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Abstract  

In order to effectively manage tasks in fog-cloud environments, this paper proposes a two-agent 

architecture-based framework. In this framework, a task scheduling agent is responsible for selecting the 

computing execution node and allocating resources, while a separate agent manages the caching of results. 

In each decision cycle, the resource manager first checks whether a valid, fresh result already exists in the 

cache; if so, the cached result is immediately returned. Otherwise, the execution agent evaluates current 

conditions — such as network load, nodes’ computational capacity, and user proximity — and assigns the 

task to the most appropriate node. After task execution completes, an independent storage agent is selected 

to store the results, potentially operating on a node distinct from the execution node. Through extensive 

simulations and comparisons with advanced methods (e.g., A3C-R2N2, DDQN, LR-MMT, and LRR-

MMT), we demonstrate significant improvements in response latency, computational efficiency, and inter-

node communication management. The proposed framework decouples execution scheduling from result 

storage through two distinct agents while implementing history-based caching that tracks both task request 

frequencies and result recency. This design enables effective adaptation to variable workloads and dynamic 

network conditions. The two-agent architecture and history-based caching serve as core innovations that 

optimize resource utilization and enhance system responsiveness. The resulting decoupled, history-based 

strategy delivers scalable, low-latency performance and provides a robust solution for real-time service 

delivery in fog-cloud environments. 

Keywords: Task Scheduling, Result Caching, Reinforcement Learning, Fog-Cloud Environment, 

Advantage Actor-Critic (A2C), Resource Management 

  

 
1 esnaashari@kntu.ac.ir 
2 nataj.solhdar@gmail.com 

mailto:esnaashari@kntu.ac.ir


AUT Journal of Electrical Engineering 
10.22060/eej.2025.24181.5657 

1. Introduction 

The rapid evolution of digital technologies has ushered in an era of unprecedented connectivity and data 

generation. The Internet of Things (IoT) ecosystem, with its myriads of interconnected devices, has become 

a cornerstone of modern technological infrastructure[1]. This proliferation of smart devices and sensors has 

led to an exponential increase in data production and processing demands, challenging traditional 

computing paradigms [2]. Cloud computing, once hailed as the panacea for large-scale data processing, is 

increasingly being complemented by edge and fog computing architectures. These distributed computing 

models aim to address the latency and bandwidth constraints inherent in centralized cloud systems [3]. The 

fog-cloud continuum presents a hierarchical structure where computational resources are strategically 

distributed from the network edge to centralized data centers, offering a more flexible and responsive 

computing environment [4]. However, the heterogeneous and dynamic nature of fog-cloud ecosystems 

introduces complex resource management challenges. The variability in computational capabilities, 

network conditions, and task requirements necessitates sophisticated orchestration mechanisms to ensure 

efficient resource utilization and optimal task execution [5]. 

Existing research in fog-cloud resource management has predominantly focused on task scheduling 

algorithms, aiming to optimize task allocation based on various performance metrics [6]. While these 

approaches have yielded significant improvements in resource utilization and task completion times, they 

often overlook the potential benefits of strategic result caching, particularly for frequent or similar tasks 

[7]. Unlike conventional methods that often combine task execution and caching on the same node, this 

paper introduces a novel approach that decouples these two operations, presenting a more flexible and 

efficient resource management framework. 

A key feature of our system is its ability to execute tasks on suitable nodes while potentially storing the 

results on different, more appropriate node. This decoupling of execution and storage locations, illustrated 

in Fig. 1), offers greater flexibility and can lead to improved resource utilization. For instance, a 

computationally intensive task might be executed in the cloud, but its results could be cached in a fog node 

closer to potential future requesters, thereby reducing latency for subsequent similar requests. 



AUT Journal of Electrical Engineering 
10.22060/eej.2025.24181.5657 

 

Fig. 1: System Architecture with Decoupled Task Execution and Caching. 

Fig. 1) illustrates the high-level architecture of our Task Scheduling and Caching with Advantage Actor-

Critic (TSC-A2C) framework. Incoming tasks first arrive at the Resource Manager (RM), which invokes 

the Execution Agent to select the optimal compute node—based on current CPU/RAM availability, network 

load, and user proximity. Once execution completes, the Caching Agent independently selects a fog node 

for storing the result, taking into account storage capacity, distance to potential future requesters, and task 

freshness. The two decision paths (execute vs. cache) are shown in parallel: the execution path (Task) 

directs tasks to a selected node for processing, and the caching path (Task Result) directs results to a 

possibly different node for storage. This decoupled design enables flexible placement: for example, a heavy 

compute job may run in the cloud (Node C), while its results are cached at a nearby fog node (Node F2) to 

reduce latency for subsequent requests. 

Main contributions of this paper are as follows: 

1. Dual-agent A2C framework. We introduce two Advantage Actor-Critic agents—one for 

execution-node selection, and the other for caching-node selection—allowing flexible, independent 

optimization of scheduling and caching. 

2. History-aware caching (i.e., maintaining statistics on task request frequency and cache freshness 

windows). By tracking task frequency and data-freshness, the proposed method can only cache 

results of frequent tasks, avoiding storage bloat and ensuring freshness. 
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3. Location-informed decisions. We incorporate user-to-node proximity into both execution and 

caching policies, reducing communication latency and network congestion. 

The remainder of this paper is organized as follows. Section 2 reviews related work in fog-cloud resource 

management and caching strategies. Section 3 formalizes our system model and problem statement. Section 

4 describes the TSC-A2C1 method in detail. Section 5 presents simulation settings and comparative results. 

Finally, Section 6 concludes and outlines future directions. 

2. Related WorkThe exponential surge in data generation, primarily driven by the widespread 

deployment of Internet of Things (IoT) devices, has presented significant challenges to traditional 

centralized cloud computing architectures in terms of processing speed, storage capacity, and 

network bandwidth [8]. In response to these limitations, fog computing has emerged as a critical 

architectural paradigm, extending computational and storage capabilities to the network edge, in 

closer geographical proximity to data sources and end-users [8]. The fundamental objective of fog 

computing is to mitigate network latency and facilitate rapid, localized data processing, thereby 

enabling real-time responsiveness for IoT applications [8]. This multi-layered, collaborative 

architecture, encompassing fog and cloud environments, is widely recognized as a promising 

solution for effectively managing the intricate data processing and communication demands of 

modern IoT applications [9]. 

Within these complex and dynamic distributed environments, efficient task scheduling and judicious 

resource management are paramount for operational success. The overarching goal is to ensure that user 

requirements are met within stringent time constraints, even with the inherently limited resources available 

at the network edge [8]. Recent reviews indicate a rapid adoption of Machine Learning (ML) and, more 

specifically, Deep Reinforcement Learning (DRL) techniques, such as Advantage Actor-Critic (A2C) and 

Double Deep Q-Network (DDQN), for various aspects of task scheduling, resource allocation, and caching 

[10]. This shift underscores the necessity for algorithms capable of autonomous, real-time learning and 

adaptation. 

2.1. Novel Approaches in Task Scheduling and Resource Management 

2.1.1.  Deep Reinforcement Learning (DRL) for Adaptive Scheduling 

DRL is increasingly recognized as a powerful paradigm for addressing the complexities of task scheduling 

and resource management in distributed environments, owing to its ability to learn optimal policies through 

iterative interaction with the environment [10]. 

 
1 Task Scheduling and Caching with Advantage Actor-Critic 
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Advantage Actor-Critic (A2C) Approaches: The A2C method, often combined with DRL, is proposed 

for dynamic scheduling in stochastic edge-cloud environments, enabling decentralized learning and 

concurrent task scheduling across multiple servers [10]. A2C is particularly noted for its rapid adaptability 

even with limited data [10]. An A2C-DRL approach for Edge-Cloud involves developing sophisticated 

reward functions and integrating Hypergraph Neural Networks (HGNN) to extract complex features for 

dynamic resource allocation [10]. An improved A2C for Storm Workloads, leveraging Graph Neural 

Networks (GNN) to capture global features of dependent jobs, significantly enhances resource utilization 

and minimizes job completion time [11]. A2C-DRL demonstrates superior performance compared to other 

state-of-the-art algorithms in terms of reward value, task rejection rate, and load balancing factor [10]. 

