
AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

Optimal Resource Management in Fog-Cloud Environments via A2C Reinforcement Learning:

Dynamic Task Scheduling and Task Result Caching

Mohammad Hassan Nataj Solhdar1, Mohamad Mehdi Esnaashari2*

1,2Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran1

Abstract

In order to effectively manage tasks in fog-cloud environments, this paper proposes a two-agent

architecture-based framework. In this framework, a task scheduling agent is responsible for selecting the

computing execution node and allocating resources, while a separate agent manages the caching of results.

In each decision cycle, the resource manager first checks whether a valid, fresh result already exists in the

cache; if so, the cached result is immediately returned. Otherwise, the execution agent evaluates current

conditions — such as network load, nodes’ computational capacity, and user proximity — and assigns the

task to the most appropriate node. After task execution completes, an independent storage agent is selected

to store the results, potentially operating on a node distinct from the execution node. Through extensive

simulations and comparisons with advanced methods (e.g., A3C-R2N2, DDQN, LR-MMT, and LRR-

MMT), we demonstrate significant improvements in response latency, computational efficiency, and inter-

node communication management. The proposed framework decouples execution scheduling from result

storage through two distinct agents while implementing history-based caching that tracks both task request

frequencies and result recency. This design enables effective adaptation to variable workloads and dynamic

network conditions. The two-agent architecture and history-based caching serve as core innovations that

optimize resource utilization and enhance system responsiveness. The resulting decoupled, history-based

strategy delivers scalable, low-latency performance and provides a robust solution for real-time service

delivery in fog-cloud environments.

Keywords: Task Scheduling, Result Caching, Reinforcement Learning, Fog-Cloud Environment,

Advantage Actor-Critic (A2C), Resource Management

1 esnaashari@kntu.ac.ir
2 nataj.solhdar@gmail.com

mailto:esnaashari@kntu.ac.ir

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

1. Introduction

The rapid evolution of digital technologies has ushered in an era of unprecedented connectivity and data

generation. The Internet of Things (IoT) ecosystem, with its myriads of interconnected devices, has become

a cornerstone of modern technological infrastructure[1]. This proliferation of smart devices and sensors has

led to an exponential increase in data production and processing demands, challenging traditional

computing paradigms [2]. Cloud computing, once hailed as the panacea for large-scale data processing, is

increasingly being complemented by edge and fog computing architectures. These distributed computing

models aim to address the latency and bandwidth constraints inherent in centralized cloud systems [3]. The

fog-cloud continuum presents a hierarchical structure where computational resources are strategically

distributed from the network edge to centralized data centers, offering a more flexible and responsive

computing environment [4]. However, the heterogeneous and dynamic nature of fog-cloud ecosystems

introduces complex resource management challenges. The variability in computational capabilities,

network conditions, and task requirements necessitates sophisticated orchestration mechanisms to ensure

efficient resource utilization and optimal task execution [5].

Existing research in fog-cloud resource management has predominantly focused on task scheduling

algorithms, aiming to optimize task allocation based on various performance metrics [6]. While these

approaches have yielded significant improvements in resource utilization and task completion times, they

often overlook the potential benefits of strategic result caching, particularly for frequent or similar tasks

[7]. Unlike conventional methods that often combine task execution and caching on the same node, this

paper introduces a novel approach that decouples these two operations, presenting a more flexible and

efficient resource management framework.

A key feature of our system is its ability to execute tasks on suitable nodes while potentially storing the

results on different, more appropriate node. This decoupling of execution and storage locations, illustrated

in Fig. 1), offers greater flexibility and can lead to improved resource utilization. For instance, a

computationally intensive task might be executed in the cloud, but its results could be cached in a fog node

closer to potential future requesters, thereby reducing latency for subsequent similar requests.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

Fig. 1: System Architecture with Decoupled Task Execution and Caching.

Fig. 1) illustrates the high-level architecture of our Task Scheduling and Caching with Advantage Actor-

Critic (TSC-A2C) framework. Incoming tasks first arrive at the Resource Manager (RM), which invokes

the Execution Agent to select the optimal compute node—based on current CPU/RAM availability, network

load, and user proximity. Once execution completes, the Caching Agent independently selects a fog node

for storing the result, taking into account storage capacity, distance to potential future requesters, and task

freshness. The two decision paths (execute vs. cache) are shown in parallel: the execution path (Task)

directs tasks to a selected node for processing, and the caching path (Task Result) directs results to a

possibly different node for storage. This decoupled design enables flexible placement: for example, a heavy

compute job may run in the cloud (Node C), while its results are cached at a nearby fog node (Node F2) to

reduce latency for subsequent requests.

Main contributions of this paper are as follows:

1. Dual-agent A2C framework. We introduce two Advantage Actor-Critic agents—one for

execution-node selection, and the other for caching-node selection—allowing flexible, independent

optimization of scheduling and caching.

2. History-aware caching (i.e., maintaining statistics on task request frequency and cache freshness

windows). By tracking task frequency and data-freshness, the proposed method can only cache

results of frequent tasks, avoiding storage bloat and ensuring freshness.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

3. Location-informed decisions. We incorporate user-to-node proximity into both execution and

caching policies, reducing communication latency and network congestion.

The remainder of this paper is organized as follows. Section 2 reviews related work in fog-cloud resource

management and caching strategies. Section 3 formalizes our system model and problem statement. Section

4 describes the TSC-A2C1 method in detail. Section 5 presents simulation settings and comparative results.

Finally, Section 6 concludes and outlines future directions.

2. Related WorkThe exponential surge in data generation, primarily driven by the widespread

deployment of Internet of Things (IoT) devices, has presented significant challenges to traditional

centralized cloud computing architectures in terms of processing speed, storage capacity, and

network bandwidth [8]. In response to these limitations, fog computing has emerged as a critical

architectural paradigm, extending computational and storage capabilities to the network edge, in

closer geographical proximity to data sources and end-users [8]. The fundamental objective of fog

computing is to mitigate network latency and facilitate rapid, localized data processing, thereby

enabling real-time responsiveness for IoT applications [8]. This multi-layered, collaborative

architecture, encompassing fog and cloud environments, is widely recognized as a promising

solution for effectively managing the intricate data processing and communication demands of

modern IoT applications [9].

Within these complex and dynamic distributed environments, efficient task scheduling and judicious

resource management are paramount for operational success. The overarching goal is to ensure that user

requirements are met within stringent time constraints, even with the inherently limited resources available

at the network edge [8]. Recent reviews indicate a rapid adoption of Machine Learning (ML) and, more

specifically, Deep Reinforcement Learning (DRL) techniques, such as Advantage Actor-Critic (A2C) and

Double Deep Q-Network (DDQN), for various aspects of task scheduling, resource allocation, and caching

[10]. This shift underscores the necessity for algorithms capable of autonomous, real-time learning and

adaptation.

2.1. Novel Approaches in Task Scheduling and Resource Management

2.1.1. Deep Reinforcement Learning (DRL) for Adaptive Scheduling

DRL is increasingly recognized as a powerful paradigm for addressing the complexities of task scheduling

and resource management in distributed environments, owing to its ability to learn optimal policies through

iterative interaction with the environment [10].

1 Task Scheduling and Caching with Advantage Actor-Critic

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

Advantage Actor-Critic (A2C) Approaches: The A2C method, often combined with DRL, is proposed

for dynamic scheduling in stochastic edge-cloud environments, enabling decentralized learning and

concurrent task scheduling across multiple servers [10]. A2C is particularly noted for its rapid adaptability

even with limited data [10]. An A2C-DRL approach for Edge-Cloud involves developing sophisticated

reward functions and integrating Hypergraph Neural Networks (HGNN) to extract complex features for

dynamic resource allocation [10]. An improved A2C for Storm Workloads, leveraging Graph Neural

Networks (GNN) to capture global features of dependent jobs, significantly enhances resource utilization

and minimizes job completion time [11]. A2C-DRL demonstrates superior performance compared to other

state-of-the-art algorithms in terms of reward value, task rejection rate, and load balancing factor [10].

Double Deep Q-Network (DDQN) Implementations: DDQN models are proposed as robust

reinforcement learning solutions for complex task scheduling problems in cloud computing [12]. DDQN

mitigates overestimation bias by employing two distinct neural networks, leading to a more consistent

learning process [12]. This approach adaptively allocates tasks considering multiple criteria such as job

priority, resource availability, execution time, and cost in dynamic cloud environments [12]. DDQN

consistently outperforms conventional scheduling approaches in task success rates [12]. A DDQN-based

algorithm for operating system scheduling has shown improved task completion efficiency, system

throughput, and faster response speeds, particularly for I/O-intensive tasks [13].

Other Machine Learning and DRL Integrations: Federated Deep Reinforcement Learning (FDRL) is

utilized for optimizing caching strategies in cloud-edge integrated environments, balancing caching

efficiency and training energy expenditure [14]. A novel intelligent resource allocation algorithm combines

Long Short-Term Memory (LSTM) networks for demand prediction with Deep Q-Networks (DQN) for

dynamic scheduling, enhancing resource utilization by 32.5%, reducing average response time by 43.3%,

and lowering operational costs by 26.6% [15]. Agile Reinforcement Learning (aRL) is an innovative DRL

approach for real-time task scheduling in edge computing, incorporating "informed exploration" and "action

masking" to accelerate policy convergence, achieving higher hit-ratios and faster runtime [16].

