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Abstract: 

This study presents a robust framework for formation tracking and cooperative control of multiple nonlinear 

quadcopters, incorporating actuator dynamics, wind drag, and uncertainties. Instead of using torques and 

forces as control inputs, the theoretical models are developed based on motor speed controls. Designing a 

controller directly based on actuator signals minimizes uncertainty, improves real-world applicability, and 

eliminates the need for an additional control allocation algorithm. Two optimal controllers, Linear 

Quadratic Regulator and Model Predictive Control, are developed and evaluated under dynamic conditions, 

including uncertainty, disturbances, and obstacle-laden environments. The error-based Predictive Control 

design minimizes sensitivity to initial conditions and enhances robustness, outperforming Linear Quadratic 

Regulator in trajectory tracking, energy efficiency, and stability. This framework is extended to a graph-

theoretic multi-agent system with four interconnected quadcopters, employing formation control to 

navigate complex helical paths while maintaining square formations among uncertainties and obstacles. 

Integrating advanced control methods and graph theory demonstrates coordination and robustness, 

validating the system's potential for surveillance, rescue missions, and autonomous transfer applications. 

This research lays the groundwork for extending these methods to larger, heterogeneous agent teams, which 

can ensure adaptability and precision in real-world scenarios. 

Keywords: 

Formation Tracking, Quadcopter, Nonlinear Dynamics, Multi-Agent Control, Model Predictive Control 

 

1. Introduction 

https://doi.org/10.22060/eej.2025.23822.5635
mailto:s.kalantary@kntu.ac.ir


AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.23822.5635 

 

Quadcopters have recently emerged as highly versatile and stable Unmanned Aerial Vehicles (UAVs), 

exhibiting immense potential for autonomous control. Their applications span a wide spectrum, 

encompassing surveillance, inspection, search, rescue missions, and transportation, positioning them at 

the forefront of modern technological advancements. Coordinating multiple quadcopters holds promise 

for extending their capabilities and adaptiveness in complex environments. This article encompasses a 

detailed investigation of control strategies, formation modeling, and guidance of multiple quadcopters in 

synchronized flight. In addition to providing the necessary research background, it aims to establish a 

robust foundation for developing distributed coordination algorithms, enabling quadcopters to tackle 

complex tasks collaboratively. 

A crucial aspect of multi-agent systems is the precise modeling and control of individual quadcopters. 

Unlike many existing approaches that rely on simplified dynamic models, our work employs a 

comprehensive Newton–Euler-based model that explicitly incorporates actuator dynamics, rotor delays, 

and aerodynamic effects—thereby ensuring a more realistic and robust control of each quadcopter. The 

work by [1] establishes a dynamic model for quadcopters, subsequently evaluating the effectiveness of 

Proportional – Integral – Derivative (PID) and sliding mode controllers for various tasks, ranging from 

hovering to precise trajectory tracking. Reference  [2] provides a comprehensive tutorial on quadcopter 

configurations and explores the intricacies of six degrees of freedom modeling. It also presents methods 

for tuning PID for altitude, position, and speed control. Nonlinear control techniques like sliding mode 

and back-stepping for stabilizing attitude and position are compared in [3].  

Consensus protocols are of paramount importance in the coordination of multiple agents, which facilitate 

decentralized decision-making. In this context, [4] establishes the stability of a consensus approach for 

velocity synchronization and formation control within second-order multi-agent systems. Reference [5] 

introduces the utilization of graph Laplacians to delineate formation shapes based on agent connectivity, 

with a distributed linear control law proven to stabilize shapes residing in the null space of the graph. 

Furthermore, the research by [6] demonstrates that an error predictor-based control law achieves 

formation tracking in fractional-order multi-agent systems under a directed graph with a spanning tree, 
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validated through theory and simulations. 

Formation flight emerges as a pivotal application within the domain of multi-quadcopter systems. [7] 

conducts an exhaustive review of control strategies, encompassing leader-follower dynamics, artificial 

potentials, and rigid formations. Subsequently, [8] establishes conditions for graph controllability for 

leader-follower nearest neighbor formations while [9] formulates theorems regarding formation 

maintenance, task duration, and velocity for robots leveraging control Lyapunov functions. Additionally, 

[10] presents an Model Predictive Control (MPC)-based controller for maintaining formation stability under 

variable communication time delays, ensuring collision-free motion along desired paths. Arbitrary 

formations using bijective coordinate transformations of regular polygons are generated in [11]. While 

existing works address formation flight through strategies such as leader-follower dynamics and MPC 

under communication delays, by considering detailed nonlinear dynamics and graph-based formation 

rules, we develop our approach to achieve stability and trajectory tracking in complex environments. 

Integrating potential field navigation with leader-follower control, as outlined in [12], manifests as a 

powerful tool for achieving robust quadcopter formations, even in cluttered environments. Similarly, [13] 

introduces a robust formation control approach leveraging MPC, which incorporates virtual structures and 

artificial potential fields to ensure trajectory tracking and obstacle avoidance. Recent studies have further 

advanced formation control strategies. For instance, [14] proposes a distributed MPC framework that uses 

both soft and hard constraints to ensure collision avoidance and maintain communication connectivity, 

with its effectiveness demonstrated through real experiments. [15] integrates MPC with an extended state 

observer to compensate for external disturbances and internal uncertainties, leading to precise trajectory 

tracking in complex environments. Additionally, [16] employs geometric control methods based on the 

SE(2) framework to design robust control laws for stabilization and formation tracking in nonholonomic 

systems, which are applied to leader-follower configurations. In contrast to recent studies that utilize 

potential field navigation and geometric control for formation tracking, our framework integrates these 

elements within an error-based MPC strategy, resulting in improved transient performance and effective 

handling of disturbances and actuator constraints. Reference  [17] develops a 12-state model and 
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implements MPC only on the roll and pitch loops—leaving the remaining translational states under PD 

control—and validates performance under nominal conditions without explicitly modeling uncertainty or 

robustness. In contrast, our work employs a full nonlinear quadcopter model, applies error-based MPC 

uniformly across the entire state vector, and rigorously demonstrates convergence and robustness under 

uncertainty, external disturbances, obstacles, and actuator faults. 

This research advances quadcopters' modeling, control, and coordination under nonlinear, uncertain, and 

dynamic conditions, presenting a robust framework for real-world applications. A comprehensive 

nonlinear dynamics model is developed, incorporating wind drag effects, actuator dynamics, and the 

inherent time delays of the actuators. These developments ensure a realistic and detailed representation of 

the quadcopter's unstable behavior, surpassing conventional modeling approaches. Existing methods 

usually linearize quadcopter dynamics, assuming torques and forces as control inputs, and then employ 

control allocation for real motor speeds. This work directly integrates actuator dynamics and delay into 

the linearized structure, allowing for seamless and accurate controller design.  

In this paper, the MPC strategy utilizes error dynamics instead of state variables to enhance robustness by 

reducing sensitivity to initial conditions. The MPC controller is compared against the Linear Quadratic 

Regulator (LQR) controller for stabilization and trajectory tracking tasks under nonlinear conditions, 

including disturbances and obstacles. Results demonstrate the superior performance of the MPC 

controller, offering smoother and more precise control signals and maintaining stability in the presence of 

transient uncertainties. Extending the work to multi-agent systems, the research employs graph-based 

formation control for four interconnected quadcopters, modeling them as nodes within a graph structure. 