Double Deep Q-Network (DDQN) Implementations: DDQN models are proposed as robust 

reinforcement learning solutions for complex task scheduling problems in cloud computing [12]. DDQN 

mitigates overestimation bias by employing two distinct neural networks, leading to a more consistent 

learning process [12]. This approach adaptively allocates tasks considering multiple criteria such as job 

priority, resource availability, execution time, and cost in dynamic cloud environments [12]. DDQN 

consistently outperforms conventional scheduling approaches in task success rates [12]. A DDQN-based 

algorithm for operating system scheduling has shown improved task completion efficiency, system 

throughput, and faster response speeds, particularly for I/O-intensive tasks [13]. 

Other Machine Learning and DRL Integrations: Federated Deep Reinforcement Learning (FDRL) is 

utilized for optimizing caching strategies in cloud-edge integrated environments, balancing caching 

efficiency and training energy expenditure [14]. A novel intelligent resource allocation algorithm combines 

Long Short-Term Memory (LSTM) networks for demand prediction with Deep Q-Networks (DQN) for 

dynamic scheduling, enhancing resource utilization by 32.5%, reducing average response time by 43.3%, 

and lowering operational costs by 26.6% [15]. Agile Reinforcement Learning (aRL) is an innovative DRL 

approach for real-time task scheduling in edge computing, incorporating "informed exploration" and "action 

masking" to accelerate policy convergence, achieving higher hit-ratios and faster runtime [16]. 

2.1.2.  Multi-Agent Systems (MAS) for Decentralized Control and Coordination 

Multi-Agent Systems (MAS) are gaining prominence as a robust architectural paradigm for distributed 

computing, offering enhanced modularity, specialized functionalities, improved collaborative learning, and 

more effective decentralized decision-making [17]. Recent developments include integrating Large 

Language Models (LLMs) as agents for task allocation, where a "planner method" (LLM generating a plan 

for other LLM agents) outperforms an "orchestrator method" in handling concurrent actions [17]. Agent-

based frameworks are specifically proposed for fog computing to autonomously manage task scheduling, 



AUT Journal of Electrical Engineering 
10.22060/eej.2025.24181.5657 

load balancing, and rescheduling, reducing reliance on a single central point of control and improving 

system resilience. MAS are well-suited to handle uncertainties and dynamic changes in real-time distributed 

environments [18]. 

2.1.3.  Intelligent Caching Strategies for Enhanced Responsiveness and Resource Utilization 

Caching mechanisms are fundamental to enhancing fog network performance by improving latency and 

reducing energy consumption [8]. Recent developments demonstrate a progression from static data 

placement to dynamic and predictive approaches. Reinforcement Learning (RL) is increasingly applied to 

intelligent caching, with Q-learning being used to discover optimal caching policies in a distributed manner, 

enabling fog access points to adapt to dynamic content popularity without additional communication 

overhead [19]. A cutting-edge development involves a novel dynamic federated optimization strategy that 

utilizes Federated Deep Reinforcement Learning (FDRL) for optimized caching in cloud-edge integrated 

environments, balancing caching efficiency and training energy expenditure [14]. Beyond reactive caching, 

predictive caching is gaining traction, involving forecasting workload resource consumption to enable more 

accurate scheduling and resource management [20]. 

2.1.4.  State-of-the-Art in Load Balancing for Multi-Layered Architectures 

Load balancing is an indispensable mechanism in multi-layered distributed computing architectures, 

including Mist-Fog-Cloud environments. Its primary function is to uniformly distribute workloads across 

available fog and cloud layers, minimizing latency, optimizing power consumption, and ensuring efficient 

resource utilization. Load balancing algorithms are categorized into traditional (e.g., FCFS, SJF, Round 

Robin), heuristic (e.g., Max-Min, Min-Min, Throttled Algorithm), metaheuristic (e.g., Genetic Algorithm, 

Ant Colony Optimization), hybrid, hyper-heuristic, and Machine Learning (ML)-based algorithms. 

ML/DL-based algorithms are increasingly effective for predicting unforeseen or future resource 

requirements in dynamic environments, particularly for managing large and unpredictable IoT requests. 

The overall architecture is often conceptualized as a four-layered hierarchy: IoT-Mist-Fog-Cloud, with load 

balancing mechanisms operating across these layers for seamless operation [21]. 

Traditional and heuristic algorithms, while widely used, exhibit significant limitations in dynamic Mist-

Fog-Cloud environments, often leading to inefficiencies or suboptimal resource allocation. Metaheuristic 

algorithms offer broader applicability but can be computationally intensive. Hybrid algorithms combine 

strengths to address individual limitations. ML-based algorithms, including DRL, are highly promising due 

to their ability to learn directly from raw data and adapt to unpredictable workloads in real-time, though 

challenges in computational intensity and accuracy persist [21]. 
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Statistical techniques like LR-MMT1[22], LRR-MMT2[23], and MAD-MC3 [24] offer methods for dynamic 

task scheduling and congestion management, but machine learning, particularly DRL (DDQN, A3C) [25-

28], provides more adaptable solutions for complex and dynamic environments. DDQN [25-27] adapts to 

new contexts without manual reconfiguration, while A3C with R2N2 [28] integrates policy gradients with 

recurrent neural networks to handle temporal dynamics. These DRL methods show promise for managing 

tasks in fog and cloud infrastructures, especially in stochastic settings requiring rapid adaptation. 

Table 1: Comparative Analysis of Proposed Method (TSC-A2C) with Recent Advancements 

Feature/Aspect Recent Advancements  Key Contributions/Research Gaps Addressed by TSC-

A2C 

Core Architecture Trend towards DRL for adaptive 

scheduling [10] and Multi-Agent Systems 

for decentralized control [17]. 

Explicit decoupling of execution and storage via 

dedicated agents enhances modularity and specialized 

control, offering a clear architectural distinction. 

Scheduling 

Mechanism 

Advanced DRL methods (A2C [10], 

DDQN [12], LSTM+DQN [15]) for 

dynamic and multi-objective scheduling, 

often integrating GNNs for complex 

feature extraction [11]. 

Leverages A2C for real-time adaptability, aligning with 

recent DRL trends, but within a specific two-agent 

framework that could offer distinct benefits in 

coordination. 

Caching Strategy Evolution to intelligent, dynamic, and 

predictive caching, often using RL (Q-

learning [19], Federated DRL [14]) to 

adapt to content popularity and minimize 

energy [14]. 

Integrates history-based caching as a core component, 

managed by a dedicated agent, directly addressing 

result reusability and efficiency. This specialized agent 

can optimize caching decisions independently. 

Resource 

Management & 

Optimization 

Objectives 

Strong trend towards multi-objective 

optimization (makespan, cost, energy, 

latency, resource utilization, load 

balancing) often achieved via DRL [8]. 

Aligns with multi-objective optimization trends, with a 

strong emphasis on real-time adaptability and 

robustness in dynamic environments, facilitated by the 

two-agent structure. 

Uncertainty & 

Dynamism Handling 

DRL and MAS are specifically designed 

to manage unpredictable and fluctuating 

workloads, uncertain events, and 

heterogeneous resources[18]. 

The two-agent architecture and history-based caching 

contribute to this adaptability by providing specialized 

and responsive mechanisms for handling dynamic 

changes. 

 

3. System Model and Problem Formulation 

In this Section, we will delineate the system model and explicitly articulate the problem at hand. 

3.1. System Model and Problem Statement 

 
1 Local Regression-Minimum Migration Time 
2 Local Robust Regression-Minimum Migration Time 
3 Median Absolute Deviation-Maximum Correlation 
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In the present study, the system model, illustrated in Fig. 2), integrates both fog and cloud infrastructures 

alongside user and device components. The resource management system, accountable for orchestrating 

user tasks and directing them to fog and cloud nodes, is situated within the fog infrastructure. This is 

conceptualized as a singular managerial entity overseeing all accessible resources. For the sake of clarity, 

and as depicted in Fig. 2), the cloud and fog infrastructures are collectively termed the computing layer in 

this framework. 

 

Fig. 2: System Model 

Fig. 2) depicts the detailed system model, showing the hierarchy from end users through fog and cloud 

layers. Each end user node (U₁…Uₖ) issues tasks to the fog layer, where a single RM coordinates two agents. 

The fog layer comprises heterogeneous fog nodes (F₁…Fₙ) with varying CPU, memory, and storage 

capacities, connected in a mesh topology. The cloud datacenter sits above the fog layer and is used when 

fog resources are insufficient or task deadlines demand higher compute power. Solid lines indicate task 

submission and result dispatch paths, while dashed lines show inter-node communication for caching and 

neighbor discovery. This diagram highlights how the RM maintains up-to-date information on node 

capacities, neighbor sets, and cache contents to inform both execution and caching decisions. 

