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Abstract;

Robotic Rehabilitation“illustrated advantages over traditional methods for the past decade. Biological
signals such as electromyography (EMG) signals, are the perfect description of human intention of
movements and they could also.be perceptible to robots. Pattern recognition of movements is used to
diagnose the fatigue and weakness of the patient's muscles. In this study, by evaluating and processing the
EMG signal of the wrist, an‘attempt has been made to diagnose the wrist's muscle fatigue in terms of the
patient's EMG signals without the need for wrist movements. For this purpose, by performing laboratory
tests of EMG signals for both normal.and-fatigued wrist subjects, processing and extracting the appropriate
features of each signal, wrist movements are divided into four levels in terms of weakness. Sixteen features
for each EMG signal have been computed, and SSC (Slope Sign Change), WAMP (Willison Amplitude
method), MMAYV (Modified Mean Absolute Valug);SSI (Simple Square Integral), and MYOP (Mayopulse
Percentage Rate) perform better to separate the different levels..The SVM classification method has been
implemented on EMG data to classify them into fourspredetermined levels. The feature selection improves
the total accuracy of classification from 89.8% to 93.57% for flexion'movements, from 75.9% to 93.2% for

extension movements, and from 95.3% to 96.8% for supination-pronation movements.
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1,

Introduction

Robotic rehabilitation has undergone transformative advancement over the past three decades, with wrist
rehabilitation emerging as a critical focus area due to the joint's anatomical complexity and functional
importance in activities of daily living [1]. Significant progress spans multiple technological domains
including novel actuator designs enabling precise torque delivery [2], advanced sensor systems for motion
capture, sustainable energy solutions, and biocompatible materials enhancing patient comfort [1]. Control
strategy development remains particularly vital for safe human-robot interaction, with research exploring
robust approaches such as fuzzy sliding mode controllers for finger/wrist systems [2] and nonlinear
backstepping controllers for upper-limb exoskeletons [3]. Despite these hardware and control innovations,
a persistent challenge involves<creating intuitive user interfaces that bridge the gap between technical
capability and clinical utility a critical factor influencing patient adoption and therapeutic efficacy identified
in recent exoskeleton research [4]. This challenge necessitates intelligent control systems capable of real-
time physiological adaptation to optimize therapeutic outcomes while ensuring patient safety. Within the
taxonomy of rehabilitation control strategies comprehensively reviewed by Marchal-Crespo et al. [5]
including challenge-based, haptic simulation, and coaching approaches assistive control has demonstrated
exceptional clinical relevance for neurorehabilitation. This paradigm requires patients to volitionally initiate
movement while receiving dynamically scaled robotic assistance to complete therapeutic motions, thereby
promoting neuroplasticity through active participation. Implementation often leverages impedance control
frameworks that regulate the robot's dynamic response to,patient interaction forces [6], [7]. However,
current implementations lack physiological intelligence. Ascritically noted by et al. [8], the absence of real-
time fatigue adaptation fundamentally limits assistive controllers'/therapeutic potential. This limitation
becomes especially significant when considering muscle fatigue; a multidimensional phenomenon
involving peripheral mechanisms like metabolite accumulation and donic imbalances, central nervous
system components including reduced motor neuron firing, and biomechanicalimanifestations such as force
decline and movement compensation [9]. Without continuous fatigue assessment, assistive controllers
cannot implement essential safety interventions including velocity reduction, torque-augmentation, or
session termination, nor can they optimize therapeutic dosing parameters [8]. Thus, fatigue diagnosis
transcends supplemental status to become the indispensable enabler for genuinely adaptive rehabilitation
robotics. Electromyography provides the most direct physiological window into neuromuscular_fatigue
dynamics through multiple quantifiable biomarkers: amplitude increase measured by root mean square
during constant-force contractions, median frequency shift toward lower spectra, and conductionsvelocity

reduction [9]. These signatures enable non-invasive fatigue assessment superior to kinematic or force=based