2.1.2. Multi-Agent Systems (MAS) for Decentralized Control and Coordination

Multi-Agent Systems (MAS) are gaining prominence as a robust architectural paradigm for distributed

computing, offering enhanced modularity, specialized functionalities, improved collaborative learning, and

more effective decentralized decision-making [17]. Recent developments include integrating Large

Language Models (LLMs) as agents for task allocation, where a "planner method" (LLM generating a plan

for other LLM agents) outperforms an "orchestrator method" in handling concurrent actions [17]. Agent-

based frameworks are specifically proposed for fog computing to autonomously manage task scheduling,

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

load balancing, and rescheduling, reducing reliance on a single central point of control and improving

system resilience. MAS are well-suited to handle uncertainties and dynamic changes in real-time distributed

environments [18].

2.1.3. Intelligent Caching Strategies for Enhanced Responsiveness and Resource Utilization

Caching mechanisms are fundamental to enhancing fog network performance by improving latency and

reducing energy consumption [8]. Recent developments demonstrate a progression from static data

placement to dynamic and predictive approaches. Reinforcement Learning (RL) is increasingly applied to

intelligent caching, with Q-learning being used to discover optimal caching policies in a distributed manner,

enabling fog access points to adapt to dynamic content popularity without additional communication

overhead [19]. A cutting-edge development involves a novel dynamic federated optimization strategy that

utilizes Federated Deep Reinforcement Learning (FDRL) for optimized caching in cloud-edge integrated

environments, balancing caching efficiency and training energy expenditure [14]. Beyond reactive caching,

predictive caching is gaining traction, involving forecasting workload resource consumption to enable more

accurate scheduling and resource management [20].

2.1.4. State-of-the-Art in Load Balancing for Multi-Layered Architectures

Load balancing is an indispensable mechanism in multi-layered distributed computing architectures,

including Mist-Fog-Cloud environments. Its primary function is to uniformly distribute workloads across

available fog and cloud layers, minimizing latency, optimizing power consumption, and ensuring efficient

resource utilization. Load balancing algorithms are categorized into traditional (e.g., FCFS, SJF, Round

Robin), heuristic (e.g., Max-Min, Min-Min, Throttled Algorithm), metaheuristic (e.g., Genetic Algorithm,

Ant Colony Optimization), hybrid, hyper-heuristic, and Machine Learning (ML)-based algorithms.

ML/DL-based algorithms are increasingly effective for predicting unforeseen or future resource

requirements in dynamic environments, particularly for managing large and unpredictable IoT requests.

The overall architecture is often conceptualized as a four-layered hierarchy: IoT-Mist-Fog-Cloud, with load

balancing mechanisms operating across these layers for seamless operation [21].

Traditional and heuristic algorithms, while widely used, exhibit significant limitations in dynamic Mist-

Fog-Cloud environments, often leading to inefficiencies or suboptimal resource allocation. Metaheuristic

algorithms offer broader applicability but can be computationally intensive. Hybrid algorithms combine

strengths to address individual limitations. ML-based algorithms, including DRL, are highly promising due

to their ability to learn directly from raw data and adapt to unpredictable workloads in real-time, though

challenges in computational intensity and accuracy persist [21].

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

Statistical techniques like LR-MMT1[22], LRR-MMT2[23], and MAD-MC3 [24] offer methods for dynamic

task scheduling and congestion management, but machine learning, particularly DRL (DDQN, A3C) [25-

28], provides more adaptable solutions for complex and dynamic environments. DDQN [25-27] adapts to

new contexts without manual reconfiguration, while A3C with R2N2 [28] integrates policy gradients with

recurrent neural networks to handle temporal dynamics. These DRL methods show promise for managing

tasks in fog and cloud infrastructures, especially in stochastic settings requiring rapid adaptation.

Table 1: Comparative Analysis of Proposed Method (TSC-A2C) with Recent Advancements

Feature/Aspect Recent Advancements Key Contributions/Research Gaps Addressed by TSC-

A2C

Core Architecture Trend towards DRL for adaptive

scheduling [10] and Multi-Agent Systems

for decentralized control [17].

Explicit decoupling of execution and storage via

dedicated agents enhances modularity and specialized

control, offering a clear architectural distinction.

Scheduling

Mechanism

Advanced DRL methods (A2C [10],

DDQN [12], LSTM+DQN [15]) for

dynamic and multi-objective scheduling,

often integrating GNNs for complex

feature extraction [11].

Leverages A2C for real-time adaptability, aligning with

recent DRL trends, but within a specific two-agent

framework that could offer distinct benefits in

coordination.

Caching Strategy Evolution to intelligent, dynamic, and

predictive caching, often using RL (Q-

learning [19], Federated DRL [14]) to

adapt to content popularity and minimize

energy [14].

Integrates history-based caching as a core component,

managed by a dedicated agent, directly addressing

result reusability and efficiency. This specialized agent

can optimize caching decisions independently.

Resource

Management &

Optimization

Objectives

Strong trend towards multi-objective

optimization (makespan, cost, energy,

latency, resource utilization, load

balancing) often achieved via DRL [8].

Aligns with multi-objective optimization trends, with a

strong emphasis on real-time adaptability and

robustness in dynamic environments, facilitated by the

two-agent structure.

Uncertainty &

Dynamism Handling

DRL and MAS are specifically designed

to manage unpredictable and fluctuating

workloads, uncertain events, and

heterogeneous resources[18].

The two-agent architecture and history-based caching

contribute to this adaptability by providing specialized

and responsive mechanisms for handling dynamic

changes.

3. System Model and Problem Formulation

In this Section, we will delineate the system model and explicitly articulate the problem at hand.

3.1. System Model and Problem Statement

1 Local Regression-Minimum Migration Time
2 Local Robust Regression-Minimum Migration Time
3 Median Absolute Deviation-Maximum Correlation

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

In the present study, the system model, illustrated in Fig. 2), integrates both fog and cloud infrastructures

alongside user and device components. The resource management system, accountable for orchestrating

user tasks and directing them to fog and cloud nodes, is situated within the fog infrastructure. This is

conceptualized as a singular managerial entity overseeing all accessible resources. For the sake of clarity,

and as depicted in Fig. 2), the cloud and fog infrastructures are collectively termed the computing layer in

this framework.

Fig. 2: System Model

Fig. 2) depicts the detailed system model, showing the hierarchy from end users through fog and cloud

layers. Each end user node (U₁…Uₖ) issues tasks to the fog layer, where a single RM coordinates two agents.

The fog layer comprises heterogeneous fog nodes (F₁…Fₙ) with varying CPU, memory, and storage

capacities, connected in a mesh topology. The cloud datacenter sits above the fog layer and is used when

fog resources are insufficient or task deadlines demand higher compute power. Solid lines indicate task

submission and result dispatch paths, while dashed lines show inter-node communication for caching and

neighbor discovery. This diagram highlights how the RM maintains up-to-date information on node

capacities, neighbor sets, and cache contents to inform both execution and caching decisions.

The computational layer in fog computing comprises heterogeneous resources with diverse processing

capabilities, memory, and storage, where fog nodes, though less computationally powerful than cloud

resources, offer reduced latency due to their proximity to users. The resource management (RM) system is

responsible for receiving tasks, determining if they are novel or can be served from cache, allocating new

tasks to suitable resources based on CPU, RAM, disk requirements, and completion time, and deciding

whether to cache task results. Despite this comprehensive architecture, a key challenge remains: how to

jointly decide, for each incoming task, both its execution destination (fog or cloud) and the fog node at

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

which to cache its result so as to balance end-to-end latency, resource cost, and cache freshness. These

decisions must be made online, at each discrete scheduling cycle, based on dynamic observations of

network load, node capacity, and task characteristics. In the next subsection, we formalize this joint

scheduling–caching problem as an optimization over decision variables representing execution and caching

assignments, subject to Service Level Agreement (SLA) deadlines and storage constraints.

3.2. Formal definition of the problem

The primary goal of the RM system is to minimize overall latency and resource utilization while

maximizing the number of processed tasks, operating in discrete time cycles with scheduling performed at

the end of each cycle after tasks are queued Fig. 3).

Fig. 3: Task state in queue

Fig. 3): Task lifecycle within a scheduling cycle. Tasks submitted by users enter the RM’s queue, where

they await processing. The RM first checks for a valid cached result. If absent or stale, the RM invokes the

Execution Agent to select a processing node. Once execution completes, tasks identified as “Frequent”

trigger the Caching Agent to choose a storage node for the result. The symbols employed by the suggested

approach are presented in below definitions:

Definition 1 (Task Set): Let T = {t₁, t₂, ..., t|T|} denote the set of tasks submitted to the Resource Manager

(RM). Each tᵢ ∈ T is the i-th task arriving within a given scheduling cycle, carrying its own resource

requirements and timing constraints.

Definition 2 (User Set): Let U = {u₁, u₂, ..., u|U|} denote the set of end users who submit tasks. Each user

uₖ ∈ U issues tasks from the user layer and expects results by a specified deadline. We assign each uₖ a fixed

2D location loc(uₖ) = [xuₖ, yuₖ] for proximity calculations.