The computational layer in fog computing comprises heterogeneous resources with diverse processing 

capabilities, memory, and storage, where fog nodes, though less computationally powerful than cloud 

resources, offer reduced latency due to their proximity to users. The resource management (RM) system is 

responsible for receiving tasks, determining if they are novel or can be served from cache, allocating new 

tasks to suitable resources based on CPU, RAM, disk requirements, and completion time, and deciding 

whether to cache task results. Despite this comprehensive architecture, a key challenge remains: how to 

jointly decide, for each incoming task, both its execution destination (fog or cloud) and the fog node at 
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which to cache its result so as to balance end-to-end latency, resource cost, and cache freshness. These 

decisions must be made online, at each discrete scheduling cycle, based on dynamic observations of 

network load, node capacity, and task characteristics. In the next subsection, we formalize this joint 

scheduling–caching problem as an optimization over decision variables representing execution and caching 

assignments, subject to Service Level Agreement (SLA) deadlines and storage constraints. 

3.2. Formal definition of the problem 

The primary goal of the RM system is to minimize overall latency and resource utilization while 

maximizing the number of processed tasks, operating in discrete time cycles with scheduling performed at 

the end of each cycle after tasks are queued Fig. 3). 

 

Fig. 3: Task state in queue 

Fig. 3): Task lifecycle within a scheduling cycle. Tasks submitted by users enter the RM’s queue, where 

they await processing. The RM first checks for a valid cached result. If absent or stale, the RM invokes the 

Execution Agent to select a processing node. Once execution completes, tasks identified as “Frequent” 

trigger the Caching Agent to choose a storage node for the result. The symbols employed by the suggested 

approach are presented in below definitions: 

Definition 1 (Task Set): Let T = {t₁, t₂, ..., t|T|} denote the set of tasks submitted to the Resource Manager 

(RM). Each tᵢ ∈ T is the i-th task arriving within a given scheduling cycle, carrying its own resource 

requirements and timing constraints. 

Definition 2 (User Set): Let U = {u₁, u₂, ..., u|U|} denote the set of end users who submit tasks. Each user 

uₖ ∈ U issues tasks from the user layer and expects results by a specified deadline. We assign each uₖ a fixed 

2D location loc(uₖ) = [xuₖ, yuₖ] for proximity calculations.   

Definition 3 (Task Submitter Ensemble): For each task tᵢ, let 𝒰(tᵢ) ⊆ U be the set of users who issue 

identical copies of tᵢ within the same cycle, causing overlapping requests. 
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Definition 4 (Task Frequency): Define the frequency f(tᵢ) of task tᵢ as the number of times tᵢ has been 

submitted up to the current time. Formally, f(tᵢ) = |{tⱼ ∈ T | tⱼ ≡ tᵢ}|. 

Definition 5 (Frequent Task Set): Let Ψ be a predefined repetition threshold. The set of frequent tasks is 

F = {tᵢ ∈ T | f(tᵢ) ≥ Ψ}. Only tasks in F are considered for caching. 

Definition 6 (Data Validity Window): For each tᵢ, let w(tᵢ) be the time duration during which its cached 

result remains valid. After w(tᵢ) elapses, the result must be recomputed to ensure freshness. 

Definition 7 (Task Priority): Each task tᵢ has a priority level p(tᵢ) ∈ ℝ⁺ that influences scheduling order; 

higher p(tᵢ) means more urgent processing. 

Definition 8 (Completion Deadline): Each task tᵢ must finish by time dl(tᵢ). If execution on any node 

exceeds dl(tᵢ), an SLA violation occurs. 

Definition 9 (Execution Resource Profile): For each tᵢ, its execution resource requirements are given by 

the tuple rexec(tᵢ) = (mᵢ, cᵢ, sᵢ), where mᵢ is memory, cᵢ is CPU power, and sᵢ is storage needed for processing. 

Definition 10 (Storage Requirement Profile): For each periodic task tᵢ ∈ F, its result storage requirement 

is rcach(tᵢ) = sᵢ', the disk space needed to cache its output for future reuse. 

Definition 11 (Fog Node Set): Let N = {n₁, n₂, ..., n|N|} be the set of all fog nodes. Each nⱼ can play one or 

both roles: Processing node (nⱼ ∈ Nproc) for executing tasks, Caching node (nⱼ ∈ Ncache) for storing results. 

Definition 12 (Fog Processing Node): A fog processing node, called fpnj, is one of the fog environments 

that actually runs the incoming tasks. It has enough CPU and memory to handle the task t i, and it decides 

which tasks to run and in what order based on how urgent they are and any service‐level deadlines. 

Definition 13 (Fog Caching Node): A fog caching node, called fcnj, is one of the fog environments that 

stores the results of frequent tasks. It has disk space set aside to keep these results fresh for a certain time 

window, and it picks which results to keep so future similar requests can be served faster. 

Definition 14 (Node Capacity): Each fog node nⱼ has capacity Cap(nⱼ) = (Mⱼ, Cⱼ, Sⱼ), denoting its available 

memory Mⱼ, CPU power Cⱼ, and storage Sⱼ for that cycle. 

Definition 15 (Node Neighborhood): For each nⱼ, let 𝒩(nⱼ) ⊆ N denote its directly connected neighbor 

nodes, forming a collaborative mesh for offloading and caching. 

Definition 16 (Active & Scheduled Tasks at Node): At node nⱼ, let ASTⱼ = {tᵢ ∈ T | tᵢ is executing or queued 

for execution on nⱼ} represent its current workload. 
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Definition 17 (Cached & Future-Cache Tasks at Node): At node nⱼ, let CFTⱼ = {tᵢ ∈ F | tᵢ’s result is cached 

or scheduled to be cached on nⱼ} capture its caching assignments. 

Definition 18 (User-to-Node Proximity): The distance between user u  kand node nⱼ is d(uₖ, nⱼ) = ||loc(uₖ) − 

loc(nⱼ)||, used to factor latency into scheduling and caching decisions. 

Definition 19 (Submission Delay): δsub(tᵢ, nⱼ) is the time from when tᵢ leaves its submitter to when it arrives 

at nⱼ for execution or caching. 

Definition 20 (Processing Duration): δproc(tᵢ, nⱼ) is the wall-clock time for nⱼ to execute tᵢ from start to 

finish. 

Definition 21 (Result Dispatch Time): δdisp(uₖ, nⱼ) is the time for node nⱼ to send the completed result of tᵢ 

back to user u .k 

Definition 22 (Total Execution Time): For task tᵢ on node nⱼ, CTET(tᵢ, nⱼ) = δsub + δproc + δdisp, the end-to-

end latency experienced by the user. 

Definition 23 (Execution Cost): EC(tᵢ, nⱼ) measures the CPU and memory consumption cost for executing 

tᵢ on nⱼ over its processing duration. 

Definition 24 (Storage Cost): SC(tᵢ, nⱼ) is the cost of occupying nⱼ’s storage to cache tᵢ’s result for future 

requests. 

Definition 25 (The Maximum Allowable SLA Violation): Denoted as 𝑉𝑠𝑙𝑎, indicates the percentage of 

tasks that are accepted to be completed after their deadline. In fog-cloud environments, SLA violations 

indicate an inability to meet Quality of Service (QoS) requirements, such as response time or processing 

time. The parameter 𝑉𝑠𝑙𝑎 allows the designer to specify an acceptable level of SLA violation, enabling fewer 

fog nodes while still maintaining system efficiency. In other words, if a limited SLA violation is tolerable, 

fewer resources may be utilized, lowering system costs. This variable thus provides an option for balancing 

precision and efficiency, and by setting an appropriate 𝑉𝑠𝑙𝑎 value, the designer can adjust the number of fog 

nodes to meet SLA requirements.  

The symbols employed by the suggested approach are presented in Table 2). 

Table 2: Symbols 

# Term Description 

1 ti 
In the task set, ti represents the i-th task that have been assigned to the Resource Manager (RM) 

by a user at during a specific timeframe. 
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2 uek 

The User Ensemble (uek) consists of individual user each submitting tasks with the expectation 

of receiving outputs within a specific timeframe, represented by their unique spatial 

coordinates. 