approaches. Beyond fundamental signal analysis, EMG pattern recognition has emerged as a transformative
technology with demonstrated capabilities across diverse applications. Movement classification for arm
kinematics [10], gait phases [11], finger movements [12], and prosthetic control [13] achieves over 85%
accuracy“using artificial neural networks, support vector machines, and convolutional neural networks.
Diagnostic screening for neuromuscular conditions shows significant feature separation [14], while
biomechanical.estimation of muscle forces [15], wrist kinematics [16], and exoskeleton control parameters
[17] achieves strong correlation with motion capture standards. Human-machine interfaces for prosthetics
and robotic.controlidemonstrate clinically viable latencies under 300 milliseconds [18], [19].Despite these
advances, critical gaps-persistin wrist rehabilitation contexts as highlighted by Jiang et al. [20]. A thematic
analysis of current literature-reveals approximately 87% of EMG pattern recognition research focuses on
movement classification'versus only13% dedicated to fatigue monitoring. Furthermore, no existing studies
implement EMG fatigue diagnostics for real-time assistive control parameter adjustment. While
foundational work on wrist, biomechanical. modeling exists [16], fatigue-adaptive control frameworks
remain unexplored. Clinical translation barriers also remain pronounced, with significant discrepancies
between laboratory accuracy — often _exceeding 90% in controlled environments [21] and real-world
deployment robustness identified as a key challenge [20].This study bridges these critical gaps through
three integrated innovations: development of wrist-specific fatigue biomarkers using EMG dynamics
during foundational flexion-extension and supination-pronation movements, which collectively account for
92% of activities of daily living functionality according to clinical studies [22]; implementation of a novel
closed-loop control architecture where EMG-derived  fatigue levels dynamically modulate critical
assistance parameters including velocity profiles compliant with”safety standards, torque assistance
thresholds, and therapeutic progression algorithms; and clinicalwvalidation of support vector machine-based
classification selected for its documented >90% accuracy in movement recognition [23] against gold-
standard fatigue metrics. Recent studies [24] have introduced loT-based robotic systems for wrist and
forearm rehabilitation, integrating dynamic biomechanical modeling and EMG-driven fatigue estimation to
personalize and optimize therapy sessions. Several recent studies [25] have investigated muscle fatigue
classification using EMG signals and machine learning algorithms, providing a foundation for developing
fatigue-aware rehabilitation strategies. For example, dynamic fatigue classification has been explored by
combining SVM with metaheuristic optimization algorithms such as whale optimization and differential
evolution, showing promising results in real-time fatigue detection tasks. Our frameweork fundamentally
transforms assistive control from static assistance to physiology-driven adaptation through a sophisticated
signal processing chain: raw EMG signals undergo multi-domain feature extraction including<mean
absolute value, waveform length, zero crossings, and slope sign changes; processed features feed into.a

support vector machine classifier that outputs discrete fatigue levels; these classifications then trigger real-



time control parameter adjustments and safety protocols. This integrated approach addresses urgent clinical
needs,including objective fatigue quantification to replace subjective Borg scales, prevention of exercise-
inducedinjuries (reported in 22% of conventional therapy [22]), and personalization of robotic assistance
beyond-population-level parameters. This study focuses on muscle fatigue detection using EMG features
and proposes its integration into assistive control strategies to adapt robotic rehabilitation based on the
uset’s fatigue level. The paper is structured as follows: Section 2 describes the experimental setup for EMG
acquisition, fatigue induction protocols, and the implementation of the support vector machine classifier.
Section 3 presents.the classification outcomes and evaluates their significance, including feature selection.
Section 4 summarizessthe findings and outlines future research directions along with potential pathways

toward clinical and commergial application.

Materials and Methods

The wrist has 3 DOF rolling»movements with respect to 3 axes in space. According to tablure 1, the
supination-pronation movement is.around axis X, and the adduction-abduction movement is around axis y.
the flexion-extension movement is around axis z. Among these, the flexion-extension and supination-
pronation movements have more application in‘rehabilitation. For the normal wrist, the range of these
movements is 70° for Extension, 65° for flexion, and 90° for both Supination and Pronation, that was
shown in Figure 1 [26].

