, the mode shapes for the beam are obtained according to Eq.(18) 
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2-2. The proposed method for force vibration responses 

In this section, analytical formulations of forced vibration responses of the studied beam are derived based on the 

Laplace transform technique under impulse loadings. For this purpose, the equation of motion under arbitrary 

loading as Eq.(19) is considered.  
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The method of separation of variables is employed once more to solve the equilibrium equation presented in Eq. 

(19), by Eq.(20) 
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The mode shapes corresponding to the n-th vibration mode, ( )n x , are provided by Eq.(18); however, ( )nz t are 

unknown. By substituting Eq.(20) into Eq.(19),  one can derive Eq.(21).  
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By introducing new variables, such as 
nlβn  , 2 m

EI
n n   Eq.(21) is re-written as Eq.(22) 
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Both sides of Eq.(22) are multiplied by  

0

( )

l

m x dx  and Eq.(23) can be obtained. 

4

1 0 0

( ) ( ) ( ) ( )dx ( ) ( )

           

l l

n n n n m m

n

EI
z t z t x x p t x dx

A
   







 
   

 
    (23) 

The eigenvalues ( )m x  ( )n x  are expressed as Eqs. (24). 
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Integration 
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The above integrations are analytically calculated, and the final form  
nI is expressed as Eq.(27).  
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The 

iI  values are determined according to Eq.(28) 
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Evaluation  
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n nJ x dx  is obtained by Eq.(29). 
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Integration of Eq.(29) leads to Eq.(30) 
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In this instance, as illustrated in Figure 2 (a), we examine a short-time impact load characterized by an arbitrary 

shape that does not conform to any mathematical function. This load has been converted into an equivalent 

Heaviside step function, as depicted in Figure 2 (b) [27]. 

 

 

Fig.2- Idealization of arbitrary impulse load (a) into an equivalent step function (b)  

 

The procedure for converting arbitrary impulse loading is as follows: As illustrated in Figure 2 (a), the area (A) 

under the impulse loading is defined by Eq.(31). In general, numerical integration techniques are employed to 

calculate this area.   
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The area under arbitrary impulse loading (A) must be equivalent to the area under a step function loading. 

Consequently, any arbitrary impact loading can be represented in the form of the Heaviside step function as 

Eq.(32) 
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Where ( ), ( )a bH t t H t t   are the Heaviside step functions. In addition, ,a bt t denote the starting and ending 

points of the impulse loading, respectively. Eq.(25) could be rewritten as Eq.(33) to calculate the responses under 

impact load. 
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( ) ( ) ( ) ( )     ; n n
n n n n n

n n n

J J
z t z t p t k p t k

I I






       (33) 

By substituting Eq.(32) into Eq.(33), the time domain response in each mode is determined as Eq.(34)  

 2 0( ) ( ) ( ) ( )
2

n
n n n a b

p k
z t z t H t t H t t       (34) 

The most effective approach for solving Eq.(34) involves the application of the  Laplace transform method. 

Accordingly, the Laplace transform is applied on both sides of Eq.(34), and Eq.(35) can be obtained. 
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
 

 

      

    
 (35) 

Here, ( )z s is the Laplace transform of ( )z t and is determined as Eq.(36) 

0

2 2
( ) ( )

2 ( )
a bt s t sn

n

p k
Z s e e

s s 

 
 


  (36) 

The inverse Laplace transform is applied in Eq.(36) to determine the response of the system in the time domain, 

and Eq.(37) can be obtained by introducing 
0 / 2n nc p k : 

 1

2 2 2

( )
( ) cos( ( ))

(s )

at s

n n a
a a

n n

c e c H t t
L H t t t t

s


 


   

    
 

 (37) 

Therefore, the values ( )nz t  in the time domain are calculated as Eq.(38) 

 

 
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              ( ) cos( ( ))
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n a n a
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
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
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The response of any system, ( ( , )y x t , under an impact loading at any time and any place finally could be 

determined by Eq.(39) 

1

( , ) ( ) ( ) (sin sinh cos cosh ) ( )n n n n n n n n n

n

y x t x z t x x G x G x z t    




      (39) 

In Eq.(39), the values ,n nG   are derived from Eq.(17). Furthermore, the acceleration response in the time 

domain can be obtained from Eq.(40) 
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    


    


 
         
 

 
       

 

 (40) 