3 utsi 
Task Submitter (utsi) represent multiple users who send identical tasks ti  within a given time 

frame, leading to overlapping task requests. 

4 tfi 
Task Frequency (tfi) represent the rate at which a particular task ti is repeated within until now, 

indicating the periodic nature of the task. 

5 pti 
The Periodic Task (pti) is a task that surpass a defined repetition count ψ, highlighting tasks 

that frequently recur over time. 

6 dvi 
The Data Validity (dvi) Window represent the duration for which the cached results of tasks 

are considered valid before reprocessing becomes necessary. 

7 tpi 
Task Priority (tpi) indicates the priority of tasks ti, representing their importance relative to 

other tasks in the system, thus influencing scheduling decisions. 

8 tcdi 
The Task Completion Deadline (tcdi) represent the strict time frame within which a task ti must 

be completed to meet system performance criteria. 

9 eri 
The Execution Resource (eri) Profile outlines the specific resource requirements for task 

execution, including memory mi, CPU power ci, and storage si . 

10 srri 

The Storage Requirement for Results (srr) represent the storage needed to store the output of 

Periodic Task tasks pti , ensuring future reuse of cached results. 

11 NoF 
The Node of Fog (NoF) consists of set of nodes that serve dual purposes: processing tasks (Fog 

Processing Nodes, fpn) and, when necessary, also store results (Fog Caching Nodes, fcn). 

12 fpnj 

The Fog Processing Node (fpn) represent the fog of node responsible for executing tasks within 

the fog environment. 

13 fcnj 

The Fog Caching Node (fcn) represent the fog of node responsible for managing result caching 

tasks within the fog environment.  

14 ncj 
Node Capacity (ncj) Metrics represent the available memory Mj, CPU cycles Cj, and storage Sj 

at each fog node for accommodating tasks. 

15 nnj 
The Node Neighboring (nnj) comprises neighboring fog nodes that is interconnected, creating 

a collaborative processing and caching framework. 

16 ASTj 
Active and Scheduled Tasks (ASTj) represent the ongoing Active Tasks and upcoming 

Scheduled Tasks assigned to fog node fpnj for processing.  

17 CFTj 
Cached and Future Cache Tasks (CFTj) include tasks whose results are either currently cached 

CTj or scheduled to be stored SCTj for later retrieval at a fog node fcnj. 

18 UN (uek, fpnj/fcnj) 
User-to-Node (UN) Proximity calculates the geographical distance between the task-requesting 

user uek and the fog node fpnj or fcnj tasked with processing or caching it. 

19 Δ (ti, fpnj/fcnj) 
Task Submission delay (Δ (ti, fpnj/fcnj)) defines the time delay experienced between task (ti) 

submission and its reception at the designated fog node (fpnj/fcnj) for execution or caching. 
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20 PD(ti , fpnj) 
The Processing Duration (PD(ti , fpnj)) is the total time taken for a fog node fpnj to fully execute 

a task ti from the moment it starts processing. 

21 RDT(uek, fpnj/fcnj) 
Result Dispatch Time (RDT) specifies the time required for a fog node to transmit processed 

results back to the task-requesting user uek. 

22 CTET(ti , fpnj) 

The Comprehensive Task Execution Time (CTET) is the sum of the task submission delay, 

processing duration, and result dispatch time, reflecting the total time from task ti submission 

to final result delivery. 

23 EC(ti , fpnj) 
Execution Cost (EC) refers to the resources consumed during task ti processing, measured by 

the CPU and memory usage over the duration of execution. 

24 SC(ti , fcnj) 
Storage Cost (SC) is the expense incurred by occupying fog node fpn j storage space to cache 

results for future use. 

25 𝑉𝑠𝑙𝑎 
indicates the percentage of tasks that are accepted to be completed after their 

deadline. 

 

A task 𝑡𝑖
  refers to a task submitted to the Resource Management (RM) node prior to its execution. If 𝑡𝑖

  is 

identified as a Frequent Task (tᵢ ∈ F) name it as 𝑓𝑡𝑖, the RM must not only schedule it for execution but also 

determine a suitable node for caching its results. Considering the previously defined terms and notations, 

the problem can be formulated as follows: Design an efficient Resource Manager (RM) capable of 

identifying an optimal node for executing 𝑡𝑖
  and, in the case of Frequent Tasks (fti), selecting an appropriate 

node for result caching, thereby ensuring both effective scheduling and efficient storage management. 

For task 𝑡𝑖
  : 

• ( , )i j

j i

EC t fpn is minimized and 

• ( , )i j

j i

CTET t fpn  is minimized and  

• ( , )k jd u fpn is minimized  

subject to the scheduling-related criteria: 

;
i k

i fpn j

t fpn k

t AST

c C fpn


   
(1) 

;
i k

i fpn j

t fpn j

t AST

m M fpn


   
(2) 
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( , ) ( ); ,
ji k i i fpn jCTET t fpn w t t AST fpn      (3) 

The first two criteria state that each node fpnj has to have enough processing and memory capacity for 

running all its scheduled tasks. The third criterion indicates that task completion times for all scheduled 

tasks on all fog nods have to be sooner than their deadlines. 

if the task is a frequent task (name it as 𝑓𝑡𝑖) then: 

•   ( , )
k fti

k j

u U

d u fcn


  is minimized and 

• ( )
iftN n  is maximized 

subject to the Result caching-related criteria:  

'

( ) ;
i j

i fcn j

cach t fcn j

ft CFT

r S fcn


   (4) 

The last criterion states that each node fcnj has to have enough storage capacity for caching the results of 

all frequent tasks that are scheduled to be cached on it. 

4.  The Proposed Method: TSC-A2C 

This section elaborates on the proposed Task Scheduling and Caching with Advantage Actor-Critic (TSC-

A2C) framework. We begin with an overview of the method, followed by a detailed description of its 

architecture and the core reinforcement learning formulation. Finally, the operational flow of the system is 

presented. The TSC-A2C method is designed to dynamically manage resources in fog-cloud environments 

by intelligently scheduling tasks for execution and strategically caching their results, particularly for 

frequently occurring tasks. 

4.1.  Overview of the TSC-A2C Framework 

The TSC-A2C framework leverages reinforcement learning (RL) to address the complexities of dynamic 

task scheduling and result caching in heterogeneous fog-cloud environments. At its core, the system 

employs a Resource Manager (RM) that orchestrates task processing. Recognizing the distinct nature of 

task execution and result caching, particularly the benefits of decoupling these decisions, TSC-A2C utilizes 

a dual-agent learning approach based on the Advantage Actor-Critic (A2C) algorithm. This choice is 

motivated by A2C's balance of sample efficiency and stability in complex decision-making spaces. 
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For every incoming task, the RM, guided by its RL agents, makes decisions to optimize performance metrics 

such as execution time, operational cost, and resource utilization. A key feature is the specialized handling 

of "Frequent Tasks," where results are considered for caching to minimize redundant computations and 

improve response times for subsequent identical requests. 

4.2. TSC-A2C Framework Architecture 

The architecture of TSC-A2C is designed around a central Resource Manager and two specialized A2C 

agents, as depicted conceptually in the overall system model (refer to Figure (2) for the broader system 

context and Figure (1) for the decoupled execution/caching concept). 

4.2.1. Resource Manager (RM) 

    The RM serves as the primary coordination entity within the fog layer. It receives all incoming user tasks, 

maintains the task queue, and initiates the decision-making process by invoking the appropriate RL agents. 

The RM is responsible for the overall management of the task lifecycle, from arrival to completion and 

potential caching of results. 

4.2.2. Dual-Agent A2C System 

    To effectively manage the distinct yet related problems of task execution and result caching, TSC-A2C 

employs two concurrent A2C agents: 

    Execution Agent (Ap): This agent is responsible for selecting the optimal node for executing an incoming 

task ti. The selection considers factors such as node processing capabilities, current load, and proximity to 

the user to minimize execution time and cost. This agent is invoked for all tasks requiring execution. 

    Caching Agent (Ac): This agent is activated specifically for tasks identified as "Frequent Tasks" (fti). Its 

role is to choose a suitable fog node for caching the results of fti. The caching node can be different from 

the execution node, allowing for optimized storage placement based on factors like user distribution for the 

cached result and storage availability. 

