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Abstract 

Torsional vibrations in rotors can lead to fatigue failure and system instability, making effective 

vibration control critical for industrial applications. This study proposes nonlinear dual dynamic 

vibration absorber to mitigate torsional vibrations in a rotor. The absorber consists of two 

symmetric sets, each comprising a mass, spring, and damper, seamlessly integrated onto the rotor 

disc for practical implementation. The key equations describing the system's behavior are derived 

using the Lagrangian method and, due to their nonlinearity, solved using the method of multiple 

scales. The influence of the absorbers' mass and distance ratios on the torsional vibration amplitude 

at resonance is investigated, revealing that equal mass and distance ratios optimize performance. 

Specifically, the absorber reduces the vibration amplitude at resonance from 0.03 radians to 0.5 

milliradians. The effect of damping on vibration suppression is also analyzed, and a comparison 

between linear and nonlinear states demonstrates the superior efficacy of the nonlinear approach. 

Unlike conventional single or linear absorbers, this dual nonlinear design significantly enhances 

vibration reduction at resonance, offering improved rotor stability and durability for industrial 

systems. 

Keywords: Nonlinear Dynamic Vibration Absorber, Rotor, Torsional Vibrations, Method of 

Multiple Scales 
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Nomenclature list 

Symbol Description Unit 

θ   Torsional vibration of the rotor rad 

u, v displacement of the first and second absorbers m 

m₁, m₂ Mass of the first and second absorbers kg 

k₁, k₂ 
Spring stiffness of the first and second 

absorbers 
N/m 

c₁, c₂ 
Damping coefficient of the first and second 

absorbers 
N·s/m 

μ Mass ratio of  Dimensionless 

η Distance ratio of absorbers Dimensionless 

ω₁, ω₂, ω₃ 
Natural frequencies of the system and 

absorbers 
rad/s 

ε Small nonlinear parameter Dimensionless 

J Moment of inertia of the rotor kg·m² 

𝑘𝑡 Torsional stiffness of the shaft N·m/rad 

Γ(t) External excitation torque N·m 

Ω Constant angular velocity rad/s 

 

1. Introduction  

Torsional vibration systems are prevalent in industrial applications. Due to low damping at 

resonance frequencies, these systems can experience significant oscillation amplitudes, potentially 

causing fatigue failure and damage to machine connections. Thus, reducing torsional vibrations is 

essential for system stability and minimizing equipment damage. One effective method for 

controlling vibrations, including torsional vibrations, is the use of dynamic vibration absorbers. 

Frahm [1] introduced the concept of the dynamic vibration absorber, designing a fluid tank to 

prevent ships’ rolling motion. The advantages of Frahm’s absorber include ease of installation and 
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simple design. An undamped dynamic vibration absorber provides optimal neutralization at a 

specific design frequency, making it highly effective when the excitation frequency is constant. 

However, its effective range is limited, and if the excitation frequency shifts, the system’s vibration 

amplitude may exceed that without the absorber. To address this, Den Hartog and Ormondroyd [2] 

incorporated damping into the absorber. Iwanami and Seto [3] proposed a dual vibration absorber, 

demonstrating that it reduces vibration amplitude at resonance more effectively than a 

conventional absorber. Asami [4] analyzed the dual vibration absorber in series and parallel 

configurations, optimizing its parameters using various methods. The series configuration 

outperformed the parallel configuration, which, in turn, surpassed the conventional absorber in 

reducing vibration amplitude. Shen et al. [5] developed a dynamic vibration absorber with negative 

stiffness, where deformation opposes the applied external force, unlike positive stiffness, where 

deformation aligns with the force. Their absorber, optimized for frequency and damping ratios, 

significantly reduced vibration amplitude compared to conventional absorbers across various mass 

ratios. Nazari and Rahi [6] explored the use of a cantilever beam-based nonlinear dynamic absorber 

with a tip mass to suppress vibrations in a nonlinear system. Shangguan and Pan [7] designed a 

multi-mass absorber to reduce crankshaft torsional vibrations, modeling the crankshaft as a 15-

degree-of-freedom system. Vu et al. [8] optimized a dynamic vibration absorber for torsional 

vibration reduction, modeling a shaft as single- and multi-degree-of-freedom systems. Their results 

showed that the absorber reduced vibration amplitude to near zero rapidly. Manchi and Sujatha [9] 

employed a centrifugal pendulum absorber, attached around a disc in a vehicle’s power 

transmission system, to reduce torsional vibrations. Cao et al. [10] used a nonlinear energy sink to 

mitigate rotor torsional vibrations, validating results experimentally. Xiang and Wong [11] 

developed a controllable electromagnetic dynamic absorber for high-speed rotating machinery, 

allowing adjustable stiffness and damping without structural changes. Nguyen [12] optimized a 

tuned mass damper for shaft torsional vibrations using the minimum kinetic energy method, 

validating results numerically. Shen et al. [13] introduced an innovative absorber with grounded 

stiffness and an amplification mechanism, finding that positive stiffness yielded the best vibration 

reduction. Wang et al. [14] proposed a multiple absorber for systems under multiple excitations, 

validated experimentally with a magnetic damper. Chang et al. [15] developed a quasi-zero 

stiffness absorber for low-frequency vibrations, outperforming conventional absorbers under 

random and impact excitations. Chung and Wang [16] studied an unconventional absorber with a 
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damper connected to the ground, optimized using the fixed-point method, which outperformed 

conventional absorbers. Tchokogoué et al. [17] analyzed a centrifugal dynamic absorber, 

considering gravity effects significant at low rotational speeds. Rao and Sujatha [18] designed a 

centrifugal pendulum absorber to reduce both axial and torsional vibrations of a rotating shaft. 

Kecik [19] proposed a system combining vibration reduction and energy harvesting, integrating 

an energy harvesting device within a pendulum absorber without compromising performance. El-

Sayed and Baoumy [20] mitigated nonlinear system vibrations under multifrequency excitation, 

identifying critical conditions when internal and subharmonic resonances occur simultaneously. 

Shaw and Bahadori [21] investigated a pendulum absorber in fluid, analyzing fluid pressure effects 

on performance. Abu Seer et al. [22] introduced an adaptive absorber for torsional vibrations in 

rotating equipment, effective across varying frequencies and compatible with multi-degree-of-

freedom systems. Faal et al. [23] proposed a simple, undamped absorber for shaft torsional 

vibrations, mounted with fixed supports to maintain balance. Goodarzi and Rahi [24] optimized a 

dual dynamic vibration absorber using the Lagrangian method and genetic algorithm to reduce 

torsional vibrations. Taghipour et al. [25] investigated the vibration mitigation of a nonlinear 

Jeffcott rotor system using linear (TMD), nonlinear (NES), and combined (TMD-NES) vibration 

absorbers. The authors employ semi-analytical and numerical methods to analyze the system's 

dynamics, demonstrating that all three absorbers effectively reduce vibrations, with TMD-NES 

offering the best performance and stability. The research highlights the importance of optimizing 

absorber parameters to enhance robustness against variations in system conditions. Cao et al. [26] 

introduced an inerter-enhanced nonlinear energy sink (INES) to suppress torsional vibrations in 

rotor systems. By combining a nonlinear energy sink (NES) with an inerter, the system reduces 

the reliance on heavy inertial mass compared to conventional designs. Al-Bedoor et al. [27]   

propose a dynamic absorber to reduce torsional vibrations in synchronous motor-driven systems, 

consisting of two inertia rings connected by spring-like elements, which significantly reduces 

vibration amplitude and duration through optimal tuning. Their results demonstrate the absorber's 

effectiveness in mitigating torsional vibrations during motor startup. 

This study employs absorbers to mitigate rotor torsional vibrations, positioned symmetrically at a 

defined distance on the rotor disk. A key innovation is the nonlinear and dual characteristics of the 

dynamic vibration absorber, designed to effectively reduce torsional vibrations through dual linear 

oscillatory motion. 
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2. Modeling and derivation of equations  

The primary vibration system consists of a rotor that rotating at a constant angular velocity    and 

subjected to an oscillating external torque   0Γ Γ i tt e  .The radius and mass of the disk are R and 

M, respectively, with the moment of inertia J and the torsional stiffness of the shaft tk . 𝐵1 and   

𝐵2 are bearings. To prevent imbalance, a dynamic vibration absorber is implemented as two 

symmetric sets of mass, spring, and damper with similar performance. These absorbers have 

masses 1m  and 2m , spring stiffnesses 1k  and 2k , and dampers with damping coefficients 1c  and 

2c , embedded in the disk. The distances of the absorbers from the center of the disk are 1d  and 2d

, and their displacements are 𝑢 and 𝑣. The dynamic vibration absorber is designed to reduce the 

torsional vibrations of the rotor through its linear oscillatory motion. The degrees of freedom of 

the system are  , u and .v  Figs. 1 and 2 show the side view and front view of the system, 

respectively. 

 

 

  
Fig. 1. The side view of the rotor 
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Fig. 2. The front view of the disk   

 

The kinetic energy of the system, described in Eq. (1), includes the kinetic energy of both the disk 

and the absorbers: 

(1)      2 2 2

1 1 2 2

1 1 1
  2   2

2 2 2
m mKE J m v m v    

The velocities 1mv  and 2  mv  will be as follows: 

(2)  1 1
ˆ ˆ ˆ ˆ

mv ui k d j ui     

 2 2
ˆ ˆ ˆ ˆ

mv vj k d i vj    

After substuting 1mv  and 2  mv  into Eq. (1):  

(3)    2 2 2 2 2

1 1 2 2

1
( ) ( ) ( ) ( )

2
KE J m u u d m v v d                      

 The system’s potential energy comprises the combined potential energy of the absorber springs 

and the torsional stiffness of the shaft. 

(4) 
2 2 2

1 2

1 1 1
4 4

2 2 2
tPE k u k v k 

   
     

   
  

Using the system's kinetic energy, and potential energy, the Lagrangian is expressed as: 
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(5)    2 2 2 2 2

1 1 2 2

2 2 2

1 2

1
( ) ( ) ( ) ( )

2

1
2 2

2
t

L KE PE J m u u d m v v d

k u k v k

    



                 

  

 

The Lagrange equation is given by [28]: 

(6) 
 

1

2

3

 ,  1, 2 ,   i

i i

q
d L L

Q i q u
dt q q

q v


   

    
    

 

Non-conservative forces 𝑄1 , 𝑄2 and 𝑄3  are equal to: 

(7)  1

2 1

3 2

4c

4c

Q t

Q

Q

u

v

  


 
  

  

By applying Lagrange's equation, incorporating the system's kinetic energy, potential energy, and 

non-conservative forces, the equations of motion are derived as follows: 

 

 

(8) 

 

 

 

2 2 2 2

1 1 1 2 2 2 1 1 1 2 2

2

2 2 2 2 2 4 2

4 Γ tt

J m u m d m v m d m d m u mu vu d

m vv k

 

 

      

  
  

2

1 1 1 1 1 12 2 0m m d m u c u k uu         

2

2 2 2 2 2 22 2 0m m d m v c v k vv         

3. Solving nonlinear equations using method of multiple scales  

Due to the nonlinearity of the equations of motion, an analytical solution is sought using the 

method of multiple scales [29, 30]. This method is well-suited for systems exhibiting small 

amplitudes of vibration. The nonlinear governing equations are: 

 
0iΩ2

1 2 1 2 1

T
uu evu vv f                 

(9) 2 2

1 1 2 22 0u d u u u            

 2 2

2 2 3 32 0v d v v v            

 

Because the governing equations are nonlinear, the normalized system parameters are:  
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21 2
1 2 12 2 2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2

4 4
 ,   , 

2 2 2 2 2 2

tkm m

J m d m d J m d m d J m d m d
    

     
 

2 21 2 1 2
2 3 1 2

1 2 1 1 2 2

2 2
 ,   ,  ,

2 2

k k c c

m m k m k m
         

1 1 2 2
1 22 2 2 2

1 1 2 2 1 1 2 2

2 2
 , 

2 2 2 2

m d m d

J m d m d J m d m d
  

   
 

In Eq. (9), A small bookkeeping parameter ε is used, indicative of a small vibration amplitude. By 

definition, n

nT t , 0T t  and 1T t  that are fast and slow time scales, respectively. Also 0 , 

0u  and 0u  are displacement functions in order 0  and 1  , 1u  and 1v  displacement functions in 

order 1 . 

 

(10) 

   0 0 1 1 0 1, ,T T T T       

   0 0 1 1 0 1, ,u u T T u T T    

   0 0 1 1 0 1, ,v v T T v T T    

Using the definition n

n

D
T





 , for the slow time scales, the total time derivative operator is given 

by the following expansion: 

(11) 

2
2

0 1 0 0 12
 ,  2

d d
D D D D D

dt dt
       

In the perturbation analysis, the relationship between the primary system’s excitation frequency, 

the natural frequencies of the system, and the parameters of the nonlinear dynamic absorber is 

defined in terms of specific internal and external parameters. 1 1Ω    , 1 2 2    ,

1 3 3      [31]. 

By replacing  0 1,T T ,  0 1,u T T  and  0 1,v T T  in the equations of nonlinear motion of the system 

and by separating the system of equations based on the powers of zero and one 𝜀 , the system of 

equations is obtained: 
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(12) 0 2 2

0 0 1 0:   0D       

(13) 0 2 2

0 0 2 0:   0D u u     

(14) 0 2 2

0 0 3 0:   0D v v     

(15)      
0

1 2 2

0 1 1 1 0 1 0 1 0 0 0 0 0 2 0 0 0 0 0

iΩ2 2

1 0 0 2 0 0

:  2

T

D D D u D u D v D v D

D u D v fe

        

 

   

  
  

(16)  
21 2 2 2

0 1 2 1 0 1 0 1 0 0 0 0 0 1 2 0 0:  2 2 0D u u D D u d D u D D u             

(17)  
21 2 2 2

0 1 3 1 0 1 0 1 0 0 0 0 0 2 3 0 0:  2 2 0D v v D D v d D v D D v             

The harmonic response of equations (12) and (14) in polar form is: 

(18)    1 0 1 0

0 1 1

i T i T
A T e A T e

  
    

(19)    2 0 2 0

0 1 1

i T i T
u B T e B T e

 
    

(20)    3 0 3 0

0 1 1

i T i T
v C T e C T e

 
    

 

The above relation  1A T ,  1B T  and  1C T  are the complex conjugates of the amplitude  1A T  

,  1B T  and  1C T  respectively. By replacing the polar responses in Eqs. (15) and (17), have: 

(21)      

   

1 2 0 2 1 01 0

1 3 0 3 1 0 2 0 3 0

0

2 22 2 2 2

0 1 1 1 1 1 1 1 2 1 2

2 22 2 2 2

2 1 3 1 3 1 2 2 3

iΩ

2 (

(

)

)

i T i Ti T

i T i T i T i T

T

D i A T e AB e AB e

AC e AC e Be Ce

fe CC

   

     

      

      

 

 

     

    

 



 

(22)    1 2 02 0 1 0 2 0

2 0

22 2 2 2 2 2

0 1 2 1 2 1 1 1 1 1

2

1 2

2

2

i Ti T i T i T

i T

D u u i B T e d Ae A Be AABe

i Be CC

   



    

 


     

 
  

(23)    1 3 03 0 1 0 3 0

3 0

22 2 2 2 2 2

0 1 3 1 3 1 2 1 1 1

2

2 3

2

2

i Ti T i T i T

i T

D v v i C T e d Ae A Ce AACe

i Ce CC

   



    

 


     

 
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The term CC in the preceding equations represents the complex conjugate. The amplitudes of 

 1A T ,  1B T  and  1C T  are expressed in polar coordinates by relations: 

(24)      1

1 1

1

2

i T
A T a T e


   

(25)      1

1 1

1

2

i T
B T b T e


   

(26)      1

1 1

1

2

i T
C T c T e


   

Substituting this relation into Equations (21) and (22) and eliminating the secular terms results in: 

(27) 
3 32 2 1222 2 2 2

1 1 1 1 2 2 1 3 1 2 2 3

1 1
0

8 8

i ii i ii a a ab e ac e be ce fe
                       

(28) 2 222 2 2 2

2 2 1 2 1 1 12 0i ii b b i b d ae ab e               

(29) 3 322 2 2 2

3 3 2 3 2 1 12 0
i i

i c c i c d ae ac e
        

       

In relations (27) to (29), it is 1 1 1T     , 2 2 1T       and 3 3 1T      . To obtain the 

steady-state response, the derivatives with respect to 1T  , namely  , , , ,a b c        and    are set to 

zero in Equations (27) and (29). The system's stability is then determined by solving the equations 

resulting from setting both the real and imaginary parts of this modified system to zero. 

By equating the real and imaginary parts of the equations to zero, we will have a stable response: 

(30) 
2 2 2

1 1 1 2 2 2 1 3 3 1 1 2 2

2

2 3 3

1 1
cos 2 cos 2 cos cos

8 8

cos 0

a ab ac f b

c

           

  

 



  



  

(31) 
2 2 2

1 1 2 2 2 1 3 3 1 1 2 2

2

2 3 3

1 1
sin 2 sin 2 sin sin

8 8

sin 0

ab ac f b

c

         

  

   

 

  

(32) 2 2 2

2 1 1 2 1 2cos cos2 0b d a ab          
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(33) 2 2 2 2

1 2 1 1 2 1 22 sin sin 2 0b d a ab           

(34) 2 2 2

3 2 1 3 1 3cos cos2 0c d a ac          

(35) 2 2 2 2

2 3 2 1 3 1 32 sin sin 2 0c d a ac           

To solve the nonlinear Eqs. (30–35) derived from the multiple scales method, the Newton-Raphson 

method [32, 33] was employed due to its high convergence rate for nonlinear systems with a 

limited number of variables. These equations, representing the steady-state response of the system, 

were reformulated as a system of nonlinear equations F(x) = 0, where x is the vector of unknown 

variables. The Newton-Raphson method was initiated with carefully selected initial guesses for x, 

informed by preliminary linear analysis Eqs. (18–20). The Jacobian matrix (J), comprising partial 

derivatives of F with respect to x, was computed to update the solution iteratively via 

   1

1 .n n n nX X J X F X

   . This process was implemented in MATLAB using the standard 

function fsolve, with a convergence criterion of 610 , ensuring high-precision steady-state 

solutions [29, 30]. It was assumed that the initial guesses were sufficiently close to the true 

solutions to guarantee rapid convergence. This approach enabled accurate computation of the 

system’s response, facilitating the generation of results presented in Figs. 4–8. 

 

4. Numerical results and validation  

For the numerical analysis of the system's performance and validation, the rotor specifications are 

considered in accordance with the study by Vu et al. [8]. 

Table 1. Rotor specifications [8] 

Parameters Value Unit 

R  14 cm 
M  5 kg 

tk    10000 Nm/rad 

             0 5 N.m 

 

To validate the results of the proposed nonlinear dual dynamic vibration absorber, a validation 

study was conducted by simplifying the system to align with the linear single-degree-of-freedom 

model in Vu et al. [8]. The second absorber was removed, resulting in a system with a single 

absorber, as in [8]. The governing nonlinear equations were linearized around the equilibrium 
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position by neglecting higher-order nonlinear terms and assuming harmonic oscillatory motion of 

the single absorber, consistent with [8]. All system parameterswere adopted directly from [8] to 

ensure an accurate comparison. The linearized equations were solved numerically using the 

Newton-Raphson method ensuring high numerical precision. 

The torsional vibration amplitude of the rotor was computed as a function of time under an external 

excitation torque   0Γ Γ i tt e  at the resonance frequency. Fig. 3 presents a time-domain plot 

comparing theta for the simplified system with the results reported in [8]. Both systems exhibit an 

initial transient response with a peak amplitude of approximately 0.004 radians, followed by a 

rapid stabilization to a steady-state amplitude of about 0.001 radians within 0.05 seconds. The 

steady-state amplitude of the simplified system closely matches that of [8], with a maximum 

deviation of less than 7% (approximately 0.0001–0.0002 radians), confirming the accuracy of the 

dynamic modeling and numerical approach used in this study. This validation study establishes a 

robust baseline by replicating the results of [8] with the simplified system, confirming the 

correctness of the proposed modeling and numerical methods. 

 

 

Fig. 3. Comparison of torsional vibration amplitude versus time for the simplified single-absorber 

system and Vu et al. [8] 

 

The nonlinear dynamic vibration absorber examined in this study is modeled as multiple units, as 

shown in Figs. 1 and 2, consisting of four sets of mass, spring, and damper. To maintain symmetry 

and balance of the rotor, the absorbers are paired with identical performance. That is, the absorbers 
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in front of each other have similar characteristics and are equidistant from the rotor's center. Based 

on the system specifications in Table 1, the absorber's performance is evaluated at the resonance 

frequency to achieve optimal performance under critical conditions. The system's natural 

frequency without the dynamic vibration absorber is 447.21  /n rad s  . Fig. 4 shows the 

amplitude of the rotor's torsional vibrations without the absorber at resonance over the time interval 

from 0 to 2 seconds. 

 

 

Fig. 4. The amplitude of the rotor's torsional vibrations without the absorber at resonance 

 

After adding the absorbers to the rotor, it is essential to determine how the masses of the absorbers 

relate to each other due to their dual nature. The impact of having equal or unequal absorber masses 

on their performance and the reduction of torsional vibrations must be assessed. It is noteworthy 

that for optimal absorber performance, their design should ensure that their natural frequency 

matches the resonance frequency. According to the equations, the natural frequency of each 

absorber will be as follows: 

2 21 2
2 3

1 2

2 2
 , 

k k

m m
    

It is worth mentioning that the natural frequency of the main system after the addition of the 

absorbers is as follows: 

2

1 2 2

1 1 2 22 2

tk

J m d m d
 

 
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The mass ratio of the first absorber with mass 1m  to the second absorber with mass 2m  is given 

by: 

1

2

μ
m

m
  

To examine the effect of changes in μ on the reduction of the rotor's torsional vibration amplitude, 

other components remain constant, and the absorbers are positioned 10 cm from the center of the 

rotor. By varying the mass ratio of the absorbers to maintain the natural frequency of each absorber 

and preserve its performance at resonance, the stiffness of the absorbers will also change 

accordingly. The reduction in the rotor's torsional vibration amplitude with increasing mass ratio

( ) , as shown in Figure 5, is attributed to the enhanced energy transfer from the rotor to the 

absorbers. When the mass ratio approaches unity ( 1)   the absorbers’ masses are equal, 

optimizing the system’s moment likes of inertia and allowing both absorbers to oscillate in phase 

with the rotor’s resonance frequency. This synchronization maximizes the absorption of 

vibrational energy, reducing the rotor’s amplitude from 0.03 radians to 0.5 milliradians. Physically, 

equal masses ensure balanced dynamic forces, minimizing residual vibrations and stabilizing the 

system at resonance. 
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Fig. 5. The amplitude of rotor's torsional vibrations at different mass ratios of absorbers 

 

Figure 6 illustrates that the vibration amplitude of the absorbers varies with the mass ratio (  ). 

When   1  , both absorbers exhibit identical amplitudes due to their equal masses, which 

promotes symmetric energy distribution. Physically, this symmetry ensures that each absorber 

equally shares the vibrational energy transferred from the rotor, reducing the risk of localized 

stress. For unequal mass ratios (e.g., 0.25)  , the lighter absorber oscillates with a higher 

amplitude to compensate for its lower inertia, while the heavier absorber absorbs more energy, 

highlighting the dynamic interplay between mass and energy dissipation. 
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Fig. 6. Vibration amplitude of absorbers with different mass ratios 

 

Another factor that affects the torsional vibration amplitude of the rotor is the ratio of the distances 

between the absorbers. The distance of the first absorber from the rotor center is 1d  and the 

distance of the second absorber is 2d  . It needs to be determined how the ratio of these distances 

should be to achieve the best performance. For this purpose, the following parameter is considered 

as the ratio of the distances of the absorbers. 

1

2

d

d
   

As shown in Fig. 7, the torsional vibration amplitude decreases as the distance ratio (η) approaches 

unity. This behavior is due to the symmetric placement of absorbers ( 1)  , which maintains 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



17 
 

dynamic balance by ensuring equal moment arms relative to the rotor’s center. Physically, equal 

distances optimize the torque cancellation, as the absorbers’ oscillatory forces counteract the 

rotor’s vibrations uniformly. This configuration minimizes additional stresses on the shaft, 

reducing the amplitude from 0.6 milliradians to 0.4 milliradians, enhancing system stability at 

resonance. 

 

Fig. 7. The amplitude of rotor's torsional vibrations at different distance ratios of absorbers 

Figure 8 shows that the absorbers’ vibration amplitudes depend on their distance ratio ( ). When

  1  , both absorbers oscillate with equal amplitudes due to their symmetric positioning, which 

balances the dynamic forces acting on the rotor disc. Physically, an absorber closer to the rotor’s 

center (e.g.,   0.25  ) experiences a smaller moment arm, resulting in lower amplitude, while a 

farther absorber has a larger amplitude due to increased leverage. This variation reflects the 

absorbers’ role in redistributing vibrational energy, with equal distances optimizing energy 

absorption and system equilibrium. 
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Fig. 8. Vibration amplitude of absorbers with different distance ratios 

 

 

After separately examining the effects of distance ratio and mass ratio on the torsional vibration 

amplitude of the rotor, the simultaneous effect of these two ratios is now investigated. The non-

dimensional torsional vibration amplitude of the rotor is expressed as follows. 

0Γ

tk
A

 
  

In this context, 𝐴 represents the non-dimensional torsional vibration amplitude,  is the torsional 

vibration amplitude of the rotor in radians, tk  is the torsional stiffness of the shaft, and 0Γ  is the 

amplitude of the external excitation torque. Fig. 9 demonstrates that the non-dimensional torsional 

vibration amplitude is minimized when both mass and distance ratios are unity    1,    1   . 

Physically, this optimal condition aligns the absorbers’ natural frequencies with the rotor’s 
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resonance frequency, maximizing energy transfer. Equal masses and distances ensure a balanced 

moment of inertia and symmetric force distribution, reducing dynamic imbalances. This 

configuration effectively dissipates vibrational energy, preventing amplification of rotor 

oscillations. The increased amplitude at lower ratios (e.g.,   0.25,    0.25   ) reflects 

insufficient energy absorption due to suboptimal inertial and geometric properties. 

 

 

Fig. 9. Simultaneous analysis of the effect of mass ratio and distance ratio of absorbers on non-

dimensional torsional vibration amplitude 

 

Given that the rotor specifications are selected based on reference [8], the performance of 

absorbers in the present study under optimal performance is compared with that reference. In this 

study, dual absorber is used, and the modeling approach of the absorber is such that it results in 

the nonlinearity of the governing system equations. The specifications of absorbers with the 

appropriate configuration that have the greatest effect in reducing the torsional vibrations of the 

system are as follows: 

Table 2. The specifications of absorbers 

Parameters Value Unit 

1 2m m  0.1 kg 

1 2d d  12 cm 

1 2k k  10000 N/m 

                  1 2c c  20 N.s/m 
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Fig. 10. Performance evaluation of the absorber in the current study 

Fig. 10 highlights the superior performance of the proposed absorber compared to reference [8], 

reducing torsional vibrations more effectively at resonance.The symmetric arrangement and 

nonlinear stiffness allow the absorbers to adapt to varying dynamic conditions, absorbing energy 

that would otherwise amplify rotor vibrations. This results in a significant reduction in amplitude 

(to 0.5 milliradians), as the nonlinear dynamics counteract the rotor’s oscillatory motion more 

effectively than traditional linear absorbers, ensuring greater system stability. 

5. Implementation Plan 

To realize the proposed nonlinear dynamic vibration absorber in practice, the following phases 

are considered: 

 Initial absorber geometry design 

The basic configuration of the absorber (mass, spring, and damper layout) is defined 

considering symmetry, mass distribution, and spatial constraints on the rotor disk. 

 Dynamic modeling 
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Using the physical properties of the rotor-absorber system, the equations of motion are 

derived based on Lagrange’s formulation, capturing all degrees of freedom and interaction 

terms. 

 Nonlinear analysis 

Due to the inherent nonlinear coupling in the system, the equations are solved analytically 

using the Method of Multiple Scales (MMS), which allows for capturing resonance and 

amplitude-dependent behavior. 

 Parameter adjustment 

Key parameters such as damping coefficients, mass ratio, and absorber placement are tuned 

iteratively to minimize torsional vibration amplitude under resonance conditions. 

 Numerical Testing & Comparison 

After solving the equations and performing parameter adjustment, numerical analysis is conducted 

to evaluate the absorber's effectiveness in reducing the rotor's torsional vibrations. 

 Fabrication & Experimental Testing 

After parameter adjustment, the steady-state equations obtained via the Method of Multiple Scales 

are solved numerically using the Newton–Raphson method. The torsional response is evaluated for 

various absorber setups. Results are compared with baseline and literature to confirm effectiveness. 

The implementation plan is illustrated as a flowchart in the figure below. 
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Fig. 11. The implementation plan 

6. Conclusion 

This study introduced nonlinear dual dynamic vibration absorber to mitigate torsional vibrations 

in a rotor at resonance frequency. Using the Lagrangian method to derive the governing equations 

and method of multiple scales to solve their nonlinear behavior, the effects of the absorbers' mass 

and distance ratios on torsional vibration amplitude were investigated. The results demonstrated 

that absorbers with equal mass and distance ratios (   1,    1   ) achieve optimal performance, 

reducing the torsional vibration amplitude at resonance from 0.03 radians to 0.5 milliradians. This 

significant reduction is attributed to the effective transfer of vibrational energy from the rotor to 

the absorbers, facilitated by tuning the absorbers' natural frequency to match the system's 

resonance frequency. Additionally, the analysis of damping effects revealed that dampers enhance 

system stability at resonance by dissipating vibrational energy. A comparison between linear and 

nonlinear states confirmed the superior performance of the nonlinear approach, as it better 

addresses the complex dynamic behavior of the rotor. These findings have significant implications 

for industrial applications, as reducing torsional vibrations can extend rotor lifespan and lower 

maintenance costs. Compared to the reference study [8], the proposed absorber in this work 
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exhibits better performance at resonance, owing to its dual nonlinear design and symmetric 

placement on the rotor disc. From a physical perspective, employing absorbers with equal mass 

and distance ratios optimizes the system's moment of inertia and maintains dynamic balance, 

thereby minimizing stresses on the shaft and connected components. For future research, 

experimental validation of the absorber's performance under real-world conditions is 

recommended to assess the impact of factors such as varying rotational speeds or environmental 

conditions. Extending the model to multi-degree-of-freedom systems or applying it to complex 

industrial systems, such as turbines or engines, could broaden its applicability. Furthermore, 

investigating nonlinear damping or variable spring stiffness could enhance the absorber's 

effectiveness. This study, by introducing a novel dual nonlinear absorber design, represents a 

significant step toward improving the stability and efficiency of rotating systems. 
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