Definition 3 (Task Submitter Ensemble): For each task tᵢ, let 𝒰(tᵢ) ⊆ U be the set of users who issue

identical copies of tᵢ within the same cycle, causing overlapping requests.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

Definition 4 (Task Frequency): Define the frequency f(tᵢ) of task tᵢ as the number of times tᵢ has been

submitted up to the current time. Formally, f(tᵢ) = |{tⱼ ∈ T | tⱼ ≡ tᵢ}|.

Definition 5 (Frequent Task Set): Let Ψ be a predefined repetition threshold. The set of frequent tasks is

F = {tᵢ ∈ T | f(tᵢ) ≥ Ψ}. Only tasks in F are considered for caching.

Definition 6 (Data Validity Window): For each tᵢ, let w(tᵢ) be the time duration during which its cached

result remains valid. After w(tᵢ) elapses, the result must be recomputed to ensure freshness.

Definition 7 (Task Priority): Each task tᵢ has a priority level p(tᵢ) ∈ ℝ⁺ that influences scheduling order;

higher p(tᵢ) means more urgent processing.

Definition 8 (Completion Deadline): Each task tᵢ must finish by time dl(tᵢ). If execution on any node

exceeds dl(tᵢ), an SLA violation occurs.

Definition 9 (Execution Resource Profile): For each tᵢ, its execution resource requirements are given by

the tuple rexec(tᵢ) = (mᵢ, cᵢ, sᵢ), where mᵢ is memory, cᵢ is CPU power, and sᵢ is storage needed for processing.

Definition 10 (Storage Requirement Profile): For each periodic task tᵢ ∈ F, its result storage requirement

is rcach(tᵢ) = sᵢ', the disk space needed to cache its output for future reuse.

Definition 11 (Fog Node Set): Let N = {n₁, n₂, ..., n|N|} be the set of all fog nodes. Each nⱼ can play one or

both roles: Processing node (nⱼ ∈ Nproc) for executing tasks, Caching node (nⱼ ∈ Ncache) for storing results.

Definition 12 (Fog Processing Node): A fog processing node, called fpnj, is one of the fog environments

that actually runs the incoming tasks. It has enough CPU and memory to handle the task t i, and it decides

which tasks to run and in what order based on how urgent they are and any service‐level deadlines.

Definition 13 (Fog Caching Node): A fog caching node, called fcnj, is one of the fog environments that

stores the results of frequent tasks. It has disk space set aside to keep these results fresh for a certain time

window, and it picks which results to keep so future similar requests can be served faster.

Definition 14 (Node Capacity): Each fog node nⱼ has capacity Cap(nⱼ) = (Mⱼ, Cⱼ, Sⱼ), denoting its available

memory Mⱼ, CPU power Cⱼ, and storage Sⱼ for that cycle.

Definition 15 (Node Neighborhood): For each nⱼ, let 𝒩(nⱼ) ⊆ N denote its directly connected neighbor

nodes, forming a collaborative mesh for offloading and caching.

Definition 16 (Active & Scheduled Tasks at Node): At node nⱼ, let ASTⱼ = {tᵢ ∈ T | tᵢ is executing or queued

for execution on nⱼ} represent its current workload.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

Definition 17 (Cached & Future-Cache Tasks at Node): At node nⱼ, let CFTⱼ = {tᵢ ∈ F | tᵢ’s result is cached

or scheduled to be cached on nⱼ} capture its caching assignments.

Definition 18 (User-to-Node Proximity): The distance between user u kand node nⱼ is d(uₖ, nⱼ) = ||loc(uₖ) −

loc(nⱼ)||, used to factor latency into scheduling and caching decisions.

Definition 19 (Submission Delay): δsub(tᵢ, nⱼ) is the time from when tᵢ leaves its submitter to when it arrives

at nⱼ for execution or caching.

Definition 20 (Processing Duration): δproc(tᵢ, nⱼ) is the wall-clock time for nⱼ to execute tᵢ from start to

finish.

Definition 21 (Result Dispatch Time): δdisp(uₖ, nⱼ) is the time for node nⱼ to send the completed result of tᵢ

back to user u .k

Definition 22 (Total Execution Time): For task tᵢ on node nⱼ, CTET(tᵢ, nⱼ) = δsub + δproc + δdisp, the end-to-

end latency experienced by the user.

Definition 23 (Execution Cost): EC(tᵢ, nⱼ) measures the CPU and memory consumption cost for executing

tᵢ on nⱼ over its processing duration.

Definition 24 (Storage Cost): SC(tᵢ, nⱼ) is the cost of occupying nⱼ’s storage to cache tᵢ’s result for future

requests.

Definition 25 (The Maximum Allowable SLA Violation): Denoted as 𝑉𝑠𝑙𝑎, indicates the percentage of

tasks that are accepted to be completed after their deadline. In fog-cloud environments, SLA violations

indicate an inability to meet Quality of Service (QoS) requirements, such as response time or processing

time. The parameter 𝑉𝑠𝑙𝑎 allows the designer to specify an acceptable level of SLA violation, enabling fewer

fog nodes while still maintaining system efficiency. In other words, if a limited SLA violation is tolerable,

fewer resources may be utilized, lowering system costs. This variable thus provides an option for balancing

precision and efficiency, and by setting an appropriate 𝑉𝑠𝑙𝑎 value, the designer can adjust the number of fog

nodes to meet SLA requirements.

The symbols employed by the suggested approach are presented in Table 2).

Table 2: Symbols

Term Description

1 ti
In the task set, ti represents the i-th task that have been assigned to the Resource Manager (RM)

by a user at during a specific timeframe.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

2 uek

The User Ensemble (uek) consists of individual user each submitting tasks with the expectation

of receiving outputs within a specific timeframe, represented by their unique spatial

coordinates.

3 utsi
Task Submitter (utsi) represent multiple users who send identical tasks ti within a given time

frame, leading to overlapping task requests.

4 tfi
Task Frequency (tfi) represent the rate at which a particular task ti is repeated within until now,

indicating the periodic nature of the task.

5 pti
The Periodic Task (pti) is a task that surpass a defined repetition count ψ, highlighting tasks

that frequently recur over time.

6 dvi
The Data Validity (dvi) Window represent the duration for which the cached results of tasks

are considered valid before reprocessing becomes necessary.

7 tpi
Task Priority (tpi) indicates the priority of tasks ti, representing their importance relative to

other tasks in the system, thus influencing scheduling decisions.

8 tcdi
The Task Completion Deadline (tcdi) represent the strict time frame within which a task ti must

be completed to meet system performance criteria.

9 eri
The Execution Resource (eri) Profile outlines the specific resource requirements for task

execution, including memory mi, CPU power ci, and storage si .

10 srri

The Storage Requirement for Results (srr) represent the storage needed to store the output of

Periodic Task tasks pti , ensuring future reuse of cached results.

11 NoF
The Node of Fog (NoF) consists of set of nodes that serve dual purposes: processing tasks (Fog

Processing Nodes, fpn) and, when necessary, also store results (Fog Caching Nodes, fcn).

12 fpnj

The Fog Processing Node (fpn) represent the fog of node responsible for executing tasks within

the fog environment.

13 fcnj

The Fog Caching Node (fcn) represent the fog of node responsible for managing result caching

tasks within the fog environment.

14 ncj
Node Capacity (ncj) Metrics represent the available memory Mj, CPU cycles Cj, and storage Sj

at each fog node for accommodating tasks.

15 nnj
The Node Neighboring (nnj) comprises neighboring fog nodes that is interconnected, creating

a collaborative processing and caching framework.

16 ASTj
Active and Scheduled Tasks (ASTj) represent the ongoing Active Tasks and upcoming

Scheduled Tasks assigned to fog node fpnj for processing.

17 CFTj
Cached and Future Cache Tasks (CFTj) include tasks whose results are either currently cached

CTj or scheduled to be stored SCTj for later retrieval at a fog node fcnj.

18 UN (uek, fpnj/fcnj)
User-to-Node (UN) Proximity calculates the geographical distance between the task-requesting

user uek and the fog node fpnj or fcnj tasked with processing or caching it.

19 Δ (ti, fpnj/fcnj)
Task Submission delay (Δ (ti, fpnj/fcnj)) defines the time delay experienced between task (ti)

submission and its reception at the designated fog node (fpnj/fcnj) for execution or caching.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

20 PD(ti , fpnj)
The Processing Duration (PD(ti , fpnj)) is the total time taken for a fog node fpnj to fully execute

a task ti from the moment it starts processing.

21 RDT(uek, fpnj/fcnj)
Result Dispatch Time (RDT) specifies the time required for a fog node to transmit processed

results back to the task-requesting user uek.

22 CTET(ti , fpnj)

The Comprehensive Task Execution Time (CTET) is the sum of the task submission delay,

processing duration, and result dispatch time, reflecting the total time from task ti submission

to final result delivery.

23 EC(ti , fpnj)
Execution Cost (EC) refers to the resources consumed during task ti processing, measured by

the CPU and memory usage over the duration of execution.

24 SC(ti , fcnj)
Storage Cost (SC) is the expense incurred by occupying fog node fpn j storage space to cache

results for future use.

25 𝑉𝑠𝑙𝑎
indicates the percentage of tasks that are accepted to be completed after their

deadline.