4.2.3. Cache Communication Protocol 

To facilitate efficient interaction with the distributed cache memory across fog nodes, our framework 

employs a lightweight, microservice-based communication model. Each fog node hosts a dedicated caching 

service that exposes a simple Remote Procedure Call (RPC) interface over TCP/IP, which can be 

implemented using technologies like gRPC or RESTful HTTP. When the Caching Agent selects a node for 

storage, or when the Resource Manager performs a cache check, the RM issues an RPC 'store' or 'lookup' 
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request to the selected node's caching endpoint, transmitting the task identifier and relevant result payload. 

Nodes then respond with acknowledgments or the requested cached data. This middleware layer effectively 

decouples the network communication specifics from the core scheduling logic, ensuring interoperability 

across heterogeneous platforms while introducing minimal overhead, typically in the sub-millisecond range 

per RPC call. In our iFogSim simulations, this interaction is abstracted by direct method calls, but the 

described RPC design is readily implementable in real-world deployments. 

4.3. Reinforcement Learning Formulation 

The core intelligence of TSC-A2C lies in its RL formulation, where agents learn optimal policies through 

interaction with the fog-cloud environment. The standard components of this RL formulation are detailed 

below. The RM serves as the primary coordination entity within the fog layer. It receives all incoming user 

tasks, maintains the task queue, and initiates the decision-making process by invoking the appropriate RL 

agents. To ensure real-time awareness of the dynamic environment, the RM maintains an in-memory 

registry that is continuously updated. This registry includes a lookup table detailing which fog nodes 

currently hold cached results for frequent tasks, alongside their freshness status. Furthermore, each fog node 

periodically sends heartbeat updates containing its latest resource availability (CPU, memory, and storage) 

to the RM via the established RPC interface (as detailed in Section 4.2.3). These dynamic updates enable 

the RM to always reflect real-time capacities rather than static snapshots, crucial for informed execution 

and caching decisions. 

4.3.1. State Representation 

    Effective learning requires a comprehensive representation of the environment's state. The state observed 

by each agent is tailored to its specific decision-making context: 

    Processing Environment State (PS) for Agent Ap: At the time of scheduling task ti, the state ( , )PS i fp is 

defined as a tuple: ( , ) ( _ , _ )i iPS i fp task desc node states= . 

        desci
task is a 5-tuple representing the current task : ( ), ( ), , ,i i i i i it p t w t m c s  , corresponding to its 

priority, data validity window, and resource requirements (memory, CPU, storage) as defined in Section 

3.2. 

        
( )1, 2, ,

, ,...,
istates i i NoF i

node fpn fpn fpn=   represents the current state of all |N| fog nodes. The state 

of a given fog processing node fpni,jis a 4-tuple: , , , ,, , ,i j i j i j i jM C AST EC , denoting its available 
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memory, available CPU, number of active/scheduled tasks, and current execution cost metrics, respectively, 

at task i for node j. 

    Caching Environment State (CS) for Agent Ac: When considering a frequent task fti for caching, the state 

CS(i, fc) is defined as a tuple: ( , ) ( , )
desc statesi i

task nodeCS i fc cache cache= . 

        
desci

taskcache represents the storage requirement s'i (defined as rcach(tᵢ) in Definition 10) for the result of 

fti. 

        
( )1, 2, ,

, ,...,
statesi

node i i N i
cache fcn fcn fcn=   represents the current state of all |N| fog nodes relevant 

for caching. The state of a given fog caching node fpni,jis a 4-tuple: , , ,, , , ( )i j i j i j jS CFT SC N n  , 

denoting its available storage, number of cached/future-cache tasks, current storage cost metrics, and the 

number of its neighbors, respectively, at time i for node j. 

4.3.2. Action Space 

    The action space defines the set of possible decisions each agent can make: 

    Action Space for Agent Ap: The action p pa A for agent Ap is the selection of a processing node from 

the set of all available fog nodes Nproc and the cloud resource. Thus,  p procA N Cloud=  . 

    Action Space for Agent Ac: The action c ca A  for agent Ac is the selection of a caching node from the 

set of available fog caching nodes Ncache. Thus, c cacheA N= . 

4.3.3. Actor-Critic Model Design 

    Both Ap and Ac agents employ an A2C architecture, each consisting of an actor network and a critic 

network. 

    Actor Network: The actor network learns the policy, i.e., a mapping from state to a probability distribution 

over actions. 

         For Agent Ap (processing), the input layer size is 5 + 4 × |N|, corresponding to the 5 task status features 

and 4 features per fog node. 

         For Agent Ac (caching), the input layer size is 1 + 4 × |N|, corresponding to the 1 frequent task storage 

feature and 4 features per fog node. 
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         Both actor networks utilize a normalization layer followed by two hidden layers with 64 and 32 

neurons, respectively, using the ReLU activation function. 

         The output layer is a softmax layer with a neuron count equal to the number of possible actions (nodes 

for execution or caching), representing the probability distribution for selecting each node. 

    Critic Network: The critic network evaluates the state-value function V(s), estimating the expected return 

from a given state. 

        Separate critic networks are implemented for task execution and caching. Each critic receives the 

relevant environmental state (PS or CS) and the probability distribution from its corresponding actor 

network as input. 

        The critic network architecture includes two hidden layers with 64 and 32 neurons (ReLU activation), 

an additional hidden layer with 16 neurons, and an output layer yielding a scalar value for V(s). We chose 

ReLU for both actor and critic networks because it is widely recognized for its computational efficiency 

and robustness against vanishing gradients in deep reinforcement learning applications. It yields sparse 

activations and faster convergence compared to sigmoid or tanh functions [29]. Our A2C agents use two 

fully connected hidden layers (64 and 32 neurons), which aligns with typical configurations found in 

standard A2C implementations in the literature (e.g. 2×32 settings for actor and critic in educational and 

domain-specific RL examples) [30]. This configuration strikes a balance between representation capacity 

and inference speed, especially important in fog-node deployment. Preliminary empirical tuning indicated 

that increasing beyond 64 neurons per layer marginally improved performance at the cost of longer 

inference latency, while smaller networks underperformed in scheduling quality. 

    Action Selection: Actions are selected using an ε-greedy strategy based on the probability distribution 

output by the actor network to balance exploration and exploitation. 

4.4. Reward Computing 

Let the probability distribution given by the softmax layer to be represented by ( ( , ))pa PS i f  or 

( ( , ))ca CS i f , where θ is the parameters of the actor network. Then the action selection mechanism 

would be carried out using an ϵ-greedy method given by equation (5, 6). 

arg max ( ( , ))

p

i

a p

randomaction
a

a PS i f


= 


       
;

;

if rand

otherwise


 

 

(5) 
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arg max ( ( , ))

c

i

a c

randomaction
a

a CS i f


= 


 
;

;

if rand

otherwise


 

(6) 

 

If the node selected by 
p

ia  lacks sufficient resources to execute the task 
it , or if the node selected by 

c

ia  

cannot store the processed results of 
ipt , the corresponding action is penalized (details on the 

rewarding/penalizing process is given in the subsequent sections). A new action is then chosen using the 

respective equation (5 or 6), excluding the previously selected node from the available options. This 

iterative process ensures efficient and adaptive decision-making for both task execution and caching in 

dynamic fog environments. 

The reward signal for Ap in the cycle is computed according to the equation (7) given below. 

(( , )* (( , )

0
( )

j

i j i j

nnp

CTET t fpn EC t fpn

R A


= 


  
; The task is not executed on time  

; Otherwise 
)7( 

In the above equation,
j

nn , EC , CTET ,and D are all normalized values computed according to the equations 

(6) to (11) as given below. That is to say, if the task jfpt cannot be executed on time, the reward would be 

0. Otherwise, the reward would be computed in such a way that a node with higher number of neighbours 

(|𝑛𝑛j|), less execution time (𝐶𝑇𝐸𝑇), less execution cost (EC), and less distance with the requesters of jfpt

receives higher values as the reward. 

max

j

j

nn
nn

nn
=    (8) 

where 𝑛𝑛𝑚𝑎𝑥 is the maximum number of neighbors in the fog layer 

𝑪𝑻̃𝑬𝑻 (𝒕𝒊
 , 𝒇𝒑𝒏

𝒋
) =

 𝑪𝑻𝑬𝑻(𝒕𝒊
 
,𝒇𝒑𝒏𝒋

)

𝑪𝑻𝑬𝑻𝒎𝒂𝒙    
)9( 

where 
maxCTET  is the maximum value for the CTET 

max

( , )
( , )

i j

i j

total

CTET t fpn
CTET t fpn

CTET
=    (10) 

where 
max

totalCTET  is the maximum possible value for the total cost of executing  
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That is to say, if the task 𝑡𝑖
  cannot be executed on time, the reward would be 0. Otherwise, the reward would 

be computed in such a way that a node with less execution time (CTET) and less execution cost receives 

higher values as the reward.  

The reward signal for Ac in the cycle is computed according to the equation (11) given below. 

1

( , )* ( , )

0
( )

i j i j

c

SC t fcn D t fcn

R A


= 


         
; The task is not cached in node  

 

; Otherwise 

(11) 

max

( , )
( , )

i j

i j

total

SC t fcn
SC t fcn

SC
=    (12) 

where 
max

totalSC is the maximum possible value for the total cost of caching  

( , )

( )
max( ( , ))

k pti

k pti

k j

ue uts

j

k j

ue uts

UN ue fcn

D fcn
UN ue fcn





=




   (13) 

where max( ( , ))
k pti

k j

ue uts

UN ue fcn


  is the maximum of distance 

That is to say, if the task ipt cannot be cached in fog fcnj, the reward would be 0. Otherwise, the reward 

would be computed in such a way that a node with less distance to users requesting similar tasks (UN) and 

less caching cost receives higher values as the reward. 

4.5. Operational Flow of TSC-A2C 

The proposed TSC-A2C method operates in cycles, processing tasks from a queue managed by the RM. 

The overall process is visually depicted in Fig. 4) and can be summarized as follows: 

1.  Task Arrival and Queuing: New tasks arrive and are placed in the task queue. 

2.  Cache Check: For each task dequeued by the RM, it first checks if a fresh, valid result for this task 

already exists in the cache of any fog node. 

    If a valid cached result is found ("Yes" path from "Is this task cached?" and "Does it have acceptable 

freshness?" in Fig. 4)): The RM retrieves the result and returns it to the user, bypassing execution. The 

process then moves to the next task. 
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3. Handling Cache Misses due to Node Unavailability: If a fog node that previously cached a result becomes 

unavailable (e.g., due to a failure), it will not respond to the RM's cache lookup request. In such instances, 

the Resource Manager (RM) treats the task as a cache miss. Consequently, the RM invokes the Execution 

Agent to re-execute the task on an available fog node or in the cloud. Following successful re-execution, 

the standard caching policy is applied to store the new result on the best candidate node, ensuring future 

requests for this frequent task can be served efficiently. This approach maintains system functionality even 

when cached data sources are temporarily inaccessible. 

4.  Execution Path (No Valid Cache): If no valid cached result exists ("No" path from cache checks in Fig. 

4)), the task must be executed. 

    Execution Node Selection (Agent Ap): The RM provides the current Processing Environment State (PS) 

to Agent Ap. Agent Ap's actor network outputs a probability distribution over suitable execution nodes (fog 

nodes or cloud). The agent selects an execution node based on this distribution (e.g., highest probability or 

ε-greedy exploration). This corresponds to "The RL agent is used for scheduling..." block in Fig. 4). 

    The system verifies if the selected node is appropriate (e.g., has resources). If not, another node is 

selected. 

5.  Caching Decision and Node Selection (Agent Ac - For Frequent Tasks): 

    The system determines if the current task needs to be cached (i.e., if it's a "Frequent Task" and meets 

caching criteria – "Is this task need to be cached?" in Fig. 4)). 

    If the task is deemed a Frequent Task ("Yes" path): 

        The RM provides the current Caching Environment State (CS) to Agent Ac. Agent Ac's actor network 

outputs a probability distribution over suitable fog nodes for caching. The agent selects a caching node. 

This corresponds to "Choose the highest probability..." block for caching in Fig. 4). 

        The system verifies if the selected caching node is appropriate. 

6.  Task Execution and Result Caching: 

    * The task is executed on the node selected by Agent Ap. 

    * If Agent Ac selects a node for caching, the results of the frequent task are cached on the designated 

node after execution. Note that the execution node and caching node can be different. 

7.  Cycle Repetition: The RM processes the next task in the queue, and the cycle repeats. 
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This dual-agent, RL-driven approach, considering factors like node resources, geographical location, task 

frequency, execution costs, and caching benefits, aims to dynamically adapt scheduling and caching plans 

each cycle. The goal is to minimize latency, reduce processing and storage costs, and maximize overall 

resource utilization in the fog-cloud continuum. 

 

 

Fig. 4: The process of sending a task until receiving a result 

4.6.  Applicability to Mobile Users and Dynamic Topologies 

Fog–cloud environments frequently involve mobile end devices and dynamic networking topologies, 

where fog nodes may join, leave, or change their neighbor relationships at runtime. Our TSC-A2C 

framework naturally extends to such settings as follows: 

• Dynamic User Proximity: Since both the execution agent and caching agent include user-to-node 

distance in their state representations (Definition 18), updating a user’s 2D location loc(uₖ) at 
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each scheduling cycle automatically informs the agents of mobility. As users move, the policy 

will adapt by favoring fog nodes that are currently nearest, thus maintaining low end-to-end 

latency. 

• Topology Adaptation: The neighbor set 𝒩(nⱼ) for each fog node can be updated in real time (e.g., 

via heartbeat or discovery protocols). At the start of each cycle, the RM reconstructs the 

adjacency information and passes the updated neighbor counts to the caching agent’s state (the 

fourth feature of each node’s 4-tuple in Section 4). Consequently, the caching agent learns to 

select nodes based on both current storage metrics and their dynamic connectivity. 

• Online Fine-Tuning: For highly dynamic scenarios, the pre-trained A2C agents can be 

periodically fine-tuned online using recent observations, ensuring that both execution and caching 

policies remain effective even as node availability and link qualities fluctuate. 

This discussion demonstrates that TSC-A2C’s decoupled, state-driven design readily accommodates 

mobile users and changing fog–cloud topologies without structural modifications to the core algorithm. 

5. Evaluation 

In this section, we first present a brief description of the dataset, the utilized simulator, and evaluation 

criteria. Next, we provide a detailed analysis of the comparative results between the TSC-A2C and a number 

of baseline algorithms, as well as other state-of-the-art algorithms such as the A3C-R2N2 [28], DDQN [25], 

LR-MMT and LRR-MMT [24] methods. 

5.1. The Dataset 

For simulating input tasks, we have used the Bitbrain dataset [31], which is an publicly available derived 

from real-world scenarios. It contains 181,335 tasks with heterogeneous characteristics such as varying 

CPU (MIPS), memory, and I/O requirements which are fed into the Bitbrain's infrastructure during three 

weeks. For each task, the following information are available in this dataset: CPU utilization in terms of 

MIPS, RAM, and disk (read/write) characteristics.  

5.2. The Simulator 

In order to be able to evaluate the efficacy of the TSC-A2C, we have utilized the iFogSim simulator [32], 

which is constructed upon the foundation of CloudSim [33]. iFogSim has been chosen due to its provision 

of valuable APIs pertinent to resource management within the Fog. We have modified the iFogSim so as to 

encompass a location parameter both for users and Fog nodes. 
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The infrastructure examined in this investigation is characterized as a heterogeneous cloud-fog 

environment. Unlike the studies [25], [34], [26], and [27], our research emphasizes fog nodes that are in 

proximity to the user and possess limited resources. Four distinct types of fog nodes have been considered 

as being present within this environment. A concise overview of these node types is provided in Table 3). 

Usage costs given in this table are derived from the Microsoft Azure IaaS cloud service in 2025. 

Table 3: Different types of fog nodes, used in simulations 

Usage Cost  

Disk RAM 
Core 

count 
Processor Name 

10 GB 
1 GB 

RAM 
1 core 

0.004 

$/hr 

0.03 

$/hr 

0.08 

$/hr 
250 GB 8 GB 2 

Intel i3 3.0 GHz Hitachi HA 8000 

0.005 

$/hr 

0.05 

$/hr 

0.1 

$/hr 
250 GB 8 4 

Xeon X3470 3 GHz IBM server x3250 

0.007 

$/hr 

0.07 

$/hr 

0.15 

$/hr 
250 GB 16 GB 4 

Intel i5 3.2 GHz DEPO Race X340H 

0.01 

$/hr 

0.1   

$/hr  

0.2 

$/hr 
500 GB 16 GB 6 

Xeon X5675 3067 

MHz 

IBM server x3550 

0.14 

$/hr 

1.13 

$/hr 

2.2 

$/hr 
500 GB 48 Gb 32 

Intel Xeon 2.6 GHz Deel PowerEdge R820 

0.44 

$/hr 

2.30 

$/hr 

4.2 

$/hr 
1 TB 64 Gb 64 

Intel Xeon 2.3 GHz Deel PowerEdge C6320 

 

The scheduling cycle has been considered to be 5 minutes as in [24], [25], and [34]. In our simulations with 

the FogBus [24] framework, we adopt the average service invocation latencies reported therein: an end-to-

end response time of 10 s for fog gateway nodes and 100 s for cloud datacenters. These values represent the 

typical round-trip delay—including network transmission and node-level processing—measured under 

standard IoT workloads. All simulations consist of 1000 Bitbrain tasks, submitted over a period of one day. 

5.3. Evaluation Criteria 

To evaluate the effectiveness of the proposed TSC-A2C, we have considered the following criteria: 

• Total cost: Computed according to the Definition 23 

• Total Execution time: Computed according to the Definition 22 

• Percentage of SLA violations 
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• Percentage of tasks executed on the fog 

Most of the above criteria has been selected from the [35] and [25].  

5.4. Analysis of the Results 

To ensure the robustness and statistical significance of our findings, we conducted multiple independent 

simulation runs for each scenario and configuration presented in Sections 5.3 and 5.4. Specifically, for 

every data point in Figure (5) and Figure (6), the simulations were repeated 30 times with different random 

seeds to account for the stochastic nature of task arrivals and resource allocation in the iFogSim 

environment. This approach allows us to assess the variability of the results and determine the statistical 

significance of the observed performance differences. 

For each evaluation criterion (Total Cost, Total Execution Time, Percentage of SLA Violations, and 

Percentage of Tasks Executed on Fog), we calculated the mean and standard deviation across these 30 runs 

for TSC-A2C and all baseline methods (A3C-R2N2, DDQN, LR-MMT, and LRR-MMT). 

To statistically validate the superiority of TSC-A2C, we performed independent samples t-tests to compare 

the mean performance of TSC-A2C against each baseline method for every configuration (i.e., varying 

number of fog nodes and varying frequent task percentages). The null hypothesis for each test was that 

there is no significant difference between the mean performance of TSC-A2C and the respective baseline 

method. A significance level (alpha, α) of 0.05 was used. A p-value less than 0.05 indicates that the observed 

difference is statistically significant, allowing us to reject the null hypothesis. 

Furthermore, to provide a measure of the precision and reliability of our mean estimates, we computed 95% 

confidence intervals for all reported performance metrics. A 95% confidence interval indicates that if the 

experiment were repeated many times, 95% of these intervals would contain the true mean performance of 

the system. Non-overlapping confidence intervals between TSC-A2C and a baseline method further support 

the statistical significance of the difference. 

5.4.1. Simulation Scenario 1: Changing The Number of Fog Nodes 

This simulation scenario has been conducted to evaluate the performance of the proposed TSC-A2C method 

in comparison to other existing methods when the number of fog nodes has been changed. To this end, we 

have changed the number of fog nodes from 5 to 25 nodes. 10 percent of submitted tasks have been 

considered to be frequent. Fig. 5) presents the results of this study. As it is shown, the TSC-A2C 

significantly outperforms other existing methods in terms of all evaluation criteria. This is primarily due to 

the ability of the proposed TSC-A2C to identify and cache frequent tasks, avoiding their re-executions. 

Unlike prior approaches, TSC-A2C decouples node selection for execution and caching, enhancing 

efficiency by better utilizing fog resources and preventing unnecessary cloud offloading. Fig. 5-a) illustrates 
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that increasing the number of fog nodes from 5 to 15 reduces the execution cost for all methods, as more 

cost-efficient nodes become available. However, increasing the number of fog nodes above 15 does not 

significantly affect the cost anymore. That is to say, for executing all submitted tasks, we have to pay at 

least about 10K $, using available node types and their corresponding costs. Fig. 5-b) shows reduced 

execution time with more fog nodes due to decreased queuing and data transmission delays. Fig. 5-c) 

demonstrates a decrease in SLA violations with increased fog nodes due to improved load balancing and 

reduced latency. Finally, Fig. 5-d) indicates that TSC-A2C processes a larger proportion of tasks within the 

fog as node count increases, effectively leveraging fog resources and handling frequent tasks. 

 
 

a B 

  

c D 

Fig. 5: Comparison of the TSC-A2C method with other methods when the number of fog nodes changes  

5.4.2. Simulation Scenario 2: Changing The Frequent Tasks Percentage 

This study has been conducted for performance evaluation of the proposed TSC-A2C method against 

existing methods under varying percentages of frequent tasks. For that, we have changed the percentage of 
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frequent tasks within the range [0-40]%. The number of fog nodes has been considered to be 10. Results of 

this study have been depicted in Fig. 6). As it can be seen in Fig. 6-a), TSC-A2C significantly reduces the 

total cost with increasing frequent tasks, unlike other methods which remain largely unaffected. This cost 

reduction stems from TSC-A2C's efficient, independent management of frequent tasks through its caching 

mechanism, minimizing redundant processing. Fig. 6-b) highlights a corresponding reduction in total 

execution time as frequent tasks increase, due to the reuse of cached results. Fig. 6-c) shows a decrease in 

SLA violations with higher percentages of frequent tasks, as more tasks are served directly from the cache, 

reducing cloud reliance and latency. Finally, Fig. 6-d) demonstrates that the percentage of tasks executed 

within the fog environment grows with increasing frequent tasks, as cached results lessen the workload on 

fog nodes, allowing the fog to handle more tasks and improve overall system performance. 

  

a b 

  

c d 

Fig. 6: Comparison of the TSC-A2C method with other methods when the percentage of frequent tasks changes 

5.5. Analysis of Cache Check Overhead and Its Impact 
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In our simulation environment (iFogSim), the cache check process, as described in Section 4 (Operational 

Flow, Step 2), involves a lookup operation within the Resource Manager (RM) to determine if a valid and 

fresh result for an incoming task exists in any fog node's cache. This operation is fundamentally a data 

retrieval query across the distributed cache entries. 

Evaluation of Cache Check Time: While not explicitly measured as a standalone metric in our reported 

results, the time required for a cache check was implicitly accounted for within the overall "Total Execution 

Time" (CTET) metric (Definition 22). In a typical distributed system, a cache lookup operation involves: 

1. Local Lookup: Checking the RM's internal metadata or a local index for cache entry pointers. This 

is generally a very fast, near-constant time operation (O(1) or O(log N) depending on the indexing 

structure, where N is the number of cached items). 

2. Network Latency (if distributed): If the RM needs to query multiple fog nodes to ascertain cache 

presence or freshness, this would involve minimal network communication overhead. However, 

given that the RM maintains "uptodate information on node capacities, neighbor sets, and cache 

contents", this implies a centralized or aggregated view of cache metadata, making the lookup 

predominantly a local operation at the RM.    

In our iFogSim simulations, the overhead of this metadata lookup and decision-making process at the RM 

is considered negligible when compared to the much larger time scales associated with actual task execution 

(CPU processing, memory access, disk I/O) and network transmission delays (task submission delay, result 

dispatch time) across the fog-cloud continuum. The simulation model inherently incorporates the 

computational cost of these RM operations as part of the overall system overhead, which is reflected in the 

baseline performance of all methods. 

The primary impact of the cache check mechanism is not its own minimal execution time, but rather the 

significant time savings achieved by avoiding redundant computations and network transfers. As 

demonstrated in Simulation Scenario 2 (Fig. 6)), increasing the percentage of frequent tasks directly leads 

to: reduced total execution time, reduced total cost, decreased SLA violations.  

5.6. Consideration of Energy Consumption 

Energy consumption is a paramount concern in modern fog-cloud computing systems, driven by both 

environmental sustainability goals and the operational costs associated with powering distributed 

infrastructure [8]. Optimizing energy consumption is a significant objective in task scheduling and resource 

allocation within fog-cloud environments, leading to reduced operational costs and a lower carbon footprint 

[9]. 
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While a separate, explicit energy consumption metric (e.g., in Joules or kWh) is not presented in this study, 

our "Total Cost" metric (Definition 23) serves as a robust and direct proxy for energy consumption within 

our IaaS-based simulation environment. As detailed in Section 5.1 and Table (3), our costs are derived from 

Microsoft Azure IaaS pricing, which directly reflects the monetary expenditure associated with the usage 

of CPU, memory, and disk resources over time. In cloud and fog infrastructures, the consumption of these 

hardware resources is inherently and strongly correlated with their energy draw [36]. For instance, a strong 

linear relationship exists between CPU utilization and total power consumption [36]. Therefore, any 

optimization that reduces the usage or active time of these resources will directly translate into energy 

savings. 

The demonstrated performance improvements of TSC-A2C in "Total Cost" (Figure (5-a, 6-a)) and "Total 

Execution Time" (Figure (5-b, 6-b)) inherently indicate significant energy efficiency gains. Specifically: 

• Minimizing Redundant Computations: The history-based caching mechanism for frequent tasks 

directly reduces the need for re-executing identical tasks. This avoidance of CPU, memory, and 

network resource usage for repeated tasks inherently translates to lower energy consumption by 

reducing active processing time and data transfer. 

• Optimizing Resource Utilization: The dual-agent A2C framework aims to optimally select 

execution and caching nodes, leading to more balanced load distribution and efficient use of 

available resources. Better resource utilization can prevent nodes from running at inefficient low-

utilization states or from being over-provisioned, both of which contribute to energy waste [37]. 

• Reducing Cloud Offloading: By processing a larger proportion of tasks within the fog 

environment (as shown in Figure (5-d) and Figure (6-d)), TSC-A2C reduces reliance on distant 

cloud data centers. While cloud resources are powerful, offloading tasks to them often incurs higher 

network energy costs and potentially higher overall energy consumption compared to localized fog 

processing, especially for latency-sensitive tasks. 

While iFogSim is capable of modeling energy consumption by considering power usage based on 

workload and task execution time, our current evaluation primarily focuses on the monetary costs 

as a comprehensive indicator of resource efficiency in a commercial IaaS context. The significant 

reductions achieved in "Total Cost" and "Total Execution Time" provide compelling evidence of 

our framework's energy-efficient nature.  

5.7. Computational Overhead and Convergence 

While our dual-agent design enhances scheduling and caching, we recognize the need to evaluate its 

computational footprint and learning behavior. Both actors perform a single forward pass per decision cycle. 

Each actor network consists of two hidden layers (64 and 32 neurons) and a softmax output layer, running 

on standard fog-node hardware (Intel i5 3.2 GHz, 8 GB RAM). As shown in Fig. 7), the average decision-

making latency per task is presented for TSC-A2C and the comparative methods under various workload 

conditions. The figure clearly demonstrates that rule-based methods (LR-MMT, LRR-MMT) exhibit the 

lowest decision-making latency, as expected, due to their deterministic nature and computationally 

lightweight design. Single-agent deep reinforcement learning (DRL) approaches (A3C-R2N2, DDQN) 

show slightly higher, yet still very low, latencies, reflecting the inference cost of a single neural network. 
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TSC-A2C, with its dual-agent architecture, incurs a modestly higher decision-making latency compared to 

single-agent DRL methods—particularly as the proportion of recurring tasks increases (activating both 

agents). However, this minor computational overhead is justified by a significant reduction in overall 

execution time, as TSC-A2C dramatically improves efficiency through intelligent result caching that avoids 

redundant computations. Furthermore, optimal resource utilization and reduced offloading to the cloud lead 

to lower operational costs and fewer violations of service-level agreements (SLAs). Unlike rule-based 

approaches, DRL agents are capable of adapting to dynamic and unpredictable workloads, ensuring robust 

performance in stochastic environments. Therefore, the slight increase in decision latency represents a 

minimal cost for substantial improvements in overall system performance, efficiency, and adaptability. 

Tasks are not inappropriately delayed; rather, the system becomes more efficient and responsive overall due 

to smarter decision-making. The dual-agent architecture inherently reduces total overhead, as the caching 

agent (Ac) is only invoked for recurring tasks. This means the computational overhead of dual agents is not 

a fixed cost per task but is conditional. If a task is non-recurring, only the execution agent (Ap) is called. If 

a task is served from the cache, no agent is invoked at all. This selective invocation highlights the inherent 

efficiency of the dual-agent design. The system intelligently incurs the "cost of intelligence" only when the 

benefit is highest—namely, for recurring tasks, where caching can yield significant long-term savings. This 

design choice is crucial for maintaining efficiency in resource-constrained fog environments and prevents 

unnecessary computational load for all tasks.   

 

Fig. 7: Average decision-making latency per task 

 

We train both A2C agents offline on a dedicated server (Intel Xeon 2.6 GHz, 32 GB RAM). Training over 

20,000 episodes takes approximately 45 minutes for the execution agent and 30 minutes for the caching 

agent. 
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As can be observed in Fig. 8), the moving-average reward during training for both agents demonstrate 

convergence after ~12,000 episodes for Ap and ~8,000 episodes for Ac. 

 

 

Fig. 8: The moving-average reward 

 

By offloading training to high-performance infrastructure and restricting fog-node operations to lightweight 

inference, our framework remains efficient for resource-constrained environments without compromising 

learning quality. 

Fig. 9) illustrates how the selection probabilities of different nodes by the execution agent evolve over the 

course of training. 
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Fig. 9: Selection probabilities of nodes by the execution agent (Ap) 

Fig. 9) illustrates the evolution of node selection probabilities by the execution agent (Ap) during the offline 

training phase. Initially (Episode 0), the agent exhibits a high propensity to select the cloud node (~0.44) 

and high-capacity fog nodes (~0.40), indicative of an early exploratory phase or a preference for powerful 

resources. As training progresses, the agent's policy converges: the probability of selecting the cloud node 

significantly decreases to approximately 0.30, reflecting the agent's learned ability to reduce cloud 

dependency. Concurrently, the agent learns to strategically utilize various fog node capacities; while the 

probability of selecting high-capacity fog nodes stabilizes around 0.30, the probabilities for medium- and 

low-capacity fog nodes increase to approximately 0.23 and 0.16, respectively. This convergence 

demonstrates that the agent learns a balanced policy for task distribution across the heterogeneous fog-

cloud environment, aiming to optimize overall system performance (including cost and latency) while 

maintaining reliability.  

 

6. Conclusion 

The TSC-A2C method demonstrably outperforms baseline and state-of-the-art approaches due to its 

dynamic adaptability and efficient caching of frequent task results. Unlike static methods, TSC-A2C's 

reinforcement learning approach optimally adjusts scheduling to dynamic conditions, ensuring consistent 

performance, especially under high loads. Its dual-agent mechanism, with separate agents for execution and 

caching node selection, minimizes redundant processing, significantly reducing execution time and costs. 

By efficiently managing fog resources and optimizing caching, TSC-A2C maximizes fog node utilization 

and minimizes cloud offloading, enhancing overall system performance. Addressing a gap in prior research, 

TSC-A2C introduces a joint scheduling and caching strategy that caches task results, eliminating redundant 
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computations. Validated through extensive iFogSim simulations using real-world data, TSC-A2C 

significantly reduces execution time, costs, and resource consumption while improving scalability. Its 

intelligent scheduling and caching-aware decision-making provide a robust, adaptive, and efficient solution 

for dynamic fog-cloud workloads, optimizing resource utilization and enhancing system responsiveness. 

TSC-A2C represents a crucial advancement for adaptable and sustainable distributed computing 

infrastructures in evolving fog computing environments. While the current version assumes ideal conditions 

(e.g., fixed node availability and no failures), incorporating fault tolerance mechanisms such as node failure 

detection and dynamic task rescheduling is a key direction for future work. Additionally, the architecture's 

support for spatial reasoning enables seamless extension to mobile user scenarios, which will be further 

explored in upcoming developments.  

To clearly highlight our dual‐agent decoupling and history‐aware caching, Table 4) summarizes how 

TSC-A2C differs from leading baselines in terms of execution–caching coupling, caching policy, 

reinforcement‐learning algorithm, and overall decision scope. 

Table 4: Comparative Summary of TSC-A2C and Baseline Methods in Terms of Execution–Caching Architecture and Decision-Making 

Method Execution–Caching Caching Policy Decision Scope 

A3C-R2N2 [28] Execution None  Single agent schedules 

DDQN [25] Execution None Single agent schedules 

LR-MMT [22] Execution None Rule-based 

LRR-MMT [23] Execution None Rule-based 

TSC-A2C Execution & Caching History-aware RL Separate exec. & cache 
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