Formation rules are developed for a square configuration, with a leader quadcopter assigned a complex 

helical path. The follower agents maintain formation geometry by relying on graph connectivity, ensuring 

robust and collision-free operation despite environmental disturbances and uncertainties. This framework 

integrates graph theory and formation control with advanced path planning, enabling the leader-follower 

system to navigate intricate trajectories while preserving inter-agent connectivity and stability. By 

incorporating wind drag effects, actuator delays, and modeling uncertainties directly into the nonlinear 
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dynamics and the control designs, this research achieves an important level of fidelity and robustness, 

addressing critical challenges in real-world quadcopter systems and advancing applications in areas such 

as surveillance, autonomous transportation, and rescue missions. 

2. Quadcopter mathematical modeling 

The nonlinear model governing quadcopter kinematics, rigid body dynamics, actuator dynamics, and 

subsequent linearization are discussed in this section. We thoroughly analyze the system dynamics using 

small angle approximations for roll and pitch motions to enable control system design around its 

equilibrium. The actuator dynamics employs a first-order transfer function to faithfully represent the 

relationship between rotor speed set points and actual values. 

To represent body-to-inertial frame vector transformations, we leverage a rotation matrix based on Z-Y-X 

Euler angles, as elaborated in [18] and depicted in Fig. 1. 

 

Fig 1. Quadrotor coordinate diagram 

After thoroughly examining the underlying assumptions and rotation matrices, we employ the Newton-

Euler equations to derive a set of nonlinear equations. According to [19], [20], the nonlinear state equations 

of the quadcopter are developed as 
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(1) 

where    , ,x y z  denote positions, , ,x y zv v v represent velocities, , ,x y zI I I  denote moments of inertia along the

   , ,x y z . The Euler angles , ,    represent roll, pitch, and yaw angles, respectively. g  denotes the 

acceleration due to gravity, mcT  signifies multirotor thrust and , ,x y z   stand for multirotor torques around 

the    , ,x y z axes. 
2 2 20.5 sc , 0.5 sc , 0.5 scx x d y y d z z dA v A v A v     are aerodynamic drag forces.  

x,y ,z w
v v v   and wv  is the wind velocity in three directions    , ,x y z . The quadcopter thrust and torque 

with respect to motor speeds are formulated as: 

2 2 2 2

1 2 3 4( )mc fT k         

2 2

2 4( )x fk l     

(2) 
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2 2

3 1( )y fk l     

2 2 2 2

1 3 2 4( )z mk         

where l  is the distance between two rotors and the coefficients fk  and mk  are determined based on the 

specifications of the propellers employed in the quadcopter configuration. 

The motor speed response in a quadcopter control system is characterized by the following transfer function 

from throttle command to motor speed [21]: 

1

1

s

i i

m

e
T s

    


 (3) 

Equation (3) describes the relationship between the throttle command and the resulting motor speed ( i ) 

in a quadcopter control system. The transfer function involves a first-order system with a time constant (

mT ) and delay factor ( ). The term 
1

1mT s 
 represents the first-order dynamics and 

se 
introduces the 

delay. This equation concisely represents how the motor speed responds to changes in the throttle command, 

considering both the inherent dynamics ( mT ) and any system delay ( ). 

The torque τ can be calculated from the following equation: 
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(4) 

where 
2 , m

i f i i i i

f

k
f k M f f

k
    . 

For the conversion of input torques into motor forces, one may employ the following matrix relationship. 
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(5) 

The torque equation can also be extended as 
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Now, by expressing motor speeds as 0i i    , we rewrite the equations.  𝑤0 represents the motor 

speed in the equilibrium state or quadcopter hover so 

2
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and ∆𝜔𝑖 is the speed deviation from the equilibrium value. Let  

2 2

0 02i i i          

Hence, for small deviations around values ( 0i  ), it is given by 

2

0 02i i       

Quadcopter motion is approximately modeled by linearized equations, assuming slight deviations from the 

hover state. When the angles are small     0((sin sin    and x,y,z w
v =v+v ) and assuming zero yaw, 

the translational equations for the    , ,x y z  axes simplify to  
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(6) 

Because we linearize about hover with negligible velocities, we omit aerodynamic drag in equation (6(. 

where thrust equals the weight ( mcT mg ). When the angles are small, assuming 0qr pr pq   , the 

angular equations are simplified as follows: 
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Then, the linearized dynamics are described in the state space form as 
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where  
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to equations (2), (5) and (7) state matrices are defined as follows: 
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This linear model is utilized to devise LQR and MPC control strategies for the nonlinear quadcopter.  