A task 𝑡𝑖
 refers to a task submitted to the Resource Management (RM) node prior to its execution. If 𝑡𝑖

 is

identified as a Frequent Task (tᵢ ∈ F) name it as 𝑓𝑡𝑖, the RM must not only schedule it for execution but also

determine a suitable node for caching its results. Considering the previously defined terms and notations,

the problem can be formulated as follows: Design an efficient Resource Manager (RM) capable of

identifying an optimal node for executing 𝑡𝑖
 and, in the case of Frequent Tasks (fti), selecting an appropriate

node for result caching, thereby ensuring both effective scheduling and efficient storage management.

For task 𝑡𝑖
 :

• (,)i j

j i

EC t fpn is minimized and

• (,)i j

j i

CTET t fpn is minimized and

• (,)k jd u fpn is minimized

subject to the scheduling-related criteria:

;
i k

i fpn j

t fpn k

t AST

c C fpn


 
(1)

;
i k

i fpn j

t fpn j

t AST

m M fpn


 
(2)

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

(,) (); ,
ji k i i fpn jCTET t fpn w t t AST fpn    (3)

The first two criteria state that each node fpnj has to have enough processing and memory capacity for

running all its scheduled tasks. The third criterion indicates that task completion times for all scheduled

tasks on all fog nods have to be sooner than their deadlines.

if the task is a frequent task (name it as 𝑓𝑡𝑖) then:

• (,)
k fti

k j

u U

d u fcn


 is minimized and

• ()
iftN n is maximized

subject to the Result caching-related criteria:

'

() ;
i j

i fcn j

cach t fcn j

ft CFT

r S fcn


  (4)

The last criterion states that each node fcnj has to have enough storage capacity for caching the results of

all frequent tasks that are scheduled to be cached on it.

4. The Proposed Method: TSC-A2C

This section elaborates on the proposed Task Scheduling and Caching with Advantage Actor-Critic (TSC-

A2C) framework. We begin with an overview of the method, followed by a detailed description of its

architecture and the core reinforcement learning formulation. Finally, the operational flow of the system is

presented. The TSC-A2C method is designed to dynamically manage resources in fog-cloud environments

by intelligently scheduling tasks for execution and strategically caching their results, particularly for

frequently occurring tasks.

4.1. Overview of the TSC-A2C Framework

The TSC-A2C framework leverages reinforcement learning (RL) to address the complexities of dynamic

task scheduling and result caching in heterogeneous fog-cloud environments. At its core, the system

employs a Resource Manager (RM) that orchestrates task processing. Recognizing the distinct nature of

task execution and result caching, particularly the benefits of decoupling these decisions, TSC-A2C utilizes

a dual-agent learning approach based on the Advantage Actor-Critic (A2C) algorithm. This choice is

motivated by A2C's balance of sample efficiency and stability in complex decision-making spaces.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

For every incoming task, the RM, guided by its RL agents, makes decisions to optimize performance metrics

such as execution time, operational cost, and resource utilization. A key feature is the specialized handling

of "Frequent Tasks," where results are considered for caching to minimize redundant computations and

improve response times for subsequent identical requests.

4.2. TSC-A2C Framework Architecture

The architecture of TSC-A2C is designed around a central Resource Manager and two specialized A2C

agents, as depicted conceptually in the overall system model (refer to Figure (2) for the broader system

context and Figure (1) for the decoupled execution/caching concept).

4.2.1. Resource Manager (RM)

 The RM serves as the primary coordination entity within the fog layer. It receives all incoming user tasks,

maintains the task queue, and initiates the decision-making process by invoking the appropriate RL agents.

The RM is responsible for the overall management of the task lifecycle, from arrival to completion and

potential caching of results.

4.2.2. Dual-Agent A2C System

 To effectively manage the distinct yet related problems of task execution and result caching, TSC-A2C

employs two concurrent A2C agents:

 Execution Agent (Ap): This agent is responsible for selecting the optimal node for executing an incoming

task ti. The selection considers factors such as node processing capabilities, current load, and proximity to

the user to minimize execution time and cost. This agent is invoked for all tasks requiring execution.

 Caching Agent (Ac): This agent is activated specifically for tasks identified as "Frequent Tasks" (fti). Its

role is to choose a suitable fog node for caching the results of fti. The caching node can be different from

the execution node, allowing for optimized storage placement based on factors like user distribution for the

cached result and storage availability.

4.2.3. Cache Communication Protocol

To facilitate efficient interaction with the distributed cache memory across fog nodes, our framework

employs a lightweight, microservice-based communication model. Each fog node hosts a dedicated caching

service that exposes a simple Remote Procedure Call (RPC) interface over TCP/IP, which can be

implemented using technologies like gRPC or RESTful HTTP. When the Caching Agent selects a node for

storage, or when the Resource Manager performs a cache check, the RM issues an RPC 'store' or 'lookup'

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

request to the selected node's caching endpoint, transmitting the task identifier and relevant result payload.

Nodes then respond with acknowledgments or the requested cached data. This middleware layer effectively

decouples the network communication specifics from the core scheduling logic, ensuring interoperability

across heterogeneous platforms while introducing minimal overhead, typically in the sub-millisecond range

per RPC call. In our iFogSim simulations, this interaction is abstracted by direct method calls, but the

described RPC design is readily implementable in real-world deployments.

4.3. Reinforcement Learning Formulation

The core intelligence of TSC-A2C lies in its RL formulation, where agents learn optimal policies through

interaction with the fog-cloud environment. The standard components of this RL formulation are detailed

below. The RM serves as the primary coordination entity within the fog layer. It receives all incoming user

tasks, maintains the task queue, and initiates the decision-making process by invoking the appropriate RL

agents. To ensure real-time awareness of the dynamic environment, the RM maintains an in-memory

registry that is continuously updated. This registry includes a lookup table detailing which fog nodes

currently hold cached results for frequent tasks, alongside their freshness status. Furthermore, each fog node

periodically sends heartbeat updates containing its latest resource availability (CPU, memory, and storage)

to the RM via the established RPC interface (as detailed in Section 4.2.3). These dynamic updates enable

the RM to always reflect real-time capacities rather than static snapshots, crucial for informed execution

and caching decisions.

4.3.1. State Representation

 Effective learning requires a comprehensive representation of the environment's state. The state observed

by each agent is tailored to its specific decision-making context:

 Processing Environment State (PS) for Agent Ap: At the time of scheduling task ti, the state (,)PS i fp is

defined as a tuple: (,) (_ , _)i iPS i fp task desc node states= .

 desci
task is a 5-tuple representing the current task : (), (), , ,i i i i i it p t w t m c s  , corresponding to its

priority, data validity window, and resource requirements (memory, CPU, storage) as defined in Section

3.2.

()1, 2, ,

, ,...,
istates i i NoF i

node fpn fpn fpn=  represents the current state of all |N| fog nodes. The state

of a given fog processing node fpni,jis a 4-tuple: , , , ,, , ,i j i j i j i jM C AST EC , denoting its available

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

memory, available CPU, number of active/scheduled tasks, and current execution cost metrics, respectively,

at task i for node j.

 Caching Environment State (CS) for Agent Ac: When considering a frequent task fti for caching, the state

CS(i, fc) is defined as a tuple: (,) (,)
desc statesi i

task nodeCS i fc cache cache= .

desci

taskcache represents the storage requirement s'i (defined as rcach(tᵢ) in Definition 10) for the result of

fti.

()1, 2, ,

, ,...,
statesi

node i i N i
cache fcn fcn fcn=  represents the current state of all |N| fog nodes relevant

for caching. The state of a given fog caching node fpni,jis a 4-tuple: , , ,, , , ()i j i j i j jS CFT SC N n  ,

denoting its available storage, number of cached/future-cache tasks, current storage cost metrics, and the

number of its neighbors, respectively, at time i for node j.

4.3.2. Action Space

 The action space defines the set of possible decisions each agent can make:

 Action Space for Agent Ap: The action p pa A for agent Ap is the selection of a processing node from

the set of all available fog nodes Nproc and the cloud resource. Thus,  p procA N Cloud=  .

 Action Space for Agent Ac: The action c ca A for agent Ac is the selection of a caching node from the

set of available fog caching nodes Ncache. Thus, c cacheA N= .

4.3.3. Actor-Critic Model Design

 Both Ap and Ac agents employ an A2C architecture, each consisting of an actor network and a critic

network.

 Actor Network: The actor network learns the policy, i.e., a mapping from state to a probability distribution

over actions.

 For Agent Ap (processing), the input layer size is 5 + 4 × |N|, corresponding to the 5 task status features

and 4 features per fog node.

 For Agent Ac (caching), the input layer size is 1 + 4 × |N|, corresponding to the 1 frequent task storage

feature and 4 features per fog node.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

 Both actor networks utilize a normalization layer followed by two hidden layers with 64 and 32

neurons, respectively, using the ReLU activation function.

 The output layer is a softmax layer with a neuron count equal to the number of possible actions (nodes

for execution or caching), representing the probability distribution for selecting each node.

 Critic Network: The critic network evaluates the state-value function V(s), estimating the expected return

from a given state.

 Separate critic networks are implemented for task execution and caching. Each critic receives the

relevant environmental state (PS or CS) and the probability distribution from its corresponding actor

network as input.

 The critic network architecture includes two hidden layers with 64 and 32 neurons (ReLU activation),

an additional hidden layer with 16 neurons, and an output layer yielding a scalar value for V(s). We chose

ReLU for both actor and critic networks because it is widely recognized for its computational efficiency

and robustness against vanishing gradients in deep reinforcement learning applications. It yields sparse

activations and faster convergence compared to sigmoid or tanh functions [29]. Our A2C agents use two

fully connected hidden layers (64 and 32 neurons), which aligns with typical configurations found in

standard A2C implementations in the literature (e.g. 2×32 settings for actor and critic in educational and

domain-specific RL examples) [30]. This configuration strikes a balance between representation capacity

and inference speed, especially important in fog-node deployment. Preliminary empirical tuning indicated

that increasing beyond 64 neurons per layer marginally improved performance at the cost of longer

inference latency, while smaller networks underperformed in scheduling quality.

 Action Selection: Actions are selected using an ε-greedy strategy based on the probability distribution

output by the actor network to balance exploration and exploitation.

4.4. Reward Computing

Let the probability distribution given by the softmax layer to be represented by ((,))pa PS i f or

((,))ca CS i f , where θ is the parameters of the actor network. Then the action selection mechanism

would be carried out using an ϵ-greedy method given by equation (5, 6).

arg max ((,))

p

i

a p

randomaction
a

a PS i f


= 


;

;

if rand

otherwise



(5)

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

arg max ((,))

c

i

a c

randomaction
a

a CS i f


= 


;

;

if rand

otherwise



(6)

If the node selected by
p

ia lacks sufficient resources to execute the task
it , or if the node selected by

c

ia

cannot store the processed results of
ipt , the corresponding action is penalized (details on the

rewarding/penalizing process is given in the subsequent sections). A new action is then chosen using the

respective equation (5 or 6), excluding the previously selected node from the available options. This

iterative process ensures efficient and adaptive decision-making for both task execution and caching in

dynamic fog environments.

The reward signal for Ap in the cycle is computed according to the equation (7) given below.

((,)* ((,)

0
()

j

i j i j

nnp

CTET t fpn EC t fpn

R A


= 


; The task is not executed on time

; Otherwise
)7(

In the above equation,
j

nn , EC , CTET ,and D are all normalized values computed according to the equations

(6) to (11) as given below. That is to say, if the task jfpt cannot be executed on time, the reward would be

0. Otherwise, the reward would be computed in such a way that a node with higher number of neighbours

(|𝑛𝑛j|), less execution time (𝐶𝑇𝐸𝑇), less execution cost (EC), and less distance with the requesters of jfpt

receives higher values as the reward.

max

j

j

nn
nn

nn
= (8)

where 𝑛𝑛𝑚𝑎𝑥 is the maximum number of neighbors in the fog layer

𝑪𝑻̃𝑬𝑻 (𝒕𝒊
 , 𝒇𝒑𝒏

𝒋
) =

 𝑪𝑻𝑬𝑻(𝒕𝒊

,𝒇𝒑𝒏𝒋

)

𝑪𝑻𝑬𝑻𝒎𝒂𝒙
)9(

where
maxCTET is the maximum value for the CTET

max

(,)
(,)

i j

i j

total

CTET t fpn
CTET t fpn

CTET
= (10)

where
max

totalCTET is the maximum possible value for the total cost of executing

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

That is to say, if the task 𝑡𝑖
 cannot be executed on time, the reward would be 0. Otherwise, the reward would

be computed in such a way that a node with less execution time (CTET) and less execution cost receives

higher values as the reward.

The reward signal for Ac in the cycle is computed according to the equation (11) given below.

1

(,)* (,)

0
()

i j i j

c

SC t fcn D t fcn

R A


= 


; The task is not cached in node

; Otherwise

(11)

max

(,)
(,)

i j

i j

total

SC t fcn
SC t fcn

SC
= (12)

where
max

totalSC is the maximum possible value for the total cost of caching

(,)

()
max((,))

k pti

k pti

k j

ue uts

j

k j

ue uts

UN ue fcn

D fcn
UN ue fcn





=




 (13)

where max((,))
k pti

k j

ue uts

UN ue fcn


 is the maximum of distance

That is to say, if the task ipt cannot be cached in fog fcnj, the reward would be 0. Otherwise, the reward

would be computed in such a way that a node with less distance to users requesting similar tasks (UN) and

less caching cost receives higher values as the reward.

4.5. Operational Flow of TSC-A2C

The proposed TSC-A2C method operates in cycles, processing tasks from a queue managed by the RM.

The overall process is visually depicted in Fig. 4) and can be summarized as follows:

1. Task Arrival and Queuing: New tasks arrive and are placed in the task queue.

2. Cache Check: For each task dequeued by the RM, it first checks if a fresh, valid result for this task

already exists in the cache of any fog node.

 If a valid cached result is found ("Yes" path from "Is this task cached?" and "Does it have acceptable

freshness?" in Fig. 4)): The RM retrieves the result and returns it to the user, bypassing execution. The

process then moves to the next task.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

3. Handling Cache Misses due to Node Unavailability: If a fog node that previously cached a result becomes

unavailable (e.g., due to a failure), it will not respond to the RM's cache lookup request. In such instances,

the Resource Manager (RM) treats the task as a cache miss. Consequently, the RM invokes the Execution

Agent to re-execute the task on an available fog node or in the cloud. Following successful re-execution,

the standard caching policy is applied to store the new result on the best candidate node, ensuring future

requests for this frequent task can be served efficiently. This approach maintains system functionality even

when cached data sources are temporarily inaccessible.

4. Execution Path (No Valid Cache): If no valid cached result exists ("No" path from cache checks in Fig.

4)), the task must be executed.

 Execution Node Selection (Agent Ap): The RM provides the current Processing Environment State (PS)

to Agent Ap. Agent Ap's actor network outputs a probability distribution over suitable execution nodes (fog

nodes or cloud). The agent selects an execution node based on this distribution (e.g., highest probability or

ε-greedy exploration). This corresponds to "The RL agent is used for scheduling..." block in Fig. 4).

 The system verifies if the selected node is appropriate (e.g., has resources). If not, another node is

selected.

5. Caching Decision and Node Selection (Agent Ac - For Frequent Tasks):

 The system determines if the current task needs to be cached (i.e., if it's a "Frequent Task" and meets

caching criteria – "Is this task need to be cached?" in Fig. 4)).

 If the task is deemed a Frequent Task ("Yes" path):

 The RM provides the current Caching Environment State (CS) to Agent Ac. Agent Ac's actor network

outputs a probability distribution over suitable fog nodes for caching. The agent selects a caching node.

This corresponds to "Choose the highest probability..." block for caching in Fig. 4).

 The system verifies if the selected caching node is appropriate.

6. Task Execution and Result Caching:

 * The task is executed on the node selected by Agent Ap.

 * If Agent Ac selects a node for caching, the results of the frequent task are cached on the designated

node after execution. Note that the execution node and caching node can be different.

7. Cycle Repetition: The RM processes the next task in the queue, and the cycle repeats.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

This dual-agent, RL-driven approach, considering factors like node resources, geographical location, task

frequency, execution costs, and caching benefits, aims to dynamically adapt scheduling and caching plans

each cycle. The goal is to minimize latency, reduce processing and storage costs, and maximize overall

resource utilization in the fog-cloud continuum.

Fig. 4: The process of sending a task until receiving a result

4.6. Applicability to Mobile Users and Dynamic Topologies

Fog–cloud environments frequently involve mobile end devices and dynamic networking topologies,

where fog nodes may join, leave, or change their neighbor relationships at runtime. Our TSC-A2C

framework naturally extends to such settings as follows:

• Dynamic User Proximity: Since both the execution agent and caching agent include user-to-node

distance in their state representations (Definition 18), updating a user’s 2D location loc(uₖ) at

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

each scheduling cycle automatically informs the agents of mobility. As users move, the policy

will adapt by favoring fog nodes that are currently nearest, thus maintaining low end-to-end

latency.

• Topology Adaptation: The neighbor set 𝒩(nⱼ) for each fog node can be updated in real time (e.g.,

via heartbeat or discovery protocols). At the start of each cycle, the RM reconstructs the

adjacency information and passes the updated neighbor counts to the caching agent’s state (the

fourth feature of each node’s 4-tuple in Section 4). Consequently, the caching agent learns to

select nodes based on both current storage metrics and their dynamic connectivity.

• Online Fine-Tuning: For highly dynamic scenarios, the pre-trained A2C agents can be

periodically fine-tuned online using recent observations, ensuring that both execution and caching

policies remain effective even as node availability and link qualities fluctuate.

This discussion demonstrates that TSC-A2C’s decoupled, state-driven design readily accommodates

mobile users and changing fog–cloud topologies without structural modifications to the core algorithm.

5. Evaluation

In this section, we first present a brief description of the dataset, the utilized simulator, and evaluation

criteria. Next, we provide a detailed analysis of the comparative results between the TSC-A2C and a number

of baseline algorithms, as well as other state-of-the-art algorithms such as the A3C-R2N2 [28], DDQN [25],

LR-MMT and LRR-MMT [24] methods.

5.1. The Dataset

For simulating input tasks, we have used the Bitbrain dataset [31], which is an publicly available derived

from real-world scenarios. It contains 181,335 tasks with heterogeneous characteristics such as varying

CPU (MIPS), memory, and I/O requirements which are fed into the Bitbrain's infrastructure during three

weeks. For each task, the following information are available in this dataset: CPU utilization in terms of

MIPS, RAM, and disk (read/write) characteristics.

5.2. The Simulator

In order to be able to evaluate the efficacy of the TSC-A2C, we have utilized the iFogSim simulator [32],

which is constructed upon the foundation of CloudSim [33]. iFogSim has been chosen due to its provision

of valuable APIs pertinent to resource management within the Fog. We have modified the iFogSim so as to

encompass a location parameter both for users and Fog nodes.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

The infrastructure examined in this investigation is characterized as a heterogeneous cloud-fog

environment. Unlike the studies [25], [34], [26], and [27], our research emphasizes fog nodes that are in

proximity to the user and possess limited resources. Four distinct types of fog nodes have been considered

as being present within this environment. A concise overview of these node types is provided in Table 3).

Usage costs given in this table are derived from the Microsoft Azure IaaS cloud service in 2025.

Table 3: Different types of fog nodes, used in simulations

Usage Cost

Disk RAM
Core

count
Processor Name

10 GB
1 GB

RAM
1 core

0.004

$/hr

0.03

$/hr

0.08

$/hr
250 GB 8 GB 2

Intel i3 3.0 GHz Hitachi HA 8000

0.005

$/hr

0.05

$/hr

0.1

$/hr
250 GB 8 4

Xeon X3470 3 GHz IBM server x3250

0.007

$/hr

0.07

$/hr

0.15

$/hr
250 GB 16 GB 4

Intel i5 3.2 GHz DEPO Race X340H

0.01

$/hr

0.1

$/hr

0.2

$/hr
500 GB 16 GB 6

Xeon X5675 3067

MHz

IBM server x3550

0.14

$/hr

1.13

$/hr

2.2

$/hr
500 GB 48 Gb 32

Intel Xeon 2.6 GHz Deel PowerEdge R820

0.44

$/hr

2.30

$/hr

4.2

$/hr
1 TB 64 Gb 64

Intel Xeon 2.3 GHz Deel PowerEdge C6320

The scheduling cycle has been considered to be 5 minutes as in [24], [25], and [34]. In our simulations with

the FogBus [24] framework, we adopt the average service invocation latencies reported therein: an end-to-

end response time of 10 s for fog gateway nodes and 100 s for cloud datacenters. These values represent the

typical round-trip delay—including network transmission and node-level processing—measured under

standard IoT workloads. All simulations consist of 1000 Bitbrain tasks, submitted over a period of one day.

5.3. Evaluation Criteria

To evaluate the effectiveness of the proposed TSC-A2C, we have considered the following criteria:

• Total cost: Computed according to the Definition 23

• Total Execution time: Computed according to the Definition 22

• Percentage of SLA violations

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

• Percentage of tasks executed on the fog

Most of the above criteria has been selected from the [35] and [25].

5.4. Analysis of the Results

To ensure the robustness and statistical significance of our findings, we conducted multiple independent

simulation runs for each scenario and configuration presented in Sections 5.3 and 5.4. Specifically, for

every data point in Figure (5) and Figure (6), the simulations were repeated 30 times with different random

seeds to account for the stochastic nature of task arrivals and resource allocation in the iFogSim

environment. This approach allows us to assess the variability of the results and determine the statistical

significance of the observed performance differences.

For each evaluation criterion (Total Cost, Total Execution Time, Percentage of SLA Violations, and

Percentage of Tasks Executed on Fog), we calculated the mean and standard deviation across these 30 runs

for TSC-A2C and all baseline methods (A3C-R2N2, DDQN, LR-MMT, and LRR-MMT).

To statistically validate the superiority of TSC-A2C, we performed independent samples t-tests to compare

the mean performance of TSC-A2C against each baseline method for every configuration (i.e., varying

number of fog nodes and varying frequent task percentages). The null hypothesis for each test was that

there is no significant difference between the mean performance of TSC-A2C and the respective baseline

method. A significance level (alpha, α) of 0.05 was used. A p-value less than 0.05 indicates that the observed

difference is statistically significant, allowing us to reject the null hypothesis.

Furthermore, to provide a measure of the precision and reliability of our mean estimates, we computed 95%

confidence intervals for all reported performance metrics. A 95% confidence interval indicates that if the

experiment were repeated many times, 95% of these intervals would contain the true mean performance of

the system. Non-overlapping confidence intervals between TSC-A2C and a baseline method further support

the statistical significance of the difference.

5.4.1. Simulation Scenario 1: Changing The Number of Fog Nodes

This simulation scenario has been conducted to evaluate the performance of the proposed TSC-A2C method

in comparison to other existing methods when the number of fog nodes has been changed. To this end, we

have changed the number of fog nodes from 5 to 25 nodes. 10 percent of submitted tasks have been

considered to be frequent. Fig. 5) presents the results of this study. As it is shown, the TSC-A2C

significantly outperforms other existing methods in terms of all evaluation criteria. This is primarily due to

the ability of the proposed TSC-A2C to identify and cache frequent tasks, avoiding their re-executions.

Unlike prior approaches, TSC-A2C decouples node selection for execution and caching, enhancing

efficiency by better utilizing fog resources and preventing unnecessary cloud offloading. Fig. 5-a) illustrates

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

that increasing the number of fog nodes from 5 to 15 reduces the execution cost for all methods, as more

cost-efficient nodes become available. However, increasing the number of fog nodes above 15 does not

significantly affect the cost anymore. That is to say, for executing all submitted tasks, we have to pay at

least about 10K $, using available node types and their corresponding costs. Fig. 5-b) shows reduced

execution time with more fog nodes due to decreased queuing and data transmission delays. Fig. 5-c)

demonstrates a decrease in SLA violations with increased fog nodes due to improved load balancing and

reduced latency. Finally, Fig. 5-d) indicates that TSC-A2C processes a larger proportion of tasks within the

fog as node count increases, effectively leveraging fog resources and handling frequent tasks.

a B

c D

Fig. 5: Comparison of the TSC-A2C method with other methods when the number of fog nodes changes

5.4.2. Simulation Scenario 2: Changing The Frequent Tasks Percentage

This study has been conducted for performance evaluation of the proposed TSC-A2C method against

existing methods under varying percentages of frequent tasks. For that, we have changed the percentage of

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

frequent tasks within the range [0-40]%. The number of fog nodes has been considered to be 10. Results of

this study have been depicted in Fig. 6). As it can be seen in Fig. 6-a), TSC-A2C significantly reduces the

total cost with increasing frequent tasks, unlike other methods which remain largely unaffected. This cost

reduction stems from TSC-A2C's efficient, independent management of frequent tasks through its caching

mechanism, minimizing redundant processing. Fig. 6-b) highlights a corresponding reduction in total

execution time as frequent tasks increase, due to the reuse of cached results. Fig. 6-c) shows a decrease in

SLA violations with higher percentages of frequent tasks, as more tasks are served directly from the cache,

reducing cloud reliance and latency. Finally, Fig. 6-d) demonstrates that the percentage of tasks executed

within the fog environment grows with increasing frequent tasks, as cached results lessen the workload on

fog nodes, allowing the fog to handle more tasks and improve overall system performance.

a b

c d

Fig. 6: Comparison of the TSC-A2C method with other methods when the percentage of frequent tasks changes

5.5. Analysis of Cache Check Overhead and Its Impact

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

In our simulation environment (iFogSim), the cache check process, as described in Section 4 (Operational

Flow, Step 2), involves a lookup operation within the Resource Manager (RM) to determine if a valid and

fresh result for an incoming task exists in any fog node's cache. This operation is fundamentally a data

retrieval query across the distributed cache entries.

Evaluation of Cache Check Time: While not explicitly measured as a standalone metric in our reported

results, the time required for a cache check was implicitly accounted for within the overall "Total Execution

Time" (CTET) metric (Definition 22). In a typical distributed system, a cache lookup operation involves:

1. Local Lookup: Checking the RM's internal metadata or a local index for cache entry pointers. This

is generally a very fast, near-constant time operation (O(1) or O(log N) depending on the indexing

structure, where N is the number of cached items).

2. Network Latency (if distributed): If the RM needs to query multiple fog nodes to ascertain cache

presence or freshness, this would involve minimal network communication overhead. However,

given that the RM maintains "uptodate information on node capacities, neighbor sets, and cache

contents", this implies a centralized or aggregated view of cache metadata, making the lookup

predominantly a local operation at the RM.

In our iFogSim simulations, the overhead of this metadata lookup and decision-making process at the RM

is considered negligible when compared to the much larger time scales associated with actual task execution

(CPU processing, memory access, disk I/O) and network transmission delays (task submission delay, result

dispatch time) across the fog-cloud continuum. The simulation model inherently incorporates the

computational cost of these RM operations as part of the overall system overhead, which is reflected in the

baseline performance of all methods.

The primary impact of the cache check mechanism is not its own minimal execution time, but rather the

significant time savings achieved by avoiding redundant computations and network transfers. As

demonstrated in Simulation Scenario 2 (Fig. 6)), increasing the percentage of frequent tasks directly leads

to: reduced total execution time, reduced total cost, decreased SLA violations.

5.6. Consideration of Energy Consumption

Energy consumption is a paramount concern in modern fog-cloud computing systems, driven by both

environmental sustainability goals and the operational costs associated with powering distributed

infrastructure [8]. Optimizing energy consumption is a significant objective in task scheduling and resource

allocation within fog-cloud environments, leading to reduced operational costs and a lower carbon footprint

[9].

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

While a separate, explicit energy consumption metric (e.g., in Joules or kWh) is not presented in this study,

our "Total Cost" metric (Definition 23) serves as a robust and direct proxy for energy consumption within

our IaaS-based simulation environment. As detailed in Section 5.1 and Table (3), our costs are derived from

Microsoft Azure IaaS pricing, which directly reflects the monetary expenditure associated with the usage

of CPU, memory, and disk resources over time. In cloud and fog infrastructures, the consumption of these

hardware resources is inherently and strongly correlated with their energy draw [36]. For instance, a strong

linear relationship exists between CPU utilization and total power consumption [36]. Therefore, any

optimization that reduces the usage or active time of these resources will directly translate into energy

savings.

The demonstrated performance improvements of TSC-A2C in "Total Cost" (Figure (5-a, 6-a)) and "Total

Execution Time" (Figure (5-b, 6-b)) inherently indicate significant energy efficiency gains. Specifically:

• Minimizing Redundant Computations: The history-based caching mechanism for frequent tasks

directly reduces the need for re-executing identical tasks. This avoidance of CPU, memory, and

network resource usage for repeated tasks inherently translates to lower energy consumption by

reducing active processing time and data transfer.

• Optimizing Resource Utilization: The dual-agent A2C framework aims to optimally select

execution and caching nodes, leading to more balanced load distribution and efficient use of

available resources. Better resource utilization can prevent nodes from running at inefficient low-

utilization states or from being over-provisioned, both of which contribute to energy waste [37].

• Reducing Cloud Offloading: By processing a larger proportion of tasks within the fog

environment (as shown in Figure (5-d) and Figure (6-d)), TSC-A2C reduces reliance on distant

cloud data centers. While cloud resources are powerful, offloading tasks to them often incurs higher

network energy costs and potentially higher overall energy consumption compared to localized fog

processing, especially for latency-sensitive tasks.

While iFogSim is capable of modeling energy consumption by considering power usage based on

workload and task execution time, our current evaluation primarily focuses on the monetary costs

as a comprehensive indicator of resource efficiency in a commercial IaaS context. The significant

reductions achieved in "Total Cost" and "Total Execution Time" provide compelling evidence of

our framework's energy-efficient nature.

5.7. Computational Overhead and Convergence

While our dual-agent design enhances scheduling and caching, we recognize the need to evaluate its

computational footprint and learning behavior. Both actors perform a single forward pass per decision cycle.

Each actor network consists of two hidden layers (64 and 32 neurons) and a softmax output layer, running

on standard fog-node hardware (Intel i5 3.2 GHz, 8 GB RAM). As shown in Fig. 7), the average decision-

making latency per task is presented for TSC-A2C and the comparative methods under various workload

conditions. The figure clearly demonstrates that rule-based methods (LR-MMT, LRR-MMT) exhibit the

lowest decision-making latency, as expected, due to their deterministic nature and computationally

lightweight design. Single-agent deep reinforcement learning (DRL) approaches (A3C-R2N2, DDQN)

show slightly higher, yet still very low, latencies, reflecting the inference cost of a single neural network.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

TSC-A2C, with its dual-agent architecture, incurs a modestly higher decision-making latency compared to

single-agent DRL methods—particularly as the proportion of recurring tasks increases (activating both

agents). However, this minor computational overhead is justified by a significant reduction in overall

execution time, as TSC-A2C dramatically improves efficiency through intelligent result caching that avoids

redundant computations. Furthermore, optimal resource utilization and reduced offloading to the cloud lead

to lower operational costs and fewer violations of service-level agreements (SLAs). Unlike rule-based

approaches, DRL agents are capable of adapting to dynamic and unpredictable workloads, ensuring robust

performance in stochastic environments. Therefore, the slight increase in decision latency represents a

minimal cost for substantial improvements in overall system performance, efficiency, and adaptability.

Tasks are not inappropriately delayed; rather, the system becomes more efficient and responsive overall due

to smarter decision-making. The dual-agent architecture inherently reduces total overhead, as the caching

agent (Ac) is only invoked for recurring tasks. This means the computational overhead of dual agents is not

a fixed cost per task but is conditional. If a task is non-recurring, only the execution agent (Ap) is called. If

a task is served from the cache, no agent is invoked at all. This selective invocation highlights the inherent

efficiency of the dual-agent design. The system intelligently incurs the "cost of intelligence" only when the

benefit is highest—namely, for recurring tasks, where caching can yield significant long-term savings. This

design choice is crucial for maintaining efficiency in resource-constrained fog environments and prevents

unnecessary computational load for all tasks.

Fig. 7: Average decision-making latency per task

We train both A2C agents offline on a dedicated server (Intel Xeon 2.6 GHz, 32 GB RAM). Training over

20,000 episodes takes approximately 45 minutes for the execution agent and 30 minutes for the caching

agent.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

As can be observed in Fig. 8), the moving-average reward during training for both agents demonstrate

convergence after ~12,000 episodes for Ap and ~8,000 episodes for Ac.

Fig. 8: The moving-average reward

By offloading training to high-performance infrastructure and restricting fog-node operations to lightweight

inference, our framework remains efficient for resource-constrained environments without compromising

learning quality.

Fig. 9) illustrates how the selection probabilities of different nodes by the execution agent evolve over the

course of training.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

Fig. 9: Selection probabilities of nodes by the execution agent (Ap)

Fig. 9) illustrates the evolution of node selection probabilities by the execution agent (Ap) during the offline

training phase. Initially (Episode 0), the agent exhibits a high propensity to select the cloud node (~0.44)

and high-capacity fog nodes (~0.40), indicative of an early exploratory phase or a preference for powerful

resources. As training progresses, the agent's policy converges: the probability of selecting the cloud node

significantly decreases to approximately 0.30, reflecting the agent's learned ability to reduce cloud

dependency. Concurrently, the agent learns to strategically utilize various fog node capacities; while the

probability of selecting high-capacity fog nodes stabilizes around 0.30, the probabilities for medium- and

low-capacity fog nodes increase to approximately 0.23 and 0.16, respectively. This convergence

demonstrates that the agent learns a balanced policy for task distribution across the heterogeneous fog-

cloud environment, aiming to optimize overall system performance (including cost and latency) while

maintaining reliability.

6. Conclusion

The TSC-A2C method demonstrably outperforms baseline and state-of-the-art approaches due to its

dynamic adaptability and efficient caching of frequent task results. Unlike static methods, TSC-A2C's

reinforcement learning approach optimally adjusts scheduling to dynamic conditions, ensuring consistent

performance, especially under high loads. Its dual-agent mechanism, with separate agents for execution and

caching node selection, minimizes redundant processing, significantly reducing execution time and costs.

By efficiently managing fog resources and optimizing caching, TSC-A2C maximizes fog node utilization

and minimizes cloud offloading, enhancing overall system performance. Addressing a gap in prior research,

TSC-A2C introduces a joint scheduling and caching strategy that caches task results, eliminating redundant

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

computations. Validated through extensive iFogSim simulations using real-world data, TSC-A2C

significantly reduces execution time, costs, and resource consumption while improving scalability. Its

intelligent scheduling and caching-aware decision-making provide a robust, adaptive, and efficient solution

for dynamic fog-cloud workloads, optimizing resource utilization and enhancing system responsiveness.

TSC-A2C represents a crucial advancement for adaptable and sustainable distributed computing

infrastructures in evolving fog computing environments. While the current version assumes ideal conditions

(e.g., fixed node availability and no failures), incorporating fault tolerance mechanisms such as node failure

detection and dynamic task rescheduling is a key direction for future work. Additionally, the architecture's

support for spatial reasoning enables seamless extension to mobile user scenarios, which will be further

explored in upcoming developments.

To clearly highlight our dual‐agent decoupling and history‐aware caching, Table 4) summarizes how

TSC-A2C differs from leading baselines in terms of execution–caching coupling, caching policy,

reinforcement‐learning algorithm, and overall decision scope.

Table 4: Comparative Summary of TSC-A2C and Baseline Methods in Terms of Execution–Caching Architecture and Decision-Making

Method Execution–Caching Caching Policy Decision Scope

A3C-R2N2 [28] Execution None Single agent schedules

DDQN [25] Execution None Single agent schedules

LR-MMT [22] Execution None Rule-based

LRR-MMT [23] Execution None Rule-based

TSC-A2C Execution & Caching History-aware RL Separate exec. & cache

 REFERENCES

[1] B. Huang, X. Liu, Y. Xiang, D. Yu, S. Deng, S. Wang, Reinforcement learning for cost-effective IoT

service caching at the edge, Journal of Parallel and Distributed Computing, 168 (2022) 120-136.
[2] O.A. Khan, S.U. Malik, F.M. Baig, S.U. Islam, H. Pervaiz, H. Malik, S.H. Ahmed, A cache‐based
approach toward improved scheduling in fog computing, Software: Practice and Experience, 51(12) (2021)
2360-2372.
[3] P. Bellavista, C. Giannelli, D.D.P. Montenero, F. Poltronieri, C. Stefanelli, M. Tortonesi, HOlistic
pRocessing and NETworking (HORNET): An Integrated Solution for IoT-Based Fog Computing Services,
IEEE Access, 8 (2020) 66707-66721.

[4] C. Mouradian, D. Naboulsi, S. Yangui, R.H. Glitho, M.J. Morrow, P.A. Polakos, A Comprehensive
Survey on Fog Computing: State-of-the-Art and Research Challenges, IEEE Communications Surveys &
Tutorials, 20(1) (2018) 416-464.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

[5] R. Mahmud, S.N. Srirama, K. Ramamohanarao, R. Buyya, Quality of Experience (QoE)-aware
placement of applications in Fog computing environments, Journal of Parallel and Distributed Computing,
132 (2019) 190-203.
[6] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, J.P. Jue, All one

needs to know about fog computing and related edge computing paradigms: A complete survey, Journal of
Systems Architecture, 98 (2019) 289-330.
[7] M. Mukherjee, S. Kumar, Q. Zhang, R. Matam, C.X. Mavromoustakis, Y. Lv, G. Mastorakis, Task data
offloading and resource allocation in fog computing with multi-task delay guarantee, Ieee Access, 7 (2019)
152911-152918.
[8] S. Bansal, H. Aggarwal, M. Aggarwal, A systematic review of task scheduling approaches in fog
computing, Transactions on Emerging Telecommunications Technologies, 33(9) (2022) e4523.
[9] J. Xu, X. Sun, R. Zhang, H. Liang, Q. Duan, Fog-cloud task scheduling of energy consumption

optimisation with deadline consideration, International Journal of Internet Manufacturing and Services,
7(4) (2020) 375-392.
[10] J. Lu, J. Yang, S. Li, Y. Li, W. Jiang, J. Dai, J. Hu, A2C-DRL: Dynamic Scheduling for Stochastic
Edge-Cloud Environments Using A2C and Deep Reinforcement Learning, IEEE Internet of Things Journal,
(2024).
[11] G. Dong, J. Wang, M. Wang, T. Su, An improved scheduling with advantage actor-critic for Storm
workloads, Cluster Computing, 27(10) (2024) 13421-13433.

[12] S. Radhika, S. Keshari Swain, S. Adinarayana, B. Ramesh Babu, Efficient task scheduling in cloud
using double deep QNetwork, International Journal of Computing and Digital Systems, 16(1) (2024) 1-11.
[13] X. Sun, Y. Duan, Y. Deng, F. Guo, G. Cai, Y. Peng, Dynamic operating system scheduling using
double DQN: A reinforcement learning approach to task optimization, in: 2025 8th International
Conference on Advanced Algorithms and Control Engineering (ICAACE), IEEE, 2025, pp. 1492-1497.
[14] X. Zhang, Z. Hu, Y. Liang, H. Xiao, A. Xu, M. Zheng, C. Sun, A federated deep reinforcement
learning-based low-power caching strategy for cloud-edge collaboration, Journal of Grid Computing, 22(1)

(2024) 21.
[15] Y. Wang, X. Yang, Intelligent resource allocation optimization for cloud computing via machine
learning, arXiv preprint arXiv:2504.03682, (2025).
[16] A. Avan, A. Azim, Q. Mahmoud, Agile Reinforcement Learning for Real-Time Task Scheduling in
Edge Computing, arXiv preprint arXiv:2506.08850, (2025).
[17] A. Amayuelas, J. Yang, S. Agashe, A. Nagarajan, A. Antoniades, X.E. Wang, W. Wang, Self-resource
allocation in multi-agent llm systems, arXiv preprint arXiv:2504.02051, (2025).
[18] Y. Yang, F. Ren, M. Zhang, A Decentralized Multiagent-Based Task Scheduling Framework for

Handling Uncertain Events in Fog Computing, arXiv preprint arXiv:2401.02219, (2024).
[19] L. Lu, Y. Jiang, M. Bennis, Z. Ding, F.-C. Zheng, X. You, Distributed edge caching via reinforcement
learning in fog radio access networks, in: 2019 IEEE 89th Vehicular Technology Conference (VTC2019-
Spring), IEEE, 2019, pp. 1-6.
[20] H. Fabelo, R. Leon, E. Torti, S. Marco, A. Badouh, M. Verbers, C. Vega, J. Santana-Nunez, Y. Falevoz,
Y. Ramallo-Fariña, C. Weis, A.M. Wägner, E. Juarez, C. Rial, A. Lagares, G. Burström, F. Leporati, L.
Jimenez-Roldan, E. Marenzi, T. Cervero, M. Moreto, G. Danese, S. Zinger, F. Manni, M.L. Alvarez-Male,

M.A. García-Bello, L. García, J. Morera, J.F. Piñeiro, C. Bairaktari, B. Noriega-Ortega, B. Clavo, G.M.
Callico, STRATUM project: AI-based point of care computing for neurosurgical 3D decision support tools,
Microprocessors and Microsystems, 116 (2025) 105157.
[21] S.S. Tripathy, K. Mishra, D.S. Roy, K. Yadav, A. Alferaidi, W. Viriyasitavat, J. Sharmila, G. Dhiman,
R.K. Barik, State-of-the-art load balancing algorithms for mist-fog-cloud assisted paradigm: a review and
future directions, Archives of Computational Methods in Engineering, 30(4) (2023) 2725-2760.
[22] J. Lim, Versatile cloud resource scheduling based on artificial intelligence in cloud-enabled fog

computing environments, Hum.-Centric Comput. Inf. Sci, 13 (2023) 54.
[23] J. Singh, J. Sidhu, Comparative analysis of VM consolidation algorithms for cloud computing,
Procedia Computer Science, 167 (2020) 1390-1399.

AUT Journal of Electrical Engineering
10.22060/eej.2025.24181.5657

[24] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive heuristics for energy
and performance efficient dynamic consolidation of virtual machines in cloud data centers, Concurrency
and Computation: Practice and Experience, 24(13) (2012) 1397-1420.
[25] D. Basu, X. Wang, Y. Hong, H. Chen, S. Bressan, Learn-as-you-go with megh: Efficient live migration

of virtual machines, IEEE Transactions on Parallel and Distributed Systems, 30(8) (2019) 1786-1801.
[26] H. Mao, M. Alizadeh, I. Menache, S. Kandula, Resource management with deep reinforcement
learning, in: Proceedings of the 15th ACM workshop on hot topics in networks, 2016, pp. 50-56.
[27] D. Pathak, P. Krahenbuhl, T. Darrell, Constrained convolutional neural networks for weakly
supervised segmentation, in: Proceedings of the IEEE international conference on computer vision, 2015,
pp. 1796-1804.
[28] S. Tuli, S. Ilager, K. Ramamohanarao, R. Buyya, Dynamic scheduling for stochastic edge-cloud
computing environments using a3c learning and residual recurrent neural networks, IEEE transactions on

mobile computing, 21(3) (2020) 940-954.
[29] A. Jesson, C. Lu, G. Gupta, N. Beltran-Velez, A. Filos, J.N. Foerster, Y. Gal, Relu to the rescue:
Improve your on-policy actor-critic with positive advantages, arXiv preprint arXiv:2306.01460, (2023).
[30] M. Kölle, M. Hgog, F. Ritz, P. Altmann, M. Zorn, J. Stein, C. Linnhoff-Popien, Quantum advantage
actor-critic for reinforcement learning, arXiv preprint arXiv:2401.07043, (2024).
[31] S. Shen, V. Van Beek, A. Iosup, Statistical characterization of business-critical workloads hosted in
cloud datacenters, in: 2015 15th IEEE/ACM international symposium on cluster, cloud and grid computing,

IEEE, 2015, pp. 465-474.
[32] H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya, iFogSim: A toolkit for modeling and simulation
of resource management techniques in the Internet of Things, Edge and Fog computing environments,
Software: Practice and Experience, 47(9) (2017) 1275-1296.
[33] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A. De Rose, R. Buyya, CloudSim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms,
Software: Practice and experience, 41(1) (2011) 23-50.

[34] M. Cheng, J. Li, S. Nazarian, DRL-cloud: Deep reinforcement learning-based resource provisioning
and task scheduling for cloud service providers, in: 2018 23rd Asia and South pacific design automation
conference (ASP-DAC), IEEE, 2018, pp. 129-134.
[35] D. Aksu, S. Üstebay, M.A. Aydin, T. Atmaca, Intrusion detection with comparative analysis of
supervised learning techniques and fisher score feature selection algorithm, in: International Symposium
on Computer and Information Sciences, Springer, 2018, pp. 141-149.
[36] A. Horri, G. Dastghaibyfard, A novel cost based model for energy consumption in cloud computing,
ScientificWorldJournal, 2015 (2015) 724524.

[37] S. Sarmad Shah, A. Ali, Optimizing Resource Allocation and Energy Efficiency in Federated Fog
Computing for IoT, arXiv e-prints, (2025) arXiv: 2504.00791.