The Dirac delta function at a specified time is represented as 
at  is given by ( )at t   . Ultimately, the 

acceleration response of any system subjected to short-time impact loading, as determined by the proposed 

method, is expressed in Eq.(41) 

1

( , ) ( ) ( ) (sin sinh cos cosh ) ( )n n n n n n n n n

n

y x t x z t x x G x G x z t    




      (41) 

2-3. Modal parameters (numerical results) 

The modal parameters, which include frequency, mode shape, and damping ratio, were determined through 

numerical analysis utilizing the Finite Element Method (FEM). Initially, the aluminum beam was discretized into 

25 elements, each with a length of 3 cm. The mass matrix Me and stiffness matrix  Ke for each element are presented 

in Eq.(42). 

 
2 2 2 2

3

2 2 2 2

12 61 12 61 156 221 54 131

61 41 61 21 221 41 131 31
 ;

12 61 12 61 54 131 156 221420

61 21 61 41 131 31 221 41

e e

EI Al

l



    
    
    
      
   

      

K M  (42) 

Here, E represents the Young modulus, I  denotes the cross-sectional moment of inertia, and l indicates the length 

of the individual element (
eleml L N ). The total length of the beam is denoted as  L, which 

elemN  represents the 

number of elements. Additionally,  ρ signifies the mass density of aluminum, and A refers to the cross-section of 

the beam. A concentrated mass (M) has been affixed to the second node of the last element of the beam. 

Consequently,  this mass must be incorporated into the mass matrix by adding it to the local mass matrix as 

illustrated in Eq.(43).   
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2-4. Modal parameters (experimental results) 

The aluminum beam was studied experimentally. As presented in Figure 3, the acceleration data was gathered 

using the hammer force at the specified points. (Unidirectional acceleration sensors at four nodes on the beam are 

installed). 

 

 

 Fig.3-Setup of experimental study including:  Beam’s geometry, locations of acceleration sensors, hammer  

and data acquisition system   

  To collect the experimental data, forces (input data) were recorded at three positions: P1, P2, and P3, while 

accelerations (output data) were measured at stations CH1, CH2, CH3, and CH4. The duration of the recorded 

data was 30 seconds, and each test was conducted three times. With a sampling frequency of 400 Hz for the data 
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acquisition system, a total of 2000 samples were collected for each test over 30 seconds. The necessary 

experimental modal information was extracted using MATLAB[28]. 

 

 

Fig.4 –Positions of P1, P2, and P3 (input forces), and sensors CH1, CH2, CH3, and CH4 (output accelerations)  

2-5. Updating the numerical model 

In this study, the updating procedure was executed utilizing the Modal Assurance Criterion (MAC) method based 

on the data collected from the stations specified in the experimental tests, to modify the global stiffness and mass 

matrices [29]. The updating of the mass and stiffness matrices was carried out employing the Particle Swarm 

Optimization (PSO) technique [30]. An objective function was formulated using the frequency values and the 

components of the mode shapes derived from both experimental and numerical data, as presented in Equation (44). 

     
2 2

exp exp exp exp

, , ,

1

 =
ndf

num num

i i i i j i j i j

j

f      


    (44) 

Here, 
,,num num

i i j   are the frequencies and jth -components of mode shapes in the FE model, respectively, and 

exp exp

,,i i j  are the frequencies and jth-mode shapes of the experimental data, respectively. 

3. Results 

3-1. Modal parameters  

The aluminum beam was studied concerning its geometrical and mechanical properties, as summarized in Table 

(1). 
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Table 1- The specifications of the studied beam 

𝛒(kg/m3) b(mm)  h(mm) L(mm) 𝐦̅ (kg/m) M(kg) E(GPa) 

2700 40  10 750 1.08 1.585 69 

 

The beam was divided into 25 elements, from which the modal parameters were extracted. However, due to the 

limitations of the measured accelerations in the experimental tests, the finite element (FE) model was 

subsequently reduced from 25 elements to four elements. The frequency results are detailed in Table 2. The mode 

shapes of the beam are illustrated through analytical, updated numerical, and experimental tests as shown in 

Figure 5.  