3. Quadcopter control frameworks 

3-1- LQR controller 
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The LQR control is designed to optimize the performance of a linear time-invariant system by minimizing 

a quadratic cost function while ensuring system stability. The fundamental idea behind LQR is to find an 

optimal state feedback control law that minimizes a weighted sum of the state and control efforts. The 

performance of the system is evaluated using a quadratic cost function of the form [22]:  

     
0

1
[( - ( )) ( - ( )) ( )]

2
X X Q X X u Ru

ft
T T

d d
t

J t t t t t t dt   (9) 

In equation (9(, Q  and R  are special matrices showing the importance of the control inputs and the states 

in the cost function. dX is the desired state that guides the quadcopters to be in the right formation, 

following some rules. The goal of making an LQR controller is to create a rule for controlling the state like 

this: 

   - ( - ( ))u K X Xdt t t  (10) 

where K  is the gain matrix that minimizes the cost function J and ensures stability. The gains K  can be 

computed by solving the continuous-time algebraic Riccati differential equation: 

-1- 0A P PA PBR B P Q
T T    (11) 

where P  is the solution to the Riccati equation. Once P  is obtained, the optimal state feedback gains K  

can be calculated as 
-1

K R B P
T . 

3-2- MPC controller 

MPC is a sophisticated control strategy that has gained significant popularity in recent decades. Unlike 

traditional control methods, MPC is a receding horizon control approach that solves an optimization 

problem at each time step to determine the control input. It provides a powerful framework for controlling 

a wide range of dynamic systems, including those that are nonlinear, time-varying, and subject to 

constraints. 
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The core concept of MPC involves forecasting the system's future actions within a limited prediction 

horizon and fine-tuning control inputs to minimize a predefined cost. By looking ahead, MPC considers 

future states and adapts control inputs accordingly. At each time step, the optimization problem is solved, 

and only the initial control input from the obtained sequence is implemented. This cycle repeats at each 

step, forming a dynamic horizon of control choices. 

The typical formulation of the MPC optimization problem is as follows [23]: 
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(12) 

The prediction equations for a system model can be represented as: 
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According to equation (13), as well as the relationship between the state and control variables  |X k k , 

 |u k k  the prediction of the state  1|X k k  can be obtained as 
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(14) 

In this paper, the MPC prediction horizon represents the future time window over which the system's 

behavior is forecasted based on the current state and model dynamics. This horizon, denoted by pN , allows 
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the controller to anticipate future disturbances and system evolutions, thereby enabling it to plan a sequence 

of control actions that drive the system toward the desired trajectory. In contrast, the control horizon, 

denoted by cN , defines the interval over which the control inputs are actively optimized. Beyond this point, 

the control signals are usually held constant or follow a pre-established pattern to simplify computations. 

By carefully selecting the lengths of these horizons, one can balance the trade-off between computational 

complexity and control performance—longer prediction horizons may provide a more comprehensive 

outlook on future states but require more computational resources, whereas shorter control horizons help in 

reducing the optimization burden while still ensuring effective control over critical future periods.  