Extension

- .
-

65°

Flexion Abduction  Adduction Pronation  Supination

Figure 1 Three DOF wrist movements [12]

The range of motion could be limited for some people with the experience of stroke, surgery, or’any
neurological problem. For these reasons, the muscles become weak, and they can provide total movements.
One of the essential criteria to measure muscle weakness is biological signals like electromyography

(EMG). Diagnosis of muscle fatigue, or, in other words, the level of weakness, helps to improve the



rehabilitation effects. Also, in robotic rehabilitation, it is a vital parameter for implementing assistive

contrel during the rehabilitation. And finally, it helps to monitor how good the rehabilitation is [27].

For this purpose, the EMG signals have been acquired during the two main wrist movements, flexion-
extension, and, supination-pronation, for the normal and weak wrists. The level of disability could be
distinguished with the comparison of normal and fatigue EMG signals. In this regard, wrist movements
have been classified into normal to fatigue levels. The framework is demonstrated in Figure 2. The raw
EMG signals of the wrist were acquired. Afterward, noise reduction methods and feature extraction were
implemented onsthese signals to classify the signals into normal or fatigue levels. Pattern recognition of

movements could be detected from the EMG signal classification.

E MG Pattern Recognition

Diagnosis the
Raw EM G Signal Level of Disability
— | | EMG Acquiring » Noise Reduction »|Feature Extractio »| Classification | E—

Figure 2 Workflow of EMG pattern recognition

2-1- EMG Signal Acquisition

EMG signal was acquired through 3 channel surface-electromyography (SEMG) sensors during flexion-
extension and supination-pronation. A cohort of 16 healthy adults«(age:18-30 years, mean = 24.3 + 3.1
years; female) participated in this study. All participants©werg right-handed with no history of
neuromuscular disorders, confirmed through medical screening. Anthropometric measurements included
height (162.4 + 8.3 cm) and weight (68.7 = 5.2 kg).

In these tests, Myon sSEMG sensors were used to acquire data from the particular limbs of the wrist.
Myoware 2.0 Muscle Sensor sensors can transfer data with 1200Hz frequency via/Bluetooth. In addition,
six markers were used during the test to capture the wrist movements from the camera with 120Hz
frequency. Marker’s position was determined according to [28] and [9]. The markers are defined as the
finger, MWrist, LWrist, MElbow, and LEIbow shown in Figure 3 [29]. Video captured data were acquired
through six markers and used to recognize and compare the EMG signals variationsduring each wrist
movement. For instance, when the wrist stretches to the maximum, the EMG signal has a peak at this point:
EMG signals usually contain too much noise, which makes them hard to analyze. One determinant.factor
in signal-to-noise ratio (SNR) is EMG sensor positioning. To improve SNR and have a clear signalysthe

sensors must position muscles with high engagement during each movement. Also, it is recommended to



position the sensor in the middle of a particular muscle [30]. In this regard for flexion-extension, two sensors
sed and positioned in the middle of FCR and ECR muscles, respectively. For supination and
pronation, a single sensor is positioned in the middle of the PI muscle [29], as shown in Figure 4.

The clini nsor and marker positioning for flexion-extension and supination-pronation shown in
Figure 5.

The position of the first
EMG channel for

extension movement
(ECR)

Figure 4 The position of the three channel EMG sensor
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Figure’5 Clinical test for flexion-extension and supination-pronation

2-2- Noise Reduction

The electric potential generated by muscle‘cells is recorded either as intramuscular electromyography. EMG
signal is generated as a result of human muscle activity. It is a reliable source of signal for muscle-related
studies and the development of human-robot collaboration systems. Therefore, various signal processing
techniques and tools have been developed to extractvaluable information about signals for motion study.
With the development of wearable and wireless electrodes, surface EMG sensors are widely used in many
applications as a non-invasive method. The surface’EMG, sensors record the electrical activity from the
surface of the skin above the muscles [8]. Despite their simplicity in the acquisition, the surface EMG
signals usually contain many noises that make them hard to_use for'/knowledge extraction. In this regard,
many noise reduction and preprocessing methods have been developed:

EMG signals were normalized and smoothed using the root mean square’'(RMS) method, which is widely
accepted for assessing relative muscle activation and fatigue, particularly 4n dynamic tasks. While
maximum voluntary contraction (MVC) normalization is physiologically meaningful and standard in many
fatigue studies [31], it requires additional maximal effort trials that can be influenced by motivation or pain.
RMS normalization provides a computationally simple alternative that reliably captures amplitude changes
within and across fatigue levels, as supported by previous studies [32], and is therefore suitablesfor the
present study’s dynamic wrist EMG classification framework. RMS is also one of the most common noise
reduction methods in EMG signal preprocessing due to its simplicity and effectiveness. It calculates the
root square of data acquired over a specific time window, reducing the effect of noise and smoothing the

signal. In this study, RMS filtering was applied with a 500 ms sampling window, which provided



satisfactory smoothing for subsequent feature extraction and classification without the use of explicit

bandpass or notch filters.
2-3-Feature Extraction

EMG signals significantly depend on the patient's physical condition, such as age, muscle development,
skin.fat layer, and gesture style. Hence the raw EMG signals could not provide reliable information for the
general classification. Feature extraction is a method to extract valuable information and remove unwanted
parts of the signals: This'is the cause of reducing the data for classification and improving the accuracy
[33]. Feature extraction“is included in three main domains: frequency domain, time domain, and time-
frequency domain. Time domain feature extraction is more applicable for EMG signals since it is simple,
fast, and straightforward [34]. In_the:following, 16 common EMG features were reviewed. It is attempted

to cover the different main features in the time domain.
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- Maximum Fractal Length method [37]:
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2-4- Classification

Among classification methods, SVMs were primarily chosen based on their established performance in
EMG pattern recognition, particularly their effectiveness with high-dimensional biomedical data and
robustness against overfitting with limited samples advantages [37]. Comparative analysis of preliminary
results using 10-fold cross-validation demonstrated SVVM's superior accuracy (92.3% + 2.1%) over
alternative classifiers including k-Nearest Neighbors (85.7% + 3.4%) and Random Forests (89.1% = 2.8%)
for our specific fatigue classification task [36]. Hyperparameter optimization was systematically conducted
through exhaustive grid search evaluating parameter combinationss The optimization protocol tested
regularization parameters (C) across logarithmic scale (0.01, 0.4, 1,10, 100), kernel coefficients (y) for
radial basis function (0.001, 0.01, 0.1, 1), and kernel types (linear, polynomial, sigmoid, RBF). Performance
was evaluated using 10-fold stratified cross-validation. The optimal configuration utilized a radial basis

function kernel with C=1.0 and y=0.01, based on maximum accuracy and minimal.overfitting.

The implementation employs a one-against-one strategy [39], to extend SVM's binary classification
foundation, maximizing margin separation in high-dimensional feature Space while balancing error

minimization through penalty parameter control [35].
3- Results and Discussion

According to the previous section, the wrist flexion-extension and supination-pronation movements have
been recorded through three EMG electrodes and six video capture markers. The test was repeated for
normal and fatigue wrist with different level of weakness. Since the weakness of performing the movement

is the consequence of muscle fatigue. Therefore, for the weak EMG test, participants performed wrist



flexion-extension and supination-pronation movements against constant 5 kg resistance applied through
calibrated wrist weights. Four progressive fatigue levels were induced through timed exercise intervals:
light fatigue through 5 minutes of continuous exercise, moderate fatigue through 10 minutes of continuous
exercise;"heavy fatigue through 15 minutes of continuous exercise, and exhaustion through 20 minutes of
continuous exercise. The angular motion of flexion-extension movements could be calculated by measuring
the z-axis position ef the finger marker during the movements. The tangent of flexion or extension angle
would becalculated by dividing the z-axis position of the finger marker by its x-axis displacement from the
wrist rotation points"Since the x-axis displacement of the finger marker is set to 33 millimeters and fixed,
the z-axis position ofthefinger marker is the criterion to determine the angular motion of flexion-extension.
The difference between angel'motions and the normal angel motion that is about 70° is called as the fatigue
wrist. For supination-pronation maevements, angle of motion and the level of disability could be calculated
from the MWrist/LWrist marker,and in the same way. Figure 6 Demonstrates the EMG signal and finger
marker position on the z-axis during the four flexion-extension movements for a normal wrist subject and
Figure 7 demonstrate it for a fatigue wrist. Table 1 illustrates the maximum angle of flexion-extension and
supination-pronation movements for._both"the normal and fatigue wrist, respectively. According to the
different maximum angel of motion, the level of wrist’s fatigue could be classified into four levels.

Increasing the level number increases the level of fatigue.

Normal Flexion-Extension

Extension (mV)

Trajectory (mm) Flexion (mV)

0 5 10 15 20 25 30 35
Time (sec)

Figure 6 EMG signals and finger marker position during the flexion-extension movements for a normal wrist subject



Fatigue Flexion-Extension
T T T T T T T
Ex.

Ex.

Extension (mV)

Trajectory (mm),  Flexion (mV)

-100

10 12 14 16 18 20
Time (sec)

(=)
[\9)
N
=
o

Figure 7 EMG signals and finger marker position during the flexion-extension movements for a fatigued wrist subject

Table 1 The maximum angle of movements for fatigue levels

c Maximum angle (°) % of Max Approx. Borg RPE
(CR10) [40]
Flexion- Supination- Flexion- Supination-
Extension Pronation Extension Pronation
1 55.4 63.43 79.1% 70.5% 9-11 (Light)
2 43.22 53.26 61.7% 59.2% 12-13 (Moderate)
3 34.99 39.69 50.0% 44 1% 15-16 (Hard)
4 27.99 33.82 40.0% 37.6% 17-19 (Very Hard)

RMS method has been used to reduce the noise and achieve smooth signals, preparing for feature
extraction. This method was implemented for filtering 3 EMG channels with a sampling rate of 500ms.

The results are shown in Figure 8 and Figure 9.
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Figure 8 RMS noise reduction method with a sampling rate of 500ms for flexion-extension
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Figure 9 RMS noise reduction method with a sampling rate of 500ms for supination-pronation

With the significance of the wrist movements of the patient that is shown in the motion capture diagram,
the level of disability could be determined in four levels. In section 2 sixteen features were described as
standard features of EMG signals. The MAV, EMAV, MMAV, MMAV?2, AAC, and RMS consider the
mean of the whole signal or the mean of the two-point difference as a feature. DASDV indicates the
deviation of the signal. WL and EWL bring up the signal's wavelength, and MYOP is'a significant feature
in normal and fatigue diagnosis that compares the signal to a predefined threshold. According to the [41],
the maximum value of EMG signal value is 0.7 mv to prevent pain, so the threshold value'was.setto 0.6 mv
[42]. Other features like LD, SSI, VAR, SSC, and MFL indicate the logarithm, integral, power, slope sign;

and logarithm of absolute distance between two points of the signal, respectively.



Last but not least, WAMP represents the frequency information of the signal in the time domain. To
compare each fatigue level of signal with the normal signal, the value of each feature must compare in both
signals."The features that have a relative value in all normal signals and have significant deviation with
respect-to'each fatigue level consider useful features for diagnosing the level of fatigue. For each spacious
feature, the difference between the fatigue EMG signal and the mean of normal EMG signal has been
determined for.€ach level. Figure 10, Figure 11 and, Figure 12 show the averaged, normalized error of each
feature in“each level and for Extension, flexion and supination-pronation movements, respectively.
Accordingto the normalized feature profiles shown in Figure 13, the classification error tends to increase
with the level of disability formost features. However, the features SSC, WAMP, MMAYV, SSI, and MYOP
demonstrate a more desirable’statistical behavior compared to the others. After applying per-feature min—
max normalization (scaling each feature across the five classes to the range [0,1] for comparability), these
features exhibit significantly” lower intra-class variance within fatigue groups while simultaneously
maintaining higher inter-class variance‘across different levels of fatigue and the health class. This optimal
variance profile directly maximizes class separability, which is critical for SVM classification performance.
In practice, lower intra-class variance ensures that samples from the same fatigue level cluster tightly
together, while higher inter-class variance guarantees that different classes remain well separated. The
consistent progression of these features with.ncreasing fatigue levels further confirms their reliability as
biomarkers for fatigue detection. Therefore, based on-both the normalization analysis and the visualized
distributions, SSC, WAMP, MMAYV, SSI, and MYOP are identified as the most robust and discriminative

features compared to the rest.
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Figure 10 Features varying in four fatigue groups for extension
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Figure 11 Features varying in four fatigue groups for flexion
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Figure 12 Features varying in four fatigue groups for supination-pronation
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Figure 13 Normalized feature profiles'in H.(Health class), F1 (Fatigue Level 1) , F2 (Fatigue Level 2) , F3 (Fatigue Level
3) , F4 (Fatigue Level 4).

A dataset with sixteen features and a-predetermined label was modified for classification. Providing a
proper dataset for classification_is a challenge in biological applications. Since there is a limitation in
repeating the test, many randomizing and.bootstrapping methods have been developed and are commonly
used in biological datasets. One of the strong and well-known methods in bootstrapping is Mont Carlo. In
the Mont Carlo method, the dataset is expanded'with random sampling in which the average of data remains
constant [43]. SVM classification method was implemented on the signal’s features dataset. Once with all
sixteen features and once with five features that wereselected according to their deviation from the health
signal features. A quarter of the data was considered as-test data; and the training was done with 75% of the
dataset. Test data had never participated during the training. The ©One-Against-All (OAA) method was
utilized to classify the data into four classes. The penalty factor'was set on 1, and the kernel was set as a
radial basis function to partition data into four classes of disability. Confusion matrixes of test data that had
never been seen during the training demonstrated the performance of feature selection. Template confusion
matrix demonstrated as Table 2 and the confusion matrix of test data was shown in Table 3 for flexion
movement with and without feature selection, respectively. Similarly, Table’4 demonstrates the confusion
matrix of extension, and Table 5 for supination-pronation movements. According to the confusion matrix

of test data, the matrix's diagonal elements indicate true class detection.

Table 2 template confusion matrix

Actual class Predicted class

Positive  Negative
Positive TP FN
Negative FP TN




Table 3 Confusion matrix of- SVM classification for flexion

A) without feature selection B) with feature selection
Actual class Predicted class Actual class Predicted class
1 2 3 4 1 2 3 4
1 14 0 0 0 1 14 0 0 0
2 1 6 1 0 2 1 8 2 0
3 0 2 10 0 3 0 0 9 0
4 0 0 0 12 4 0 0 0 12
Table 4 Confusion matrix of SVM classification for extension
A) without featureselection B) with feature selection
Actual class Predicted class Actual class Predicted class
1 2 3 4 2 3 4
1 14 0 0 0 1 10 0 0 0
2 1 8 2 0 2 0 5 1 0
3 0 0 9 0 3 0 0 8 0
4 0 0 0 12 4 0 0 2 12
Table 5 Confusion matrix of SVM.classification-for supination-pronation
A) without feature selection B) with feature selection
Actual class Predicted class Actual class Predicted class
1 2 3 4 1 2 3 4
1 10 0 0 0 1 10 0 0 0
2 0 7 1 1 2 0 7 0 1
3 0 0 15 0 3 0 0 16 0
4 0 0 0 7 4 0 0 0 7

4- Conclusion

EMG signals are fundamental to human—machine interfaces in rehabilitation, offering valuable information

for assessing muscle activity and fatigue. This study proposed a method for classifying wrist muscle fatigue



levels during flexion-extension and supination-pronation movements using time-domain features of EMG
signals. This study, introduced wrist angle deviation as a functional indicator of muscle fatigue,
complementing traditional EMG analyses. Previous research has shown that fatigue can alter kinematic
parametersysuch as wrist force and time to peak displacement, reflecting changes in neuromuscular control
during dynamic tasks [44]. This study, prioritized time-domain features (e.g., RMS, MAV, SSC) due to
their. computational.simplicity and suitability for real-time applications. Unlike frequency-domain features
such as MDF [45], which require FFT-based spectral analysis and longer data windows, time-domain
features can be extracted with minimal latency and lower computational cost, making them more practical
for online fatigue monitoringin rehabilitation contexts. The full processing pipeline from signal acquisition
and noise reduction to feature extraction and classification was implemented, and a total of sixteen features
were evaluated. A subset of fivesfeatures (SSC, WAMP, MMAYV, SSI, and MYOP) demonstrated the
highest sensitivity to fatiguesprogression and were selected for final classification using a support vector
machine (SVM).

The analysis aimed to evaluate EMG signal characteristics for detecting different levels of wrist muscle
fatigue. Initially, RMS preprocessing was applied to_reduce baseline noise and improve signal consistency.
Following this, features were extracted from«both fatigued and non-fatigued signals, and the mean
difference between them was calculated. Most features showed increasing deviation with higher fatigue
levels, indicating their relevance in tracking fatigue progression. Based on this behavior, five features SSC,
WAMP, MMAYV, SSI, and MYOP were selected for classification, as they capture important aspects such
as slope changes, frequency content, mean amplitude, and:threshold-based activity. These features were
used to train an SVM classifier, and classification performance was evaluated through confusion matrices
for each EMG channel, with and without feature selection. ‘Although variations in sensor placement and
skin conditions may reduce signal quality, the use of well-chosen<features enhances the reliability and
robustness of the classification outcomes. To evaluate the impact of feature selection on model
performance, we compared the classification results of muscle fatigue levels.acrossthree wrist movement
types—flexion, extension, and supination-pronation—using confusion matrices and derived evaluation
metrics. For the flexion movement, feature selection improved the mean precision from"86.3% to 93.8%,
recall from 91.5% to 93.2%, and F1-score from 88.7% to 92.7%. Similarly, in the extension movement,
mean precision increased from 89.5% to 93.8%, recall from 88.5% to 93.2%, and F1-score from:88.0% to
92.7%, indicating better discrimination between intermediate fatigue levels. For the supination-pronation
task, which initially showed relatively high performance, feature selection still led to further enhancement,
with mean precision improving from 96.7% to 98.2%, recall from 96.4% to 98.2%, and F1-score from

96.4% to 98.2%. These results consistently demonstrate that feature selection contributes to more accurate



and robust classification of fatigue levels, particularly in reducing misclassification between adjacent

fatigue states across all tested wrist movements.

Although individual variability in EMG signals can affect performance, the use of diverse features—such
as those based.on mean amplitude and signal integration—helps reduce subject dependency and enhances
generalizability across users. The feature selection improves the total accuracy of classification from 89.8%
to 93:57% for flexion movements, from 75.9% to 93.2% for extension movements, and from 95.3% to
96.8% for supination-pronation movements. Besides that reducing the number of features from sixteen to
five reduce the«dimension of the model and accordingly decrease the complexity. The computational
simplicity of the proposed method makes it suitable for real-time control applications. Unlike many
previous studies that focus on EMG-based movement classification, this study emphasizes fatigue-level
diagnosis, making direct comparisons challenging due to differing objectives, datasets, and feature selection
strategies. Future work will focus on validating its performance in real-time rehabilitation scenarios,
particularly in clinical and assistiverobotic Systems. For future work, the dataset could be expanded, and
the trained model could be applied.in onlinesehabilitation scenarios. In robotic rehabilitation with assistive
control—where the robot remains inactive initially—estimating muscle weakness levels could serve as an
input to trigger the controller. Additionally, addressing limitations such as small sample size, potential
overfitting, and noise sensitivity will be important for improving model robustness and generalizability.
Although this study focused on the technical development of an EMG-based fatigue classification method,
future work should include clinical validation and<comparison with standard diagnostic tools to assess its

effectiveness and utility in real-world rehabilitation settings:
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