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Abstract 

This paper presents RoboPV, an innovative embedded software for autonomous aerial 

monitoring of photovoltaic (PV) plants. RoboPV automates monitoring with features 

like optimal trajectory planning, image processing, and real-time fault detection 

through four integrated components: boundary area detection, path planning, dynamic 

processing, and fault analysis. A specialized encoder-decoder deep learning model 

processes aerial images to identify plant boundaries, while a unique path planning 

algorithm ensures complete area coverage. During flights, a neural network analyzes 

images for automatic fault detection. RoboPV also includes decision-making 

algorithms for various flight conditions, is compatible with low-power micro-

computers, and supports the MAVLink protocol for multi-rotor operations. A six-

degrees-of-freedom dynamic model was tested in a SIMULINK environment, 

achieving 93% accuracy in autonomous inspections of large-scale PV installations. * Corresponding author: 
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1. Introduction  

Aerial inspections offer a rapid and reliable means of assessing the conditions of Photovoltaic (PV) systems [1]. 

Traditionally, human operators have been instrumental in monitoring these systems [2]. However, aerial techniques 

significantly improve fault diagnosis, especially for large-scale PV plants [1,3]. The failures and defects can be detected 

on PV modules by different sensors and special instruments [4]. In common aerial inspections, multi-rotors fly optimal 

paths determined by a Ground Control Station (GCS). While flight data can be collected in real-time, video streams sent 

to the GCS are not analyzed immediately, which limits the accuracy of monitoring since offline data analysis is still 

required.  

In one of our previous works [5], we developed an automated control system with a dedicated multi-rotor and GCS to 

deliver precise insights into PV plants’ performance. Additionally, a recent study utilized a CNN encoder-decoder 

architecture to identify potential defects in PV modules from aerial images collected through several experimental flights 

by multi-rotor [6]. Building on our previous research, we have created a novel PV plant monitoring software platform, 

"RoboPV," designed for the autonomous inspection of PV plants [7–10]. In this approach, the conventional methods have 

been replaced with artificial intelligence (AI)-based techniques and high-precision multi-rotors in periodic inspection 

missions of PV plants. By integrating AI and high-precision multi-rotors, periodic inspections of PV plants can be enhanced 

[1]. 

The proposed processing platform allows various multi-rotors to autonomously monitor large-scale PV plants while 

analyzing the performance and condition of PV systems. RoboPV serves as an intelligent data processing platform that can 

be installed on an onboard microprocessor, such as a Raspberry Pi 4, and interacts seamlessly with the 3DR Pixhawk 

autopilot to control different multi-rotors. By employing advanced deep learning algorithms, RoboPV significantly 

improves aerial inspection capabilities over traditional and semi-autonomous methods.  

The platform utilizes an enhanced encoder-decoder architecture, trained with a specifically designed Fully Convolutional 

Network (FCN) as its foundation, to accurately detect the boundaries of PV plants. Additionally, RoboPV is equipped for 

automatic fault detection, analyzing real-time images to pinpoint potential issues in PV modules. To achieve this, it 

employs a precisely trained image segmentation model that predicts the exact location of any faults on PV modules with 

pixel-level precision. 

The rest of this paper is structured as follows: Section 2 introduces RoboPV and outlines its construction along with how 

it analyzes flight data and makes decisions during aerial inspection missions. Section 3 covers the dynamic modeling of 

the multi-rotor used for simulation validation, and it also discusses the outcomes and performance evaluations of RoboPV 

in the autonomous aerial monitoring of two PV plants. Lastly, Section 4 concludes with some insights and suggestions for 

future research. 

2. RoboPV Software Platform 

Recent advancements in technology involving multi-rotors, flight controllers, and remote sensing have led to significant 

progress in intelligent monitoring methods. RoboPV serves as the primary processing unit within the on-board 

microprocessor of the aerial robot, enabling navigation of the multi-rotor during flight and facilitating real-time data 

analysis to enhance the efficiency of aerial monitoring for PV plants compared to conventional methods. By utilizing 

RoboPV, any multi-rotor can be enhanced with varying levels of intelligence, allowing for the automated inspection of 

entire strings of PV plants, which includes path planning, image acquisition, online image analysis for fault identification, 
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flight data evaluation, and decision-making for corrective actions. An automated and comprehensive embedded software 

suite is proposed for RoboPV, comprising four components: boundary detection, path planning, fault detection, and 

dynamic processing. As illustrated in Fig. 1, these four modules carry out the entire process of PV plant monitoring in four 

distinct phases: 

1. Boundary Detection: RoboPV identifies the boundary region of the PV installation in a preliminary flight step 

utilizing an encoder-decoder network that is based on an FCN.  

2. Path Planning: An optimal flight route is formulated with the shortest total distance to survey the entire PV 

installation using the path planning algorithm. This route is crafted according to the endurance and 

maneuverability of the multi-rotor.  

3. Dynamic Processing: During the aerial inspection, the multi-rotor's flight computer collaborates with RoboPV's 

onboard microprocessor. RoboPV keeps track of all flight data to make decisions guided by set algorithms. If any 

failures in PV modules are identified during the mission, RoboPV transmits a control signal to Pixhawk to 

navigate the multi-rotor toward the potentially faulty area for further examination. The real-time processing 

evaluates the multi-rotor's capability to fulfill the mission after each maneuvering action. If required, the optimal 

route is re-planned for the remainder of the mission.  

Fault Detection: An onboard microprocessor analyzes the video feed collected from the PV modules in real time to create 

feature maps pinpointing defects and failures for precise location identification. 

 

Fig. 1.  An overview of the RoboPV’s role in autonomous aerial monitoring of a PV plant. 

2.1. Boundary Detection 

As part of RoboPV, we utilize a modified FCN backbone to identify the pixel-level boundaries of a PV plant. This 

technique allows each pixel in the aerial image to be labeled, determining whether it is part of the PV strings. The structure 

of the proposed network is illustrated in Fig. 2. 
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Fig. 2.  The architecture of the encoder-decoder network that is used for boundary detection. 

To create an accurate image segmentation model, a dataset of aerial images of large-scale photovoltaic plants, titled "Amir," 

was developed elsewhere [11]. A total of 3584 aerial images of PV plants from twelve different countries are included in 

Amir. The encoder processes these aerial images and their corresponding masks through convolutional operations to 

generate low-resolution feature maps. To reconstruct images featuring the extracted PV plants, these features are fed into 

the decoder section of the network, where up-sampling takes place. For training and evaluating the model, 80% of the 

entire set of images is randomly selected for the training phase, while the remaining 20% is used to assess the performance 

of the trained model on unseen data. The training process yields an accuracy rate of 97.61%, whereas the testing process 

achieves an accuracy of 96.99%. [11]. As shown in Fig. 3, the predictions made by the trained network are quite accurate 

when it comes to detecting the boundaries of three specified PV plants. The final output image measures 240 by 320 pixels, 

with pixel intensities ranging from 0 to 255. The model is designed to push the pixel values in the areas representing the 

PV plants closer to 255, which results in some regions of the image appearing gray. To delineate the boundaries of the PV 

plants, a threshold is established to filter the pixels based on their intensity values. For instance, pixels with values 

exceeding 125 are classified as parts of the PV plant boundary. 

 

Fig. 3.  Predictions of the trained model on two given PV plants. 

2.2. Path Planning 

In aerial autonomous monitoring of a PV plant, the multi-rotor needs to navigate a series of waypoints that encompass the 

entire area of the PV plant. Additionally, it is crucial to employ a dedicated path planning algorithm to calculate an optimal 

path for the aerial monitoring operations of the PV plants. To transmit waypoints to the aerial robot, it is necessary to 

precisely calculate a set of waypoints. An accurate determination of the PV plant's boundaries is vital for the path planning 
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algorithm. The most efficient path for the multi-rotor is one that allows for the inspection of all PV modules at the shortest 

distance, while ensuring that there are no blind spots within the camera's field of view (FoV), particularly in the border 

areas. When planning the path, the primary goal is to devise the shortest route possible within the PV plant to reduce the 

time taken for aerial inspections. Given the 90-degree FoV of the aerial camera utilized in this study, the multi-rotor can 

cover a 30 × 30 m² area on the ground while flying at a constant altitude of 15m. The final computed flight paths are 

depicted with red lines over these PV plants in Fig. 4. By utilizing the generated optimal path, the multi-rotors will 

effectively cover all sections of the PV plant, with particular attention given to the corners, by the camera's FoV. 

The main goal of the control block is to establish the desired waypoint for a multi-rotor based on varying flight conditions. 

In Home Mode, the multi-rotor launches from its home position to reach the first waypoint. In Flight Mode, it follows a 

predetermined path, continually updating its target waypoint as it nears the current one. In Maneuver Mode, if a fault is 

detected with the PV arrays, the multi-rotor will stop and descend to a height of 5 meters, hovering for 60 seconds to assess 

the situation. After this monitoring period, it will decide whether to continue on its current course or change its trajectory. 

 

Fig. 4.  The outputs of the path planning on three sample PV plants. 

2.3. Dynamic Processing 

RoboPV sends the calculated waypoints from the path planning to Pixhawk using an application programming interface 

(API) designed for MAVLink. Acting as a client, RoboPV interacts with Pixhawk through these APIs. The dynamic 

processing of PV plants consists of three primary subsystems, each with a specific function. Fig. 5 illustrates the schematic 

of the dynamic processing. As the multi-rotor operates, the dynamic processing evaluates its flight data to make rapid 

decisions. Flight data encompasses position, velocity, battery level, and images captured of PV strings. The dynamic 

processing gathers information from Pixhawk and fault detection to determine the optimal action based on the robot's 

current status. As shown in Fig. 5, this unit also engages with other elements of RoboPV and the Pixhawk flight controller. 

Consequently, following the evaluation of fault detection, the dynamic processing takes charge of executing maneuver 

actions, which include a sequence of activities for the precise inspection of the intended area. The decision-making 

subsystem of the dynamic processing is activated after each monitoring maneuver to assess the flight condition and make 

quick decisions. This phase assesses if the multi-rotor can fulfill the mission while on its current path. 
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Fig. 5.  The architecture of the Dynamic Processing unit. 

After evaluating the potential damage to the PV modules, a maneuver command is executed. A maneuver action refers to 

altering the multi-rotor's states to closely inspect the target area within a PV string. During the aerial examination of a PV 

plant, several scenarios may arise. Initially, the damage is identified, and the multi-rotor begins its maneuvering. To 

approach the affected PV modules, the multi-rotor decreases its altitude. At this stage, the multi-rotor hovers at a new 

height to thoroughly analyze the area. After detecting the failure of a PV module, the multi-rotor ascends back to its original 

flight altitude and awaits further instructions from RoboPV. A key component of autonomous aerial monitoring involves 

decision-making. This process assesses whether the multi-rotor can proceed with its current route after each maneuver. 

Elevating the flight altitude is utilized to expand the multi-rotor's field of view over the ground while planning a new 

trajectory. By utilizing the MAVLink communication protocol, decision-making transmits the waypoints to the Pixhawk 

autopilot if the new altitude is viable. 

 2.4. Fault Detection 

Once the multi-rotor starts flying over the PV plant, the fault detection unit initiates the analysis of the aerial images 

captured from the PV modules. Various cameras are accessible for image gathering, each with different frame rates. The 

multi-rotor maintains a steady cruising speed of 5 meters per second, moving forward 5 meters each second. Thus, while 

the fault detection unit processes the frames, the multi-rotor travels an additional 5 meters since the last time step. The 

movement of the multi-rotor during the image processing by the fault detection on the microprocessor does not influence 

the efficiency of the RoboPV in detecting faults automatically, and there is adequate overlap (20 × 30 m²) between the 

images taken in the previous and current time steps.  

An aerial RGB image is initially imported into a PV module extraction tool. Through various image processing methods, 

the module extractor identifies the modules. Utilizing a modified version of the VGG16 model, feature maps are derived 

from both the images and the masks. Depending on the size of the input image to the model, the first layer dimensions, 

known as the input layer, are adjusted accordingly. 

The input images have a resolution of 640 x 480 pixels, and have a depth of 3. A convolutional layer is subsequently 

employed in the encoder unit to enlarge the dimensions of each layer. The two-dimensional matrices of the images and 
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masks are fed into the network as inputs. Following this, the extracted features are transmitted to the decoder section of 

the network for up-sampling to recreate images with bird droppings. Improved segmentation of the droppings is attained 

by enhancing the decoder section of the proposed encoder-decoder architecture. 

The output of the trained network consists of a binary image, where the pixels identified as belonging to the multi-rotor's 

dropping are assigned a value of 255, while all other pixels are set to 0. To assess the network's performance, several well-

established metrics were utilized, including the Dice (F1) score, the Jaccard (J) score, also known as the Intersection-Over-

Union (IoU), and pixel accuracy. In segmentation tasks, the Jaccard score is particularly prevalent. This index is determined 

by calculating the ratio of the overlap between the predicted segmentation object and the ground truth mask to the total 

area of both the prediction and the ground truth combined. The training process for the neural network occurs in two stages. 

Initially, a down-sampling operation is performed on the images to generate low-resolution feature maps. Subsequently, 

an up-sampling operation is conducted to reconstruct the image, highlighting the areas where potential bird's drops may 

appear.  A base learning rate of 0.0005 is established for the training of the network. The system provides reports on training 

and validation loss rates, as well as accuracy rates, at each stage of the process.  

To prepare the extracted modules for training, several preprocessing steps are necessary. First, we conduct a thorough 

examination of each PV module to check for the presence of bird droppings. The training consists of 23 epochs, with a 

batch size set at 32. To ensure diversity within each batch, the images are shuffled. We utilize binary cross-entropy as our 

loss function. Subsequently, the encoder-decoder model is tested using the extracted modules from the PV strings to 

evaluate its performance. The results are illustrated in Fig. 6. By using a dataset that the model has not encountered during 

training, we find that it can accurately pinpoint the locations of bird droppings on the PV modules, achieving an impressive 

average accuracy of 93.33%.  

 

Fig. 6.  The final output of the trained fault detection model for different affected PV modules by birds’ drops. 

 

Table 1. The performance measurements of the FCN with defined metrics. 

No. Activations Pixel Accuracy IoU Score F1 Score 

1 RELU 0.93 0.42 0.63 

2 TanH 0.90 0.41 0.61 

2 Sigmoid 0.95 0.46 0.62 
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3. Simulation and Results 

In the context of model-based design for control systems, the primary requirement is the establishment of a mathematical 

model for the plant under consideration, which in this instance is a multi-rotor system. Multi-rotors, particularly quad-rotors, 

represent a highly non-linear, under-actuated, and intrinsically unstable dynamic system. They are frequently employed as 

test cases for control system design in several researches [12]. The flight control system encompasses various functions, 

including vehicle stabilization and position tracking. Within our laboratory, the Pixhawk 4, produced by Holybro, has been 

selected for the control of aerial vehicles across multiple operational modes, based on its performance metrics. The Pixhawk 

control system is comprised of three distinct cascade PID-based controllers:  

1. Altitude controller: Control and change the multi-rotor’s altitude by increasing or decreasing all motor angular 

velocity simultaneously during flight.  

2. Attitude controller: Changing the multi-rotor’s Euler angles by generating pitch, roll, and yaw moments.  

3. Position Controller: The desired roll and pitch angles are computed and fed into the attitude controller to track the 

generated path via the multi-rotor. 

3.1. Mathematical Modeling 

To showcase the performance of RoboPV, we developed a six degrees of freedom dynamic model for a multi-rotor in a 

SIMULINK environment. This model was applied to an aerial monitoring mission at two different large-scale photovoltaic 

(PV) plants. The PIXHAWK flight control system and the SIMULINK environment were interconnected during the 

Hardware-in-the-Loop (HIL) test using the MAVLink API. The six degrees of freedom dynamics model, which includes 

both rotational and translational equations of motion for the multi-rotor, was derived based on the Euler-Newton formulas 

[13] as shown in Fig. 7.  

 

Fig. 7.  Block diagram of the quadrotor’s attitude and position dynamics. 

3.2. Results of Monitoring 

To demonstrate RoboPV's effectiveness in autonomous aerial monitoring of a PV plant, it's essential to simulate real-world 

conditions on the Pixhawk autopilot processor through PIL tests. For this purpose, as previously mentioned, the process 

begins with the boundary detection unit, which extracts the PV plant's boundary points using a trained deep neural network. 

These points then serve as inputs for the path planning unit. This unit, taking into account various factors such as the PV 

plant's dimensions, panel sizes, camera field of view (FoV), and the multi-rotor's altitude and speed, devises an optimal flight 

path that covers the entire plant while minimizing total distance. Fig. 8 illustrates the processor-in-the-loop (PIL) simulation 

trajectories for two selected PV plants, clearly showing the multi-rotor taking off and proceeding along the pre-planned 

paths. The aerial robot continues its flight until it detects a potential fault. Once the fault detection unit identifies issues with 

the PV modules, the dynamic processing unit commands the multi-rotor to slow down and halt at the spot where the fault 

was detected. Subsequently, the multi-rotor descends from an altitude of 15 meters to 5 meters, hovering over the fault for 

60 seconds while streaming video back to RoboPV for real-time analysis. During this time, the fault detection unit conducts 

a more detailed examination of the area, where the multi-rotor has lowered its altitude. After the 60 seconds have elapsed, it 
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automatically returns to its previous altitude and awaits further instructions from RoboPV. However, when executing fault 

detection maneuvers, there may be instances where the multi-rotor is unable to complete the planned trajectory due to a low 

state of charge (SOC). In such cases, RoboPV's decision-making unit will replan the trajectory at a higher altitude. This 

adjusted path results in a larger field of view but with lower accuracy, ultimately shortening the distance traveled. While this 

shorter trajectory ensures mission completion, it may come at the expense of performance. 

 

Fig. 8.  The simulated aerial inspections over PV plants. (Red dot: Take-off area, Green dot: Landing area). 

 

The detailed multi-rotor states during the simulation and the subsequent fault detection of the two mentioned PV plants are 

presented in Fig. 9 and Fig. 10. 

 

Fig. 9.  Multi-rotor states during the first PV plant monitoring. 
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Fig. 10.  Multi-rotor states during the second PV plant monitoring. 

4. Conclusion  

This study presents an embedded software package known as RoboPV, specifically designed for the management of aerial 

robots in the monitoring of large-scale PV plants. To validate the performance of RoboPV in aerial inspections, 

comprehensive PIL tests were conducted. The Pixhawk 4 Holybro autopilot served as the processing unit, facilitating the 

control and navigation of the multi-rotor along predetermined trajectories established by RoboPV. The functionalities of 

RoboPV—including path planning, dynamic processing, path-following guidance, and the multi-rotor dynamic model—

were simulated in real time within a computer environment. The findings demonstrate that RoboPV can perform autonomous 

aerial inspections with an overall accuracy of 93% in large-scale PV plants. Further detailed information regarding RoboPV 

is available in other publications [14].  
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