Table 2- Analytical, FE, and experimental values of natural frequencies (rad/s) of the beam  

Mode 

number 

Proposed 

analytical 

frequencies 

(Hz) 

Numerical 

frequencies 

(reduced 

model) (Hz) 

Experimental 

frequencies 

(Hz) 

1  30.34 30.34 29.34 

2 411.78 411.98 341.12 

3 1309.29 1317.16 1151.41 

4 2715.07 2777.81 2462.11* 
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Fig.5 –Analytical, numerical (4-element), and experimental mode shapes of the studied beam 

As demonstrated in Figure 5, there is a strong correlation among the analytical, finite element (FE), and experimental 

mode shapes. However, the experimental mode shape observed in the fourth mode exhibits discrepancies when 

compared to the results obtained from the other methodologies. These differences in the fourth mode may be 

attributed to the scaling of the mode shapes. The finite element (FE) model was updated to modify the stiffness and 

mass matrices, utilizing the Particle Swarm Optimization (PSO) algorithm by the proposed objective function 

outlined in equation (44). The convergence of the objective function is illustrated in Figure 6. Additionally, Table 3 

presents the numerical values of the frequencies both before and after the updating process. It is noteworthy that this 

study focused exclusively on updating numerical models through the use of frequency information. 
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Fig.6- The objective function's convergence of the updating process using the PSO 

Table 3- Natural frequencies (rad/s): before and after updating    

Mode 

number 

Numerical frequencies (Hz) 

(before updating)  

Numerical frequencies (Hz) 

 (after updating)  

1 30.34 28.80 

2 411.98 344.83 

3 1317.16 1176.92 

4 2777.81 2404.61 

 

Table 4 presents the values of the modified mass and stiffness matrices. The automatically updated matrices were 

used for vibration analysis of the beam under impulse loading.  

 

Table 4- Stiffness and mass matrices of the beam  (mass unit is kg and stiffness is N / m)  

585230 343390 131300 27830

343390 387810 259510 74370

131300 259510 259630 94480

27830 74370 94480 39910

=Update
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  
   
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K 

0.182 0.014 0.01 0.011

0.014 0.182 0.019 0.017
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=Update

 
 
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 
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0.015 0.189 0.008 0.017

0.007 0.008 0.196 0.035

0.01 0.017 0.035 1.639

 
 

 
 
 
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The damping matrix (C) is estimated using the Rayleigh damping as Eq.(45).   

2 2
 ( ) ( )Update Updatei j

i j i j

  

   
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 
C M K   (45) 
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Here, ,i j   are the first and last available frequencies, respectively, and   the critical damping ratio has been 

obtained 0.2% from the experimental test.  

3-2. Dynamic analysis using the Newmark method for harmonic loading  

The unconditionally stable Newmark average acceleration method is recognized for its reliability, and the absence 

of numerical damping does not pose a significant challenge in its application [31]. This method is commonly 

employed to obtain the responses of structural systems. In this study, the effectiveness of the Newmark method 

within the direct integration framework was assessed through an analysis of a Single Degree of Freedom (SDF) 

system. A general damped SDF model was utilized to facilitate this evaluation, with its specifications detailed in 

Table 5. 

Table 5- Parameters of a damped system (SDF) 

m (kg) k (kN/m)    (rad/s) p(t) (N) 

3000 432 0.1% , 0.5% 1.2, 60 sin( )mg t  

 

The analytical result of the SDF system for harmonic excitation is expressed as Eq.(46) 

 0( ) sin( ) ( cos sin )t

D D

p
x t D t e A t B t

k

        (46) 

The values of the parameters in Eq.46) are calculated as Eq.(47) 

 1

22 2 2

1 2
; ; tan ( )

1(1 ) (2 )
D

 
 

  

  
 

 (47) 

In Eq.(46), 21D     0p mg   , and the initial conditions coefficients (A, B) are obtained in Eq.(48).  

 

0

0

cos
sin  ; 

D

p
A D

p kA D B
k

  





   (48) 

In the context of harmonic excitation, the loading frequency was set at 12 rad/s, with a damping ratio ( ) equal to 

0.5%. The displacement response is illustrated in Figure 7. From a structural perspective, an excitation frequency 

equal to  =12rad/s can be regarded as resonant in the context of a forced vibration problem. The figure indicates 

that the responses obtained through the Newmark method were greater than those derived analytically. This 

discrepancy is likely attributable to the effects of numerical damping and period elongation errors inherent in the 

Newmark method. Furthermore, Figure 7 demonstrates that under ordinary loading, the Newmark method performs 

adequately. 
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Fig.7- Displacement responses with the Newmark, HHT-alfa, and analytical methods for harmonic loading( 

0.5%   and   = 12 rad/s   

3-3. Dynamic analysis under impact loading  

The displacement results of the beam were analyzed to evaluate the efficacy of the Newmark method in the 

context of short-time loading. These results were compared with those obtained through the proposed analytical 

method and experimental testing. As illustrated in Figure 8, the beam was subjected to impulse loading at its free 

end on a laboratory scale. The measured accelerations at measurement stations CH1, CH2, CH3, and CH4 are 

depicted in Figure 8. The input and output data were utilized to validate the proposed analytical method and to 

demonstrate the capabilities of the Newmark method under impulse loading conditions. 
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Fig.8- Experimental accelerations at desired stations when the hammer is exerted at CH1  

 

Fig.9-  Applied load with a hammer CH1 station ( left): Measured acceleration of the beam at CH1 (right) 

The Newmark acceleration technique was employed to compute the numerical results for the beam, and these values 

were subsequently compared with the experimental data obtained at point CH1. As illustrated in Figure 10, there is 

a discrepancy between the experimental and numerical values, even after the finite element (FE) model was updated. 

Between 0 to 5 seconds,  the numerical values are three times greater than the experimental ones. To the best of the 

authors' knowledge, the Newmark method is not suitable for shock-type loading, and the transient responses of low-
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damping multi-degree-of-freedom (MDF) systems should be assessed using other techniques. This algorithm shares 

similarities with other numerical methods applied under short-time loadings and is associated with issues such as 

numerical damping, spurious frequency errors, period elongation, and amplitude decay errors. 

 

 

Fig.10- Acceleration of the beam (station CH1) using experimental data  and the Newmark method 

According to Figure 11, the response of the beam under this specific loading condition was evaluated using the 

proposed analytical method. As illustrated in Figure 11, the acceleration results from station CH1 are compared with 

those derived from the proposed analytical approach. Overall, the findings indicate a strong correlation between the 

proposed method and the experimental data. Notably, when the beam's free vibration commenced after 5.2 seconds, 

the amplitudes of the vibrations predicted by the proposed method did not exhibit any decay. This phenomenon can 

be attributed to the absence of internal or external damping in the partial differential equation governing the beam's 

behavior (as outlined in Eq. (19)), which results in the proposed analytical method being unable to account for 

damping effects. In contrast, the experimental response demonstrates a gradual reduction in the amplitude of free 

vibrations, attributable to small damping in the beam, which was determined to be approximately 0.2%  . This 

damping ratio was obtained through experimental testing conducted on the beam under investigation. 
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Fig.11- Acceleration at CH1 using the proposed analytical method and experimental data 

4. Conclusions 

This study investigates the dynamic behavior of an aluminum beam through the application of experimental, 

analytical, and numerical methods. An analytical formulation for the beam was derived as a main step. Subsequently, 

the finite element method was updated utilizing experimental modal data in conjunction with the particle swarm 

optimization technique. The derived analytical method and the updated finite element model were then employed to 

assess the beam's response under impulse loading conditions. The conclusions drawn from the results of this research 

are as follows: 

 The Newmark HHT-alfa methods demonstrate remarkable numerical performance when applied to regular 

loadings, such as harmonic and earthquake excitations. However, the findings indicate that both the Newmark and 

HHT-alfa methods are inherently unconditionally stable, which limits their ability to accurately estimate structural 

responses under shock-type loading. Consequently, alternative methods should be employed for such loadings. 

 The findings indicate that the proposed analytical method is capable of accurately estimating the responses of the 

MDF systems under very short-time loading conditions, without encountering issues such as numerical damping, 

period elongation, or amplitude decay errors. 
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 When the duration of the loading is very small, such as in cases of shock or impact loadings, the damping of the 

system may be ignored. Unlike the Newmark and HHT-alfa methods, the proposed analytical approach 

demonstrates insensitivity to this concern, thereby leading to reliable responses. Conversely, the Newmark and 

HHT-alpha techniques can not regulate numerical damping, resulting in numerical responses that significantly 

exceed actual values and are consequently overestimated. 

 From a structural perspective, multi-degree-of-freedom (MDF) structures can be approximated as an equivalent 

single-degree-of-freedom (ESDF) system, albeit with certain modeling assumptions that may introduce errors. 

While formulations have been proposed specifically for the MDF system, the methodology presented applies to 

any MDF system that can be approximated by an equivalent SDF system (ESDF). 
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