Let 

 1 1 1|X F X Φ U
p p p c cnN nN n n nN mN mNk k       (15) 

where , ,,p p p c c
nN nN n nN mN mN

R R R R
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(16) 

The cost function is considered as  

https://doi.org/10.22060/eej.2025.23822.5635


AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.23822.5635 

 

   

        

1
( | | )

2

1
| | ( | | )

2

U HU X X MU

X X N X X

T

d

T

d d

J k k k k

k k k k k k k k

  

  

 
(17) 

where   2 , 2 , 2 .H Φ QΦ R M F QF N F QΦT T T     

The control process aims to minimize the cost function, with the corresponding input signal being 

articulated as follows: 

   ( | | )U K X XMPC dk k k k    
(18) 

where 10 0K I H MT

MPC

     and  |Xd k k  is a vector that guides the quadcopters to be in the 

right formation, following some rules.  

In Fig 2, you can see the block diagram that shows how the quadcopter is controlled. The diagram highlights 

the importance of the control mechanism, MPC, which is crucial to making the quadcopter fly smoothly. 

Each part of the diagram is like a key player in controlling the quadcopter's flight. The use of MPC in this 

system is significant because it helps the quadcopter predict and adjust to changes in its surroundings. 

 

Fig 2.  Block Diagram Quadcopter Control with MPC 
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The MPC controller is designed for all four quadcopters. We now develop formation rules in a multi-agent 

setup to plan the quadcopters' flight paths for their cooperative control. While the error-based MPC 

controller demonstrates strong robustness in tracking and uncertainty handling, it also comes with several 

practical limitations. First, the performance of MPC is highly sensitive to cost function tuning. Improper 

weight selection can lead to poor tracking, aggressive control signals, or instability. Second, the controller 

requires solving an optimization problem at every time step, which can be computationally demanding—

especially as the number of agents, system states, or constraints increases. This makes MPC dependent on 

high-performance onboard processors, and in resource-limited systems, real-time implementation may be 

challenging or even infeasible. Third, MPC’s performance can degrade under fast-changing environments 

or high-frequency disturbances if the prediction horizon or model accuracy is insufficient. Solver 

convergence time and numerical stability are also critical, particularly in embedded implementations. These 

limitations highlight the trade-offs between robustness and computational complexity, and they should be 

carefully considered when deploying MPC in real-world multi-agent UAV systems. 

4. Formation and cooperative control 

Multi-agent formation algorithm guides a group of autonomous agents, such as quadcopters, to achieve 

a desired formation shape for trajectory tracking. In this work, we consider a group of N  quadcopters 

modeled as double integrators in 3D space: 

, ,
i i i i i ip x p y p zx u y u z u    

(19) 

The objective for the group of quadcopters is to achieve a desired formation shape defined by a set of 

desired relative positions [24]: 

p pij i jd    (20) 

where  , ,i pi pi pix y zp  and ijd  is the desired distance between quadcopters i  and j . The formation 
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shape can be a square, triangle, line, etc., based on the relative positions. 

The formation control law is designed based on graph theory, where each quadcopter is a node, and the 

desired distances are edges connecting the nodes. The control input for each quadcopter is calculated 

based on the desired distances to its neighboring quadcopters [25]: 
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(21) 

where iN  is the set of neighboring quadcopters for quadcopter i  and ija are control gains, and the 

desired path is defined, for instance ( )pd rx rcos t  and ( )pd ry rsin t . 

After deriving the guiding law from the multi-agent formation principles, the desired state vector Xd  is 

defined as follows: 

[0,0,0,0,0,0, ,0, ,0, ,0]Xd p p px y z  

The control law minimizes the distance errors between neighboring quadcopters, driving the agents to 

the desired formation shape. 

To demonstrate obstacle avoidance capabilities, an obstacle is introduced into the trajectory of the 

quadcopter formation. A repulsive potential field method enables the agents to maneuver around the 

obstacle and regain their original formation and trajectories. The control inputs in the equation (21) are 
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redefined to incorporate the repulsive potential terms , ,obsx y zu  [26]:  
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(22) 

where , ,obsx y zu  represent the repulsive potential field forces defined as: 

where ar  is the activation radius, [ , , ]o o ox y z  is the obstacle position and 1r  is the distance between the 

agent and obstacle defined as: 
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(23) 
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2 2 2

1 1 1 1( ) ( ) ( )o o o dr x x y y z z r       (24) 

where dr  is the obstacle diameter. 

5. Simulation results 

Fig 3  illustrates the topology of the quadcopter formation under consideration. Each quadcopter must 

have its internal controller to model these quadcopters as nodes in a graph theoretic framework. These 

controllers allow the quadcopters to follow prescribed formation laws with minimal error. The controller 

design utilizes the quadcopter and multi-agent system parameters provided in Table 1. A key parameter 

from Table 1, which enhances the model's fidelity, is the actuator delay. For all simulations, this was set 

to a realistic value of 10 Ms. An offline sensitivity analysis confirmed that our proposed MPC controller 

remains robustly stable for delays up to 50 Ms. Exceeding this value leads to a gradual degradation in 

tracking performance, thus establishing a clear stability margin for the control system. 

Although we considered four agents to form a structured quadrilateral formation but it can be extended 

to any number of agents, the key factor is the communication and coordination framework among the 

agents, which can be adapted to different formation patterns regardless of the number of quadcopters. 

 

Fig 3. Interconnection Topology 

Furthermore, the network's connectivity shares the formation's reference signal. Even if only one agent 

directly receives the leader's command, the communication graph represented by its Laplacian matrix,  
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ensures that the command spreads to neighboring agents. In this matrix, the values capture how each 

agent influences its neighbors, so each node adjusts its state based on the differences with its adjacent 

nodes. This leads to consensus across the network, keeping the formation intact and allowing for 

coordination regardless of the number of agents. 

Table 1. Quadcopter model parameters [21] 

Parameter value 

 g   
2

m
9.81 

s

 
 
 

 

 m    1.0230  kg  

 xI    0.0095  kg·m²  

 yI    0.0095  kg·m²  

 zI    0.0186  kg·m²  

 
xzI    0  kg·m²  

 fk   1.4865e 07  

 
mk   2.9250e 09  

 l    0.2223  m  

 Q    10000*eye 12  

 R    100*daig 4  

 mT    200  ms  

     10  ms  

 pN   100  
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 cN   30  

 ija   1 

 
12xd    3  m  

 
34xd    3  m  

 
23yd    3  m  

 
41yd    3  m  

 
23 41 12 34

, , ,x x y xd d d d 
    0  

 
12zd   

2,   150
for

0,   150

t

t





 

 r    3  m  

 
r   0.1  

    1 

0 1agenqx   
T

0,  0,  0,  0,  0,  0,  4 ,0,  9,  0,  0,  0  

 0 2x agenq   
T

0,  0,  0 ,0 ,0 ,0,1  ,  0 ,9,  0,  0,  0  

 0 3x agenq   
T

0 ,0,  0,  0,  0,  0,  7 ,0 ,6 ,0,  0,  0  

 0 4x agenq   
T

0,  0,  0,  0 ,0,  0,  7,  0,1  ,  0,  0 ,0  

  

 s    0.0387  m²  

 dC   0.1  

 vW   
T m

15 ,10 ,2   
s

 
 
 

 

 [ , , ]o o ox y z    
T

1, 1 ,40   

 dr   2  

 ar   10  

 k   100  
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5-1- Scenario 1 

To evaluate the robustness of the LQR and MPC control algorithms with modeling uncertainty, the mass 

of each quadcopter is changed by 20% relative to the nominal design model. With this perturbation in 

the system dynamics, the 3D trajectory tracking performance of the two controllers is compared. Fig 4 

shows the reference 3D trajectory tracked by the quadcopters controlled by the LQR and MPC 

algorithms. As can be seen, both controllers are able to track the desired path despite the uncertainty in 

the quadcopter models. The first agent, which acts as the leader, is visually distinguished by the blue 

trajectory in Fig 4  . Its corresponding time-dependent positions in the x, y, and z directions are shown in 

Fig 5 provides a comparison of the position tracking of the two algorithms, demonstrating that both 

achieved almost similar trajectory tracking in x, y, and z directions. Finally, Fig 6  compares the control 

signals generated by the LQR and MPC controllers. The results show that both control schemes could 

maintain stability and achieve adequate tracking performance despite uncertainties in the quadcopter 

mass parameters. This highlights the inherent robustness of the LQR and MPC approaches. 

 

 

 

 

(a) 

 

 (b) 

 

Fig 4. Comparison of Quadcopters Flight Paths with 20% Mass Uncertainty: a - LQR Controller, b - MPC Controller 
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Fig 5. Time-Dependent Positions of Agent 1 with 20% Mass Uncertainty: A Comparison between LQR and MPC Controllers 

 
Fig 6. Control Signal Comparison for 𝜔1 to 𝜔4 Actuators with 20% Mass Uncertainty: LQR vs MPC Controllers over Time 
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As shown by the trajectory tracking results, the LQR and MPC controllers exhibited robustness to 

modeling uncertainties in the quadcopter mass parameters. Despite a 20% change in the quadcopter mass 

relative to the nominal design model, the two controllers could adequately track the reference 3D path 

with minimal deviation from the desired trajectory. These results validate the ability of the LQR and 

MPC algorithms to perform well even when the real-world system dynamics do not perfectly match the 

models used for control design. 

In this scenario, we assume that in the first factor one motor suffers a 20% breakdown, and Fig 7 and Fig 

8 demonstrate that even under this condition the MPC controller maintains formation integrity and 

stability exceptionally well, whereas the LQR controller’s performance degrades evidently. 

 

Fig 7. Positions of Agent 1 under 20% Motor Degradation and 20% Mass Uncertainty: A Comparison between LQR and MPC 

Controllers 
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Fig 8. Speeds of Agent 1 under 20% Motor Degradation and 20% Mass Uncertainty: A Comparison between LQR and MPC 

Controllers 

5-2- Scenario 2 

The quadcopter states for this case are presented in Fig 9 , showing the formation regaining the original 

trajectory after bypassing the obstacle.  
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Fig 9. Time-Dependent Positions of Agent 1 with 20% Mass Uncertainty and Obstacle: A Comparison between LQR and MPC 

Controllers 

The control signals generated by the LQR and MPC controllers to achieve obstacle avoidance are 

shown in Fig 10. 

 
Fig 10. Control Signal Comparison for 𝜔1 to 𝜔4 Actuators with 20% Mass Uncertainty and Obstacle: LQR vs MPC Controllers 

over Time 

Based on the quadcopter state responses shown in Fig 9, the MPC controller exhibited better transient 

performance for obstacle avoidance compared to the LQR controller, as evidenced by the smaller 

deviations in the states when bypassing the obstacle. 

https://doi.org/10.22060/eej.2025.23822.5635


AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.23822.5635 

 

5-3- Scenario 3 

In this scenario, we apply a sinusoidal disturbance exactly when it bypasses the obstacle, and the results 

can be seen in Fig 11. According to the results of this scenario, it is clear that the MPC controller can 

behave better than the LQR controller. From Fig 11, we observe that the height output controlled by the 

MPC is smoother and maintains stability better than the LQR controller. Fig 12  further supports this 

conclusion, showcasing the control signal output for the first agent. The MPC controller achieves a lower 

peak and uses less energy than the LQR controller, highlighting its efficiency and effectiveness. 

 
Fig 11. Time-Dependent Positions of Agent 1 with 20% Mass Uncertainty, Obstacle and Disturbance: A Comparison between 

LQR and MPC Controllers 
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Fig 12. Control Signal Comparison for 𝜔1 to 𝜔4 Actuators with 20% Mass Uncertainty, Obstacle and Disturbance: LQR vs 

MPC Controllers 

For a better comparison in this case, the Euler angles of the agents considering obstacle and uncertainty 

are also shown in Fig 13 . These figures show that the angles are controlled much better in the MPC 

controller, providing a more stable and precise response than the LQR controller. This indicates that the 

MPC controller is more robust in handling uncertainties and disturbances in dynamic environments. 
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Fig 13. Attitudes of Agent 1 with 20% Mass Uncertainty, Obstacle and Disturbance: A Comparison between LQR and MPC 

The presented results demonstrate the comparative performance of MPC and LQR controllers under the 

specified scenario involving sinusoidal disturbances and obstacles .Overall, the analysis confirms that 

the MPC controller performs better than the LQR controller in scenarios involving sinusoidal 

disturbances and obstacles. The MPC controller's ability to maintain stability, reduce energy 

consumption, and provide precise control makes it a better choice for applications requiring robust 

performance under uncertainty. 

According to equation (20), the formation error is defined as 

| |ij ij ije d r   

where ijr is the relative distance between agent i and agent j 

2 2 2( ) ( ) ( )ij j i j i j ir x x y y z z       

To provide a clear and comprehensive evaluation, we also analyzed formation errors between 

neighboring agents in scenario three (Fig 14–Fig 17), offering a direct comparison of MPC, LQR, and 

PID performance. These plots reveal two periods of notable error increases: between 40 s and 85 s, when 
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agents navigated around an obstacle—MPC showed superior transient performance and a faster return to 

optimal formation—and between 150 s and 190 s, during braking maneuvers that demanded precise 

formation integrity, where MPC again achieved the lowest errors, underscoring its robustness under 

dynamically varying conditions. 

 

Fig 14. Formation Error between Agents 1 and 2 with 20% Mass Uncertainty, Obstacle and Disturbance: A Comparison 

between LQR, MPC and PID Controllers 

 
Fig 15. Formation Error between Agents 2 and 3 with 20% Mass Uncertainty, Obstacle and Disturbance: A Comparison 

between LQR, MPC and PID Controllers 
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Fig 16. Formation Error between Agents 3 and 4 with 20% Mass Uncertainty, Obstacle and Disturbance: A Comparison 

between LQR, MPC and PID Controllers 

 
Fig 17. Formation Error between Agents 4 and 1 with 20% Mass Uncertainty, Obstacle and Disturbance: A Comparison 

between LQR, MPC and PID Controllers 

6. Conclusion 

This study presents a comprehensive framework for controlling and coordinating quadcopter systems, 

addressing nonlinear dynamics, actuator modeling, and environmental uncertainties with exceptional 

precision and adaptability. The nonlinear equations were effectively linearized through meticulous 

integration of wind drag effects, actuator dynamics, and delays, enabling the design of advanced controllers 
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tailored to real-world challenges. The simulation results and comparative analyses demonstrate the superior 

performance of the error-based MPC controller over LQR, particularly in achieving precise trajectory 

tracking, robust obstacle avoidance, and energy-efficient control signals. The diagrams and results affirm 

that the MPC controller maintained remarkable stability and smooth responses under scenarios involving 

uncertainty, disturbances, and complex trajectories, outperforming LQR in all critical metrics. Extending 

this framework to the multi-agent system of four quadcopters, the proposed approach successfully managed 

dynamic formations, maintaining square geometries while navigating intricate helical paths and avoiding 

obstacles. These results validate the proposed system's robustness, flexibility, and effectiveness, 

showcasing its potential for deployment in real-world applications such as rescue operations, autonomous 

transport, and collaborative missions. This research offers a scalable, reliable, and highly adaptable control 

architecture, setting the stage for further advancements in multi-agent UAV coordination. We plan to 

improve the system’s robustness against attacks and communication failures for future work. This includes 

developing secure consensus and resilient control methods to detect and ensure stable formation control even 

when some agents are compromised. 
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