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Abstract

In this study, the discrete wavelet packet transform (DWPT) has been used for the single-step and iterative
denoising methods for enhancing-data with high level of noise to identification of modal frequencies in
ambient vibration tests on a petroehemical ‘process tower in Shiraz, Iran. The ambient vibration test is
performed by the wind load. All mechanical.systems operated during the test; hence, different noise sources
exist. Here, both high and low frequency ranges are decomposed effectively in the DWPT, and it provides
a lot of global and localized information. The DWPT-based one-step denoising method fails to properly
denoise the high-level noisy data with denoising-thresholds-obtained by different theoretical methods. For
this reason, the so-called peeling approached achieved.by an iterative denoising method is used to enhance
the quality of the signal. For this iterative method, the parameters are obtained by the trial-and-error method
. After the signal-enhancement stage, the signal processing step issperformed by continuous wavelet
transforms (CWTs) to detect the time-frequency information”in/ the data. Furthermore, the modal
frequencies are directly identified by the cross wavelet transform (XWT)and the corresponding spectral
power density. Finally, the estimated frequencies by XWT are compared with the natural frequencies of a

damaged model simulated by the finite element (FE) method.
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1. Introduction

Ambient vibration tests are quick and cheap; they do not require excitation equipment and the source of
excitation is environmental loads, such as: wind [1-5], traffic loads [6] and small to moderate earthquakes

[7]. These tests are commonly used to identify modal parameters (i.e.: modal frequencies, damping and
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modal shapes), in health monitoring studies [3, 8], assessment of real time qualifications [1-5, 8-15] and
vibration controls [16]. Identifying the modal parameters of the system is challenging due to non-stationary
responses and the high-level of noise in the recorded nonlinear signals in ambient vibrations. Wavelet
transforms=[3, 4, 7-12, 15, 17-22] provide the time-frequency information of the data with different
resolution accuracies and decomposition levels in a non-parametric approach using only the output data.
However, the high-level of noise causes also problems in the performance of this powerful transformation
[23]. To reduce such shortcomings, here, the wavelet packet transform would be used.

In this study, the main purpose is to identify physical features from data with a high-level of noise using
discrete wavelet packet‘transform with multi-resolution analysis (MRA) approach. The wavelet packet
analysis permits to access _effectively the time-frequency localized information of both high and low
frequency contents. Which is the shortcoming of the common discrete wavelet transform, that is for high-
frequency components, it is«not,possible to distinguish high frequency contents from each other. Two
general data denoising or enhancement approaches can be counted in the MRA framework: (1) One-step
denoising [24-29], and (2) Iterative-based enhancement [30-36]. In the first case, in one step of MRA, it is
tried to remove noise from data. In‘the iterative approach, noise is estimated and removed from the data by
using several iterative steps of MRA. This approach is useful for data with high-level of noise, where one
step denoising methods may not be efficient.dn noisy data, it is almost impossible to completely filter out
the noise, Hence the iterative denoising method can-improve or enhance the quality of denoised data.
Iterative denoising schemes were initially proposed by Starck and.Bijaoui [36], Coifman and Wickerhauser
[30, 31], Hadjilleontiadis et al. [32, 33], and Ranta et.al-'[34, 35].

The results of the ambient vibration tests (e.g., modal frequencies, modal shapes, and damping) can be very
sensitive to noise. Few works studied only noise effects (especially effects of high-level of noise). Hence,
one of our main goal is to focus on noise-effect reduction to declinessensitivity of results obtained by
ambient vibration tests. Especially in this study, due to high-level of noise;'the common denoising methods
may not be effective. Hence her iterative denoising is introduced which was used before in some few studies
for denoising of noisy sound from recorded sounds from lungs or medicalfimages [30,31,36]. Introducing
this powerful tool is one of our purposes of the current study. After data denoising in this study, modal
frequencies of enhanced data are captured by common continuous wavelet-based transforms fora real case
study.

In the iterative method, the recorded raw (initial) signal is considered completely aswnoisefor the first
iteration, and the denoised signal is considered to have zero components. For the next iteration, the noise
signal (in the previous iteration) is decomposed into different resolution levels by MRA by the wavelet
packet transform. Regarding the decomposition results, at the last resolution level (Ji,in), Wavelet

coefficients that are large enough are considered as physical phenomenon. These coefficients are separated



from noisy information. These wavelet coefficients are reconstructed by the wavelet packet inverse
transform and then are added to previous denoised (detected) information from the previous iteration (for
instance, the zero vector at the first iteration). The remaining wavelet coefficients (with small values) are
reconstructed as updated noise for use in the next iteration. This iterative procedure is repeated step-by-step
until reaching a pre-determined criterion. Because physical information is collected layer by layer from
residual noise,thisiapproach is also expressed as “peeling off successive layers” scheme [30, 31]. In this
iterative_method, in each iteration, it is assumed that the wavelet coefficients with large enough values
belong to physical.information. These wavelet coefficients are detected based on (predefined) thresholds at
the last resolution levelin the\wavelet-packet transform. These thresholds can be determined by means of
the variance of wavelet coefficient values at the last resolution level (for instance see the last row, level 4,
in Fig. 1; in this level, for each decomposed set of coefficients, corresponding variance can be calculated.
For each set, then, the threshold,value would be proportional to corresponding variance). In general, the
threshold values can be chosen based on some criteria or even empirically.

By comparing the results of thedterative denoising approach with the results of the one-step denoising
approach for data with high-level“ef noise and so with small signal-noise-ratio (SNR) values (here, in
ambient vibration testing), the importance of using.the iterative denoising method would be confirmed.
Although the quality of the signals is improved by the iterative algorithm, it is still a difficult and
challenging task to determine the physical properties-in‘such improved data.

In this study, the concept of cross wavelet analysis [25;37] and the corresponding spectral power have been
used to improve the ability of detection of physical-features./These transformations would be used for
denoised data obtained from the iterative denoising algorithms Cross-wavelet analysis allows the
identification of physical features common in two signals with significant common energy in time-
frequency space. Since noise has a random property, two recorded data are expected to have different noise
energies at different times and resolutions. Hence, noise effects would bediminished in cross analysis.
Also, the spectral power of the cross-wavelet transform can help to identify the lacally excited frequencies
in the frequency domain. Features that have both time continuity and energyconcentrationwith large values
in spectral power representation could include physical phenomena. In identifying the modal frequencies
for modes with small contributions, simultaneous investigation can be helpful, (which'is later discussed in
this study).

At last, it should be noted that the abovementioned signal-enhancement method withiterative denoising
concept can be integrated (as a preprocessor) with other wavelet-based methods developed to identify
modal parameters, see e.g. [4, 12, 38].

Here, wavelet-based time-frequency representations are used to detect physical features. There are other
methods for studying MRA, such as the Hilbert-Huang transform (HHT) [18].



This study is composed of nine parts. Section 2 presents briefly the study methodology. Section 3 reviews
one-=step denoising techniques by discrete wavelet transform. Section 4 devotes to issues related to the
wavelet packet based iterative denoising. Section 5 surveys two wavelet-based signal processing and pattern
recognition:tools: XWT and spectral powers. Section 6 explains the general features of the periling tower
and the corresponding ambient vibration tests. Section 7 presents a numerical benchmark problem to
compare the performance of the one-step and iterative denoising methods. Section 8 presents the results of
the signal-enhancement and frequency detection of the recorded data from the ambient vibration test. The
concluding.remarks‘are presented in Section 8.

2. Proposed methodology

One-step wavelet-based denoisingimethods have been used widely for denoising data with different wavelet
families, decomposition levels, and thresholding methods. Designing new wavelet families [39], new
wavelet transforms, or thresholding [40-44] is still’an open research area for system identifications. For
high levels of noise, however, the one-step denoising methods may not be so effective, and so iterative
filtering is suggested, e.g. [45]. In this study, there are.high-level of noises mainly due to the rigidity of the
structure, elevators, machinery operations, fans and considering wind for the ambient test. Hence, here, the
iterative wavelet-based method would be used to reduce noise'effects as much as possible. The iterative
method would use the discrete wavelet packet method and the hard-thresholding approach. The main
guestion is how to choose the threshold value which is proportional /to the noise-variance. In general, the
theoretical methods to estimate noise levels may lead to over- or under-estimated results. Hence, the
empirical methods can be recommended [46,47].

Our experiments show that for wavelet-packet-based iterative denoising choosing.of the proper proportional
coefficient may not be feasible through empirical observations based on either SNR or peak SNR (PSNR)
(which was proposed in [46] for the iterative method based on common discrete wavelet transform). Hence,
a proper value may be estimated by the trial-and-error method.

By a benchmark problem, the robustness of the iterative method is studied. The problem is denoising a
harmonic signal with high-level of noise with the wavelet-based one-step and the iterative schemes.

After iterative denoising and enhancements of initial data, the possible modal frequencies would be detected
simultaneously by using complex CWT and corresponding power spectra in the wavelet spacess The
complex CWT reveals the frequency contents through time and variation pattern in time. For modal

frequencies, such frequencies would continuously be excited during time. Also to capture more precisely



the modal frequencies, the concept of cross-wavelet analysis is used to choose common mobilized
frequencies. Finally, for several pairs of recorded signals in the main tower, the CWTSs, corresponding cross-
wavelet analyses, and corresponding spectral powers would be performed. Those frequencies which are
commonrinall cross-wavelet analyses would be known as the most possible modal frequencies.

Finally, these frequencies would be compared with the results obtained by a simple linear finite element

model, reported‘in-another study [48].

3. MRA-based denoising based on wavelet packet transformation

Here the wavelet packettransformation is used to distinguish effectively all possible localized information
in time-frequency representation,(both with low and high frequency contents). The schematic illustration
of the decomposition process of the'wavelet packet transform is presented in Fig. 1, where A and D denote
the approximation and detailsinformation, respectively; Also, H and G indicate high-pass and low-pass
decompositions, respectively. Finally,«the decomposed information belongs to the last level, level 4 or
Jmin = 4. All calculations woulde performed for this level.

The different stages of wavelet packet-based data improvement (denoising) can be summarized as follows:
1) estimation of noise level in a process; 2) modification the detail coefficients {d(J,in, k)} in the Jp,inth
resolution level (the coarsest resolution level)and the location (or time) k/2/min (for data belong to [0,1]);

the modified detail set is denoted by {ci(]min, k)}; 3).reconstruction of the denoised signal by both
{d(Jmin, k) } and unchanged scale coefficients {c(/41,, 1)} (belong to AAAA set in Fig. 1) [22, 26, 27].
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Fig. 1: Procedure for signal decomposition using wavelet packet transform. Where: A is approximate information, D denote$
detailed information, H is low pass filter, and G is high pass filter [22].

Modifying detail coefficients can be performed by thresholding technique. For example, one can usesthe

hard thresholding technique [26-28], which is a simple kill-or-hold method. In this technique, for a



predefined threshold €, detail coefficients smaller than this threshold are considered zero. The soft
thresholding method can be used to prevent sudden jumps in the modified (thresholded) detail coefficients,
which is defined as [26-28]:

ldG, k)| <, (1)
dG.k) = {Slgn[d(j AU, k) —¢l, 1d(, k)| > e’

Otherthresholding functions such as semi-soft and Garrote [29] can also be used to have a smooth transition
in the threshold coefficients. The threshold value can be independent of the resolution level j or dependent
on it. The independent level is known as global thresholding, where a predetermined threshold ¢ is used for
all resolutions. But for the level-dependent case, for each resolution level, a different threshold is used,
which is shown as ¢; for level j [28]. Several methods have been proposed to estimate the threshold value,
such as: SURE, Universal and GCV (generalized cross-validation) [26-28]. Each of these approaches has
its own concept to determine the threshold values, but all of them try to minimize the mean squared error,
MSE (€). These three methods.can be developed as global and level-dependent thresholds.

According to the number of denoising iterations on noisy data, two different approaches were developed:
1) one-step [24-29], and 2) iterative method, also_known as layering method [30-36]. In the one-step
method, noise is removed by one-step of threshelding (with a general or level-dependent threshold value),
while in the iterative method, noise is removed iteratively and step by step, until satisfying a convergence
criterion. In each iteration, the data is the noise‘obtainedfrom the previous iteration [30-36] .

Based on the concept of MSE, two criteria, the signal noise"ratio (SNR) and the peak signal noise ratio
(PSNR), have been used to determine the quality of various.data enhancement methods (denoising). These
two criteria can be defined as [27, 28]:

Ave. signal power

a%(8) a(8)
SNR = Ave. noise power 10L0g10[ )] 10Laogo [az(nmse)]( B), (2)
Max(|$i)? Max((3])
PSNR = 10L0gso [<755] = 10L0g1o [75355] 0B

where $ and s denote denoised and original (noisy) signals, respectively; o2 (Z) is the variance of Z; §; is
the ith element of §; and o2 (s — §) measures the variance of the noise: s —§ . Function.R = o?(s — §)
denotes the risk-function, which is equivalent to MSE [28]. The unit of measurement for both'SNR and
PSNR is dB (decibel). The parameter SNR measures the ratio of average power of a signal to average power
of power. Also, PSNR measures the ratio between the maximum possible value of power of‘a signal'and
the power of noise. Hence, the larger values of the SNR and PSNR indicate the better performance of the
denoising (or compression) methods, because these two parameters have inverse relationships with the
noise variance (o2(s — §)). For practical applications, values larger than 30 dB are recommended for
PSNR.



4. Iterative denoising based on wavelet packet transform

Despite the widespread use of one-step denoising methods for signal processing problems, this method may
not lead to suitable results for highly noisy data. Iteration-based denoising methods have been developed
to improve the results of one-step methods [30-36]. An iterative denoising approach is followed in this
section to improve data with a high level of noise. For a noisy signal Z = {z[1], -, z[N]}, assuming the
signal Z as noise isithe first step of the iterative denoising algorithm. Then, coherence and significant
featuresacross the noise.can be obtained.

Noise detection is‘performed by the decomposition of Z by MRA (here by the wavelet packet transform),
and then at the last level of resolution (with the coarsest resolution level j = J,,in OF Jimin = 4 in Fig. 1),
those detail coefficients that are larger than a specified threshold (which represent important phenomena)
are identified. Using the statistical approach, the distribution of detail coefficients d(J,,in, k) is measured

. \2 .
(at coarsest scale J,,,;,,) and.is shown by.the variance of the detail coefficients, i.e.: (a,{"“”) . Then, detail

coefficients larger than C x a,{"”" are assumed to belong to a considerable physical phenomenon, for € >
1. The selected detail coefficientsiwith the’(unchanged) scale coefficients at the coarsest resolution level
Jmin are reconstructed as the first estimate of the denoised signal, and the remaining of the detail coefficients
along with zero scale coefficients are reconstructed and named as updated noise data. The denoised data at
the end of each iteration is added to the denoised_data“obtained in the previous iteration. The above
procedure is repeated for the new updated noise data in'the next iteration. In fact, significant information is
frequently removed from the initial data containing high=level of noise. In this regard, this approach is also

known as the peeling method.

5. Information detection of the enhanced data by continuous wavelet transform

In the previous section, the signal enhancement method was described based on the discrete wavelet packet
transform. In this section, after improving the signal, the time-frequency information of the data can be
studied and detected by using the CWTs, where for data f(t) and waveletap(t), CWT ¢an be defined as:

Wy f(a, b) :J%q f_+;° fy* (%) dt, where: a and b denote the scale and location parameters,
respectively; and the symbol “*” shows the imaginary conjugate of a function/ This means by the
continuous wavelet transform, a signal is watched locally with a moving window of different width (by
moving ¥ (t/a)) Hence, localized information in time-frequency can be detected. In this work; the complex

Merlot wavelet is used to detect instantaneous frequencies, defined as:
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where v}, denotes the bandwidth frequency and v, is the central frequency. It is assumed that: v, = 2 and
v, = 1.10. Hence, the condition of complexity of the Merlot wavelet, that is \/v_bvc > +/2 would be
satisfied. XWT and related spectral power are two powerful signal processing tools developed based on
CWTs: At first, the concept of spectral power of wavelet transform is presented. This concept helps identify

energy cancentrationqn the frequency (or scale) domain. Spectral power is defined as follows:

1 to+L 4
Py (@) ZZJ W, f (a,b)|*db (4)

to

where b represents the location.of the scaled wavelets y(t/a); L denotes the duration of data.
5.1 XWTs and corresponding spectral powers

Two analyses that can be performed based onthe coefficients of CWTs are: 1) XWTs and 2) Spectral power
of XWTs. Regarding XWTs, in practical calculations, it is often effective to detect possible links between

two signals. Based on the concept of XWT (denoted by XW,,) energy coherence can be evaluated. For

signals f(t) and g(t), XW,,(f, g) can be defined as [24]:

XWy(f,9) = Wy f(a, by x Wy g(a,b)* (5)
In the above relation, the symbol “*” represents the imaginary conjugate of a function. XWT identifies
regions where two data have power (energy) coherence in frequency:time space. Due to the random nature
of noise, it is expected that two recorded data, at different times/and‘resolutions, have unrelated noise
energies. Regarding the spectral power of XWTs, in identifying the energy coherence between two data in
the frequency domain, the power of XWTs can be useful; the XWT power is defined as:

1 [to+l 6
Pyw(a) = Zf |XW¢(f,g)|db ©

0

Identifying physical (real) phenomena in data is possible by simultaneously studying two powerfulisignal
processing tools, that is XWTs and corresponding spectral powers. It can simultaneously. show; the
continuous distribