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Abstract: 

This paper proposes Improved Model-Based Deep Deterministic Policy Gradient, a novel reinforcement 

learning algorithm designed to overcome three critical challenges in industrial deep reinforcement learning 

applications: (1) poor sample efficiency requiring excessive real-world trials, (2) safety risks from unstable 

policies during training, and (3) difficulty scaling to high-dimensional continuous control spaces. Building 

on DDPG's strengths for continuous control, the proposed algorithm introduces four key innovations: (i) a 

virtual environment for data-efficient learning, (ii) a simulation rate mechanism adapting model reliance 

dynamically, (iii) a simulated experience buffer preventing divergence, and (iv) a performance threshold 

for fail-safe operation. Evaluated on Cart-Pole benchmark via OpenAI Gym python library, the suggested 

method demonstrates faster convergence than standard DDPG while maintaining performance degradation 

under sensor malfunctions or communication losses. These improvements derive from the algorithm's 

unique ability to simultaneously leverage real-world data and model-generated experiences, reducing 

physical trial costs while ensuring operational safety. The results establish the novel framework as a 

practical solution for industrial control systems where reliability and data efficiency are paramount, 

particularly in applications like chemical process control and precision robotics that demand stable 

operation amid sensor/communication failures. 
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1. Introduction 

Industrial control systems serve as a critical component in maintaining operational efficiency and reliability 

across various applications. Conventional control strategies, including Proportional-Integral-Derivative 

(PID) controllers [1] and model-based techniques [2], have long been central to industrial automation due 

to their stability and consistent performance [3]. These approaches are widely adopted for their simplicity, 

well-established theoretical foundations, and predictable behavior in stable, well-defined processes. 

However, as industrial environments grow increasingly complex, there is a rising demand for more 

intelligent and adaptive control solutions that can surpass the limitations of traditional methods [4]. 

In more details, modern industrial systems - ranging from petrochemical processing plants and fluid power 

systems to renewable energy infrastructure, automated manufacturing cells, and precision machining 

equipment - frequently demonstrate highly nonlinear dynamic behavior while being subject to numerous 

exogenous disturbances [5-7]. These complex systems must maintain continuous operation while adhering 

to stringent safety protocols and optimal efficiency requirements. Furthermore, time-dependent factors such 

as mechanical wear, component degradation, and frictional effects introduce additional uncertainties 

through progressive changes in system dynamics. Consequently, industrial control environments present 

fundamental challenges characterized by: (1) strong nonlinearities, (2) complex dynamic couplings, (3) 

rigorous operational constraints, (4) temporal parameter variations, and (5) significant uncertainty factors 

[8, 9]. 

The effectiveness of conventional control strategies diminishes significantly when applied to the above-

mentioned systems with time-varying parameters, unmodeled disturbances, or rapidly changing operational 

objectives. While demonstrating excellent performance in static environments with predictable dynamics, 

these methods lack the cognitive flexibility required for real-time adaptation to evolving system conditions 
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[10-12]. This inherent rigidity has spurred growing interest in more sophisticated control paradigms capable 

of autonomous learning and self-optimization [13, 14].  

The inherent constraints of classical control methodologies have motivated a fundamental shift toward 

intelligent control strategies, facilitated by recent breakthroughs in artificial intelligence [15, 16]. While 

early reinforcement learning approaches like SARSA [17] and TD(λ) [18] laid important theoretical 

foundations, the integration of deep learning with RL [19] has enabled transformative capabilities in 

complex control domains. This synergy has given rise to Deep Reinforcement Learning (DRL), which has 

emerged as a paradigm-shifting approach for industrial systems [20-23], offering three key advantages: 

 Autonomous Policy Learning: Through iterative environmental interactions, DRL systems 

develop adaptive control policies that overcome the rigidity of conventional techniques [18]. 

 Complex Environment Handling: DRL excels in nonlinear, time-varying, and partially 

observable environments that challenge traditional methods [24]. 

 Continuous Optimization: The framework maintains optimal performance amid dynamic 

conditions without manual intervention [25]. 

These capabilities have produced landmark algorithms (e.g., AlphaGo [26], NFQ [27]) that surpass human 

performance in domains ranging from game theory to autonomous control [25, 28]. The essence of DRL's 

success lies in its biomimetic approach – mirroring human experiential learning while achieving 

superhuman precision in high-dimensional state spaces [24]. 

While deep reinforcement learning provides a robust framework for autonomous decision-making through 

iterative interaction, its practical implementation in industrial settings faces significant hurdles. Three 

critical challenges merit attention: 

 Sample Efficiency: Industrial systems often involve costly or time-intensive data acquisition, 

making extensive trial-and-error learning impractical. As instance, direct applying DRL to physical 

robotic arms incurs substantial temporal and material costs, unlike simulated environments, due to 

its sample inefficiency [23].  
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 Safety Assurance: Industrial applications demand rigorous safety guarantees, as unstable control 

policies may lead to hazardous outcomes. This necessitates supplementary safety mechanisms 

beyond core DRL algorithms. More critically, maintaining operational stability during the learning 

phase presents significant challenges, particularly when dealing with sensor inaccuracies, 

communication latency or data packet losing issues [29-31]. 

 High-Dimensional Continuous Spaces: Real-world systems typically exhibit complex state-

action spaces with numerous continuous variables (e.g., multiparameter chemical processes 

involving temperature, pressure, and flow dynamics). Such dimensionality increases the learning 

complexity [32].  

To contribute the mentioned gap, this study introduces an enhanced Deep Deterministic Policy Gradient 

(DDPG) framework—selected for its proven capability in handling high-dimensional continuous state and 

action spaces, a hallmark of industrial control systems [32]. The proposed algorithm, termed “Improved 

Model-Based Deep Deterministic Policy Gradient (IMB-DDPG)”, incorporates an online system 

identification module and novel components to mitigate vulnerabilities from sensor or communication 

failures. This architecture maintains an adaptive model that serves as both a backup data generator during 

system disruptions and a virtual environment to supplement training data—significantly improving 

reliability and data efficiency for industrial deployment. 

The framework’s design is motivated by critical industrial requirements where sensor malfunctions or 

communication losses can cause severe operational failures. By integrating model-based learning with real-

world interactions, IMB-DDPG reduces both the costs and risks of physical exploration during training. 

This dual approach not only enhances robustness against unexpected disturbances but also minimizes the 

need for risky real-world trials through simulated experience. 

The remainder of this paper is structured as follows. Section 2 provides a comprehensive review of deep 

reinforcement learning fundamentals, with particular emphasis on the DDPG algorithm's theoretical 

foundations. The following section presents a detailed exposition of the proposed IMB-DDPG framework, 

systematically examining its novel components and architectural innovations. The fourth section evaluates 
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the framework's performance through extensive experiments using the cart-pole benchmark, including 

comparative analyses with baseline DDPG. Finally, Section 5 concludes with key findings and outlines 

promising directions for future research. 

2. Deep Reinforcement Learning: Theoretical Foundations and Algorithmic Evolution 

In this section, the preliminaries of deep reinforcement learning algorithms are analytically investigated. 

2-1- Reinforcement Learning: Basics 

Reinforcement Learning, a pivotal branch of machine learning, enables agents to learn optimal decision-

making policies through trial-and-error interactions with their environment [18]. In more details, 

reinforcement Learning problems are formally modeled as Markov Decision Processes (MDPs) [33], 

defined by the tuple  , , , ,S A P R , where S , A , P , R  and   respectively denote the state space, action 

space, state transition dynamics, reward function and discount factor. At each time step t , the intelligent 

agent observes the environment state 
ts , selects an action 

ta  via its policy  ; after that, the agent receives 

reward 
1tr 
 and encounters the resultant state 

1ts 
 and so on. The objective of the learner agent is to find 

the optimal policy that maximizes the expected cumulative reward or discounted cumulative reward in the 

long-term [18].  

 
0

t

cumulative t

t

rR E 




 
  

 
 , (1) 

where .E  represents the expected value. 

It is worth noting that reinforcement learning algorithms are broadly categorized into model-free (MF) and 

model-based (MB) approaches. MF methods, which dominate the RL landscape, learn directly through 

environmental interaction without estimating system dynamics [34]. These algorithms iteratively refine 

policies or value functions based on accumulated experience, offering implementation simplicity and lower 
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computational complexity by avoiding explicit model learning. However, this comes at the cost of higher 

sample inefficiency and slower convergence. 

Conversely, MB algorithms (e.g., Dyna-Q, trajectory sampling [35, 36]) leverage environmental data to 

approximate system dynamics, enabling faster policy improvement with fewer interactions. While 

theoretically more sample-efficient, MB methods face practical challenges such as model inaccuracies 

when the learned dynamics diverge from real-world behavior. Notably, the foundational RL framework is 

inherently model-free, with MB approaches constituting a specialized subset designed to address MF 

limitations. 

2-2- Q-learning: A Model-Free Cornerstone 

The evolution of value-based RL began with Q-learning [37], a foundational model-free algorithm that 

estimates the action-value function ( , )Q s a  through temporal difference updates: 

 

( , ) ( , )max

, ,

.

( ) ( ) .

t t t t

t t t t

Error r Q s a Q s a
a

s a s a EQ Q rror





   


  

1 1

, (2) 

where    is the learning rate and   is the discount factor [38]. 

Its model-free nature and guaranteed convergence (under discrete state-action conditions) made it widely 

adoptable, with variants like Double Q-learning [39] addressing overestimation biases. 

The tabular nature of conventional Q-learning imposes a fundamental constraint: it is only applicable to 

problems with finite, discrete state and action spaces. This limitation significantly restricts its utility in real-

world industrial applications, where continuous domains are prevalent. While discretization of continuous 

spaces offers a potential solution, this approach inevitably leads to the curse of dimensionality - where 

computational complexity grows exponentially with increasing resolution of the discretized space [18]. 

2-3- Deep Q-Networks (DQN): Scaling with Neural Networks 

Q-learning's limitations in handling continuous domains motivated the development of Deep Q-Networks 
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(DQN), revolutionized reinforcement learning by replacing traditional Q-tables with deep neural networks 

to approximate ( , )Q s a  in high-dimensional spaces [18, 32]. The DQN architecture introduced two pivotal 

mechanisms that significantly improved stability and convergence [40-42]: 

 Experience Replay: A memory buffer that stores and randomly samples past transitions, 

effectively decorrelating sequential observations and improving data efficiency. 

 Target Networks: Periodic copies of the main Q-network that provide stable temporal difference 

targets, mitigating harmful feedback loops during training. 

To this end, DQN algorithm as the initiator of deep reinforcement learning, uses the following loss function 

at iteration i .  

 

2

( , , , ) ( ) ( ) ( )max( ) . , ; , ;i i s a r s U D i iL r Q Q

a

E s a s a    


  
         

  (3) 

In the latter equation, experiences drawn uniformly from dataset D  (replay buffer), where 
i  and 

i   

respectively denote the weights of the Q-network and target Q-network at iteration i . Specifically, the 

parameters of Q-network are adjusted to reduce mean-squared error, which error is the difference between 

predicted value of Q-network and target value, similar to Q-learning. 

As the first successful integration of deep learning with reinforcement learning, DQN demonstrated that 

neural networks could effectively approximate action-value functions ( , )Q s a , receiving state vectors as 

input and outputting value estimates for discrete actions. 

 Despite its success in discrete domains (e.g., Atari games [43]), DQN’s inability to handle continuous 

actions limited industrial applicability. 

2-4- Deep Deterministic Policy Gradient (DDPG): Bridging the Gap 

This gap inspired Deep Deterministic Policy Gradient (DDPG), an actor-critic architecture that combines 

the DQN-inspired value estimation (for continuous state spaces), policy gradient methods (for continuous 
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action outputs) and the model-free flexibility with improved sample efficiency [33]. The DDPG algorithm 

is a model-free, off-policy and actor-critic method, which was introduced in 2016 [44, 45]. DDPG was built 

from combining both the value-based and the policy-based methods, and injecting deep NNs in the 

Deterministic Policy Gradient (DPG) algorithm [46]. In short, DDPG algorithm extends Q-learning's 

principles to continuous control by concurrently optimizing: 

 A critic network (Q-function approximator) 

 An actor network (policy approximator) 

 Target networks for training stability 

In DDPG procedure, the actor network receives a vector as state and outputs selected action; in other words, 

the actor network is the representation of policy. The critic network is also a neural network that takes state 

and action as input and outputs the predicted value of state-action pair, i.e., it is similar to the action value 

function in Q-leaning method. More precisely, the actor's objective function defined by 

  ( ) ( ) . ( ) ( ) . , ( );B B

s s
J s V s ds s Q s s ds 

        , (4) 

maximizes the expected return, where Q-values are provided by the critic network. In the latter equation, 

B is the behavior policy, B  is the state distribution of the behavior policy, and   is the deterministic 

policy which parameterized by  . The mentioned objective function essentially optimizes the actor 

network's parameters to maximize the expected value of actions across the state distribution encountered 

by the agent. For the critic network, the loss function is 

  
2

( , , , ) ( ) ( )( ) , ;s a r s U DL QE y s a   
 

 , (5) 

where 

 ( ). , ( ; );y r Q s s          , (6) 

in which   denotes the parameters of target-actor network. Specifically, the loss is similar to DQN loss, 
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except that in target term y , the value of action that taken by target actor, i.e.  ( , ( ; ); )Q s s      , has been 

used instead of max operator. 

As previously discussed, most of the real-world problems and industrial processes are continuous in terms 

of state and action spaces. Thus, DDPG’s ability to learn policies in continuous control tasks (e.g., robotic 

manipulation, industrial automation) while retaining sample efficiency makes it ideal for real-world systems 

[18]. 

3- The Novel IMB-DDPG Algorithm 

This section introduces the novel Improved Model-Based DDPG (IMB-DDPG) algorithm through four 

systematic development stages, detailing its architectural enhancements that overcome industrial control 

challenges. The proposed modifications address critical limitations of standard DDPG in manufacturing 

environments, particularly regarding sample efficiency, safety constraints, and fault tolerance. The section 

concludes with an evaluation of IMB-DDPG's advantages in operational robustness and adaptive control, 

while acknowledging its computational requirements and implementation considerations specific to 

industrial automation scenarios. 

3-1- Virtual Environment 

A fundamental limitation of deep reinforcement learning algorithms, including DDPG, lies in their inherent 

data dependency. These methods typically require extensive interaction with the environment to properly 

tune neural network weights for accurate function approximation, resulting in prolonged periods of 

suboptimal performance during initial exploration phases. This sample inefficiency poses significant 

challenges for industrial applications where real-world data collection is costly or potentially hazardous. 

While traditional model-free approaches gradually improve through trial-and-error accumulation in 

experience buffers, their practical utility remains constrained in industrial settings with stringent safety and 

efficiency requirements. 
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To address these limitations, utilizing the model-based techniques can be beneficial. MB methods, such as 

Dyna-Q [36], propose a structure that benefits from data, both to improve approximation of the value 

function, i.e. direct RL, and to estimate the dynamics of the environment, i.e. model learning. Given that 

most real-world problems can be modeled as MDPs with continuous spaces, and considering DDPG's 

efficacy in such domains, this paper suggests some novel extensions to improve performance of DDPG 

method to solve industrial problems. 

As the most important improvement to DDPG algorithm, in addition to using data directly to train the DRL 

agent, the collected data should also be utilized to estimate the dynamics of the environment. This new 

method is called Model-Based Deep Deterministic Policy Gradient (MB-DDPG). To this end, in addition 

to four networks (actor, actor target, critic, critic target), another network called Virtual Environment (VE) 

is created. The purpose of this network is to estimate the environment’s dynamics, and thereupon reduce 

the cost of trial and error through real world applications. In this case, the agent can sometimes execute a 

simulated episode instead of the real one, and train the actor and critic networks similar to DDPG, by 

simulated experiences. To be more precise, the VE network receives state and action vectors at the current 

time step, i.e. 
ts  and 

ta , as input and outputs the predicted next state, i.e. 
1ts 

, where the next action, i.e.

1ta 
, is selected by actor network according to 

1ts 
. As this cycle continues, the intelligent agent can 

execute a simulated episode.  

The VE network will be updated by the following innovative loss function  

  
2

( , , , ) ( ) ( )( ) , ;s a r s U DL E s s a    
 

 , (7) 

where   is the VE network which parametrized by  . According to this loss function, the weights of the 

VE network will be modified in such a way that minimizes the prediction error of the next state. The 

aforementioned network predicts the next state deterministically, so this method can be more reliable in 

deterministic MDPs, however, also can be used in stochastic environments. 

The overall scheme of MB-DDPG algorithm is depicted in Fig. 1. Conforming to this scheme, there are 
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two learning loops: The right learning loop is similar to the standard DDPG, where the agent interacts with 

the real environment and stores real experiences in the experience buffer, which results in improving the 

actor and critic networks. A key distinction from the standard DDPG algorithm lies in the dual utilization 

of real-world data: beyond policy optimization, it simultaneously learns an explicit environment model. 

The left learning loop is interacting with the virtual environment, where only the actor and critic networks 

can be updated according to data which generated by VE. 

 

Fig. 1. The overall scheme of MB-DDPG framework 

In the proposed MB-DDPG framework, the Virtual Environment (VE) module is designed to learn only the 

environment dynamics model, excluding reward function estimation. This design choice stems from 

practical industrial applications where rewards are typically derived directly from observable states - such 

as product quality metrics or robotic tracking accuracy - and can therefore be calculated from predicted 

states. Notably, the architecture remains flexible to accommodate reward estimation through VE 

modifications if required. 

3-2- Simulation Rate 

Despite the benefits that virtual environment provides, exploiting the VE network alongside the basic 

algorithm faces two fundamental pitfalls. The first challenge is the randomness of its weighting parameters 

at the beginning steps, due to lack of authentic data, which leads to discrepancy between the prediction and 
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real dynamics of the environment. This difference may mislead both actor and critic networks, potentially 

slowing the learning process compared to the standard DDPG approach and compromising the algorithm's 

stability and convergence, too. 

To address this challenge, a hyperparameter is suggested in the proposed IMB-DDPG algorithm, called 

Simulation Rate (SR). This parameter represents the probability of executing a simulated episode versus 

real episode, after every ended episode. Simulation rate is a real number in the range [0,1) , which numbers 

near one means the high probability of interaction with the VE. 

Typically, this rate can be either a constant value or a function within an acceptable range. This paper 

introduces the novel function (8) to dynamically adjust the parameter based on episode number. The 

function yields near-zero values during initial episodes, gradually increases its output, and eventually 

decreases after reaching a specific episode threshold. This design stems from the observation that the VE 

is initially untrained and inaccurate, requiring the agent to prioritize data collection for improved prediction 

accuracy while limiting simulated episodes. As more data is accumulated and the model's approximation 

accuracy improves, the rate should increase to maximize utilization of the estimated environment behavior. 

Furthermore, once the actor and critic networks have undergone sufficient training through VE interaction, 

the simulation rate decreases to enable the agent to perform its task through real episodes. 

 
    min maxtanh ( ) tanh ( )

2

episode episodeN EP N EP
SR

    
  (8) 

In Eq. (8), 
minEP  and 

maxEP  determine the lower and upper bounds for episodes with the maximum 

simulation rate, and episodeN  denotes the episode number. Also, the coefficient  , which lies in the range 

[0,1), defines the maximum value of the SR function. Subsequently, the coefficient  , a positive number 

typically recommended to be close to zero, controls the increasing and decreasing gradient of the SR

function. 

To give insight, this function is depicted in Fig. 2, for 0.6  , 0.1  , 
min 50EP   and 

max 150EP  , 
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supposing a problem that agent wants to perform its task within 300 episodes. In this sample, in early real 

episodes, agent gathers data and executes simulated episode with lower probability (about zero). After some 

episodes, simulation rate increases in order to benefit from estimated behavior of the environment. In 

episode 100, it executes a simulated episode with highest probability (0.6). After enough training actor and 

critic with VE in episode 50 to 150, the simulation rate decreases in order to agent to perform its task, this 

time with greater skill and reliability in real environment. 

 

Fig. 2. The variable simulation rate introduced in Eq. (7), where  0.6  , 0.1  , 
min 50EP   and 

max 150EP   

3-3- Simulated Experiences Buffer 

As mentioned earlier, the first challenge of using VE was model mismatch in the early stages, which was 

resolved by SR (For more details, please see Section 3-2). Another challenge arises when simulated 

experiences are stored alongside real experiences in the replay buffer. If the agent samples a mini-batch 

uniformly from the buffer to update the actor, critic, and VE networks, the mini-batch may contain 

simulated experiences. Consequently, the VE network could be updated using data generated by itself, 

leading to bootstrapping. If the generated data significantly deviates from reality, this can cause divergence 

or instability in the training of the VE network, subsequently affecting the actor and critic networks. 

To address this second challenge, the novel IMB-DDPG algorithm employs two separate buffers: an 

experience buffer, which stores real experiences (similar to the standard DDPG method), and a Simulated 

Experience Buffer (SEB), which exclusively stores experiences generated by the VE. The data from the first 

buffer is used to update the actor, critic, and VE networks, while the data from the SEB is used only for 
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updating the actor and critic—not the VE network. This separation of real and simulated data enhances the 

reliability and accuracy of the VE network. 

Practical Consideration for SEB Size: 

Empirically, the size of the simulated experience buffer should be significantly smaller than that of the real 

experience buffer. This is because, in the early stages of problem-solving, the model's estimation error is 

typically large, resulting in simulated experiences that deviate substantially from reality. As the VE's 

accuracy improves over time, the generated data becomes more reliable. Thus, to ensure training stability, 

older (and potentially inaccurate) data in the SEB should be discarded sooner rather than being used to 

update the actor and critic networks. 

3-4- Performance Threshold 

A significant limitation of applying reinforcement learning algorithms, particularly DDPG, in real-world 

applications is their susceptibility to performance degradation during prolonged training. Even after 

achieving satisfactory performance, continued learning may temporarily reduce policy effectiveness. In 

such cases, the weights of the actor and critic networks deviate from their optimal values, causing the DDPG 

agent to exhibit undesirable behavior while attempting to rediscover the optimal policy. This phenomenon 

can render the algorithm both costly and unreliable in practical settings [47-49]. 

To mitigate this issue, the proposed approach introduces a Performance Threshold (PT) parameter. This 

threshold defines a minimum performance level; if the agent's performance falls below this limit, it 

automatically switches from interacting with the real environment to training exclusively with the learned 

virtual environment. During this phase, the agent refines its actor and critic networks before returning to 

the real environment. For instance, in an industrial manufacturing scenario where product quality drops 

below the defined threshold (after previously reaching near-optimal performance), the agent would cease 

real-world interactions to prevent further damage. Instead, it would train in the VE until regaining sufficient 

competence, then resume real environment operations. This innovative approach significantly reduces the 
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costs and risks associated with DRL deployment in industrial applications while enhancing overall 

reliability. 

3-5- Advantages of the Novel IMB-DDPG Algorithm 

Having fully developed the innovative IMB-DDPG algorithm, its key benefits and improvements over 

conventional DDPG are highlighted here. The integration of the virtual environment significantly enhances 

data efficiency, enabling faster learning while reducing both the cost and risk associated with pure DDPG 

implementation in real-world control systems. 

As outlined in Section 1, industrial applications often face challenges such as sensor inaccuracies, 

communication latency, and data packet loss [29-31]. The VE effectively addresses these issues. For 

instance, consider a self-driving car controlled by a standard DDPG agent, where the state space includes 

speed, road gradient, and surrounding vehicle positions. If a sudden data disruption occurs mid-operation, 

a traditional RL agent would fail to act due to incomplete state observation. However, with the VE, the 

agent can leverage its last known state and action to predict environmental behavior, allowing it to either 

maintain control until connectivity is restored or execute a safe, controlled stop. This capability makes the 

algorithm both safer and more data-efficient. 

The introduction of the simulated experience buffer represents another critical innovation, preventing VE 

bootstrapping and improving estimation accuracy. This component enhances the convergence and 

reliability of IMB-DDPG algorithm, making it a more robust solution. Additionally, the innovative SR 

parameter, i.e. simulation rate, minimizes the VE’s initial mismatch with the real environment, while the 

proposed function in Eq. (8) accelerates the learning process. 

Furthermore, the performance threshold parameter serves as a safeguard, automatically switching training 

to the VE when performance degrades, thereby increasing operational safety and reliability. 

Collectively, these advancements make IMB-DDPG a superior choice for industrial control problems 

characterized by nonlinearity, high dimensionality, continuous state-action spaces, time variance, and 
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uncertainty. The algorithm demonstrates greater robustness, adaptability, safety, and data efficiency 

compared to conventional DRL approaches, e.g. DDPG [18], TD3 [50], SAC [51] and PPO [52]. 

It is worth noting that distributed optimization methods effectively address problems in networked systems 

[53], while the centralized IMB-DDPG approach offer distinct advantages for industrial control systems: 

 Deterministic Execution: Essential for safety-critical applications, e.g., robotic arms, where 

consensus delays in distributed systems may cause instability. 

 Resource Efficiency: Eliminates inter-node communication overhead (critical in low-power edge 

devices) 

 Temporal Consistency: Maintains synchronous state updates (challenging in distributed setups 

with clock drift) 

Though distributed methods excel in fault-tolerant, geographically dispersed applications [53], IMB-

DDPG’s architecture specifically targets industrial scenarios requiring centralized precision. Future work 

may hybridize these paradigms for multi-agent systems, combining the VE-based robustness with 

distributed coordination. 

3-6- Computational Complexity Analysis 

The novel IMB-DDPG algorithm maintains the polynomial complexity of standard DDPG, i.e. ( )kO n , 

where n  represents the number of neurons in the largest network layer and k  depends on the network 

architecture (typically 2-3). While the base complexity arises from matrix operations in actor-critic 

networks and experience replay, the suggested modifications introduce only bounded overhead: the virtual 

environment requires one additional forward pass per step, i.e. ( )O n , the simulated experience buffer and 

performance threshold contribute constant-time operations, i.e. (1)O , and the simulation rate parameter is 

computed in closed-form per episode via Eq. (8), i.e. (1)O . Consequently, the total complexity remains 

( )kO n , preserving the original scalability while significantly enhancing reliability and sample efficiency 
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for industrial deployment. The modular design ensures these enhancements maintain computational 

tractability without affecting the asymptotic complexity class- crucial for large-scale deployment. 

3-7- Industrial Implementation Considerations 

The IMB-DDPG architecture is designed to address critical industrial implementation constraints through 

three key features: First, it maintains quantization robustness by preserving DDPG's continuous action 

space while using the virtual environment to smooth value estimates and the simulated experience buffer 

to prevent error accumulation in fixed-point implementations. Second, it ensures computational efficiency 

through polynomial complexity, optimized memory usage via the limited-capacity SEB (10-20% of main 

buffer), and minimal-overhead PT operations. Finally, it provides operational reliability through the VE's 

prediction capability during delays, the SR's noise-resistant calculations (Eq. (8)), and SEB's implicit noise 

regularization. This modular design enables industrial deployment while preserving DDPG's advantages. 

3-8- Comparative Analysis with State-of-the-Art Methods 

To systematically evaluate the advantages of IMB-DDPG framework, Table 1 presents a comprehensive 

comparison with state-of-the-art DRL algorithms across key performance metrics, considering both 

theoretical properties and practical industrial requirements. The results demonstrate how IMB-DDPG 

achieves superior performance while addressing limitations of existing approaches. 

Table 1. Comparative analysis of IMB-DDPG against state-of-the-art DRL algorithms 

(Industrial Readiness has been evaluated Based on deterministic timing, memory footprint and hardware 

compatibility, where ✓ and ✗ respectively denote denotes supported and not supported). 

Metric IMB-DDPG DDPG [18, 32] TD3 [18, 50] SAC [18, 51] PPO [18, 52] 

Time 

Complexity 
2( )O n  

2( )O n  
2( )O n  

2( )O n  
2( )O n  

Convergence 

Rate 
1/T  1/ T  1/T  1/T  1/ T  

Quantization 

Resilience 
✓ ✗ ✗ ✗ ✗ 

Fault Tolerance ✓ ✗ ✗ ✗ ✗ 

Sample 

Efficiency 
High Medium High Medium Low 

Industrial 

Readiness 
✓ Partial Partial ✗ ✗ 
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4- Simulation Results 

In this section, the presented novelties and techniques are evaluated in details. 

4.1 Benchmark Environment: Cart-Pole Dynamics 

To rigorously evaluate the proposed IMB-DDPG algorithm, the cart-pole environment is employed from 

OpenAI-Gym python library [54] – a canonical benchmark for continuous control systems. As depicted in 

Fig. 3, this system models an underactuated mechanical assembly where a pole is hinged to a cart moving 

along a rail. The agent’s objective is to apply precise horizontal forces to maintain the pole vertically 

upright, while preventing cart derailment. The system exhibits two equilibrium points: 

 Stable equilibrium: Pole hanging downward (requires no control input) 

 Unstable equilibrium: Pole balanced upward (control objective) 

 

Fig. 3. One frame of cart-pole environment 

The challenge lies in stabilizing the unstable equilibrium, governed by nonlinear dynamics: 

 2( ) cos( ) sin( )M m x ml ml bx u         (9) 

and  

 cos( ) g sin( ) 0I mlx m l     , (10) 

where x  and   respectively denote the horizontal position of the cart and angle of the pole from vertical 

(upright=0). In the above-mentioned equations, M , m , l , I , b  and u determine mass of the cart, mass 

of the pole, length of the pole’s center of mass, moment of inertia of the pole, viscous friction coefficient 

of the cart and applied horizontal force, in turn. These equations reveal: 

 Under actuation: Control only through cart movement 
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 Nonlinear coupling: Between translational ( x ) and rotational ( ) motion 

 Sensitivity: Small disturbances rapidly destabilize the system 

Despite its apparent simplicity, cart-pole abstracts critical challenges in [3, 55, 56]: 

 Robotic arm stabilization (analogous to pole angle control) 

 Overhead crane positioning (similar cart dynamics) 

 Autonomous vehicle rollover prevention (related to moment arm physics) 

Consequently, this modified benchmark provides an ideal testbed for evaluating IMB-DDPG’s capabilities 

in handling nonlinear mechanical couplings, real-time stabilization requirements and imperfect 

sensing/actuation - all critical for advanced mechanical systems like [3, 5, 21]: 

 Exoskeleton balance control (similar to pole stabilization) 

 CNC machine vibration damping (related to cart oscillation control) 

 Satellite attitude adjustment (analogous angular dynamics) 

Since the state and action spaces in cart-pole environment are both continuous, its optimal solution can be 

a guide for solving many engineering and real-world problems. 

4.2 IMB-DDPG Performance Evaluation 

To investigate the novel MB-DDPG framework, the original cart-pole environment of the Gym library has 

been changed in such a way that each episode will be a maximum of 2000 time steps, and the objective of 

the agent is to keep the cart within the permissible limits of the rail track and to keep the pole within the 

permissible limits of the angle. If any of them go out of the allowed range, the current episode will end. 

The reward function is also defined in such a way that the agent receives reward +1 for each time step that 

the cart is in the middle of rail track with the pole within the permissible limits of the angle, i.e. reward +1 

per timestep for maintaining pole within ±12° and cart within ±2.4 units. 

It should be noted that performance of the agent has been evaluated over 500 real episodes, in all 

simulations. Also, for reducing the effect of randomness in the algorithm results, all modes have been runed 

in six different seeds, then, average and standard deviation of all of them are plotted in the graphs (seeds 
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are 10, 20, 30, 40, 50 and 60), where the horizontal and the vertical axes in all of the following figures are 

respectively the episode number and the average reward, i.e. the average of successful time steps in each 

episode. In order to accurately examine the effect of added components in different modes, all features of 

actor and critic networks, e.g. structure of NNs, learning rate, exploration noise, are set the same. The IMB-

DDPG algorithm is assessed in five progressive stages: 

4-2-1- Evaluation of Basic DDPG Algorithm 

As the first experiment, the result of agent’s performance in the presence of basic DDPG algorithm is 

evaluated in Fig. 4. In the following figure, the solid graph is the average of 6 different run with 6 different 

seeds, where the shaded area represents the standard deviation and the diversity of results.  

 

Fig. 4. Performance of the basic DDPG algorithm 

As shown in Fig. 4, the agent in the first 200 episodes is gathering data through trial and error with the 

environment, and it doesn’t perform well. In episode 320, the agent has somewhat improved performance 

and managed to control the system up to 500 steps on average (Since the average value is defined as the 

average of last 40 episodes, the average reward 500 in episode 320 means that the average number of 

successful steps from episode 280 to 320 is equal to 500.). But finally, the agent could not reach an average 

reward higher than 1000 during 500 episodes.  

4-2-2- Efficacy of Adding a Virtual Environment with Constant Versus Variable Simulation Rate 

As discussed in the previous section, adding another network to the DDPG algorithm as VE results in the 

first version of IMB-DDPG approach, named MB-DDPG. This network is supposed to approximate the 
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dynamics of the environment and help the agent in predicting the behavior of the environment. When the 

mentioned virtual environment is added, it is necessary to define a simulation rate for determining the 

probability of the interaction with the VE. In simulation results, two different modes are evaluated. The 

first mode is the simulation rate with a constant value (here 0.2 is selected), and the second mode is to select 

the simulation rate with a variable value suggested in Eq. (8). The results are presented in Fig. 5 (In order 

to avoid ambiguity, it is emphasized that the horizontal axis represents the number of real episodes, and 

performance of agent in simulated episodes is not plotted). 

 

Fig. 5. Performance of the MB-DDPG algorithm with constant and variable simulation rates (The red graph indicates the MB-

DDPG algorithm with variable simulation rate, where the green one shows the MB-DDPG method with constant simulation rate). 

According to Fig. 5, these two MB-DDPG algorithms give better results than the pure DDPG (Fig. 4). 

These two MB-DDPG algorithms achieved reward 500, i.e. 500 successful steps, in less than 280 episodes, 

where both of them reached about 1500 steps in episode 500, too. Therefore, the results confirm that 

injecting a virtual environment into the DDPG algorithm can greatly improve its performance. Also, as 

claimed in the third section, exploiting the variable simulation rate with the suggested format can 

significantly increases the learning speed in comparison with the constant simulation rate. 

4-2-3- Efficacy of Adding a Simulated Experience Buffer 

Another novelty presented in this paper is to use a separate buffer for simulated experiences, named SEB 

in the previous section. To investigate the effect of this component on the performance of the novel 

framework, SEB added to the MB-DDPG algorithm with variable simulation rate (red graph in Fig. 5), and 

the results have been compared. As seen in Fig. 6, SEB can improve the actor’s decisions; because VE 

network can be updated just through real data in this case, which yields in increasing the accuracy of the 
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virtual environment. More details, the reward graphs demonstrate that the improved algorithm can 

outperform the former one, after episode 220. 

 

Fig. 6. Effect of adding SEB on the performance of the MB-DDPG algorithm with variable simulation rate (The red and blue 

graphs show the performance of the MB-DDPG algorithm with variable simulation rate, respectively in the absence and presence 

of the SEB, i.e. simulated experiences buffer) 

4-2-4- Efficacy of Adding the Performance Threshold  

In addition to the mentioned extensions for DDPG algorithm, this paper also introduced another key 

innovation: the performance threshold parameter. This parameter forces the agent to focus on the virtual 

environment when its real-world performance falls below a certain level, or during emergencies. This can 

analytically reduce the damage and cost caused by interaction with the real-world environment. Other 

words, after sufficient training of the agent in VE and achieving the desired performance, the agent interacts 

with the real environment again. The effectiveness of adding this threshold parameter on enhancing the 

performance of the latter version of MB-DDPG approach is illustrated in Fig. 7 

 

Fig. 7. Efficacy of the performance threshold parameter on the IMB-DDPG algorithm with variable simulation rate and simulated 

experiences buffer (The blue and orange graphs depict the MB-DDPG algorithm with variable simulation rate and SEB, 

respectively in the absence and presence of the performance threshold parameter) 
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Fig. 7 asserts that adding the performance threshold parameter to the MB-DDPG algorithm improves its 

efficiency, by reducing the cost of trial and error with the real-world environment, which leads to growth 

of received reward. To be more precise, the performance of both algorithms remains identical for the initial 

220 episodes. However, a divergence occurs when the agent’s average performance falls below the pre-

defined performance threshold (in this case, 1100), where the embedded instruction dictates a shift in the 

behavior. After the agent is well trained, the agent is more likely to interact with the real-world environment. 

Furthermore, according to the shaded areas, adding this parameter reduces the variance of the performance 

to a great extent. Accordingly, such a parameter desirably augments the reliability of the suggested IMB-

DDPG algorithm for industrial and real-world environments. 

4-2-5- Comprehensive Comparison 

For better comparison, the results of gradually adding the proposed components and parameters of the novel 

IMB-DDPG framework to the basic DDPG algorithm are all shown in Fig. 8. As the results affirm, the 

suggested novel method can impressively perform better than pure DDPG one. In addition, the presented 

improvements provide conditions that make this approach more practical for industrial applications. 

 

Fig. 8. The performance comparison of different versions of DDPG algorithm via the cart-pole environment 

5- Conclusion 

The IMB-DDPG framework represents a significant advancement in deep reinforcement learning 

algorithms for industrial control systems through four synergistic innovations: (1) The Virtual Environment 

(VE) enables sample-efficient policy improvement while reducing hazardous real-world interactions, (2) 
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The Simulation Rate (SR) scheduler dynamically optimizes real-to-simulated experience ratios to 

accelerate early-stage learning, (3) The Simulated Experience Buffer (SEB) eliminates model bias through 

isolated transition storage, and (4) The Performance Threshold (PT) mechanism ensures operational safety 

by automatically reverting to VE control during performance degradation. It is worth noting that extensive 

validation on the Cart-Pole benchmark demonstrated these components' collective impact, with IMB-

DDPG achieving target rewards much faster than standard DDPG (1500 in 310 episodes versus <1000 in 

500 episodes), while maintaining robustness to sensor malfunctions or communication losses. Moreover, 

detailed computational complexity analysis confirms the framework maintains polynomial complexity, i.e. 

2( )O n , despite its enhanced capabilities (Section 3.6), while industrial implementation considerations 

highlight its compatibility with quantized, low-power systems (Section 3.7). In addition, comparative 

evaluations against state-of-the-art methods further demonstrate superior behavior of IMB-DDPG's 

approach across key performance metrics, considering both theoretical properties and practical industrial 

requirements (Section 3.8).  While IMB-DDPG excels in centralized industrial control, future extensions 

may incorporate distributed learning for multi-agent scenarios (e.g., smart grids). Also, future works could 

involve applying and adapting the novel components and parameters of the suggested framework for other 

deep reinforcement learning algorithms, like TD3, SAC and PPO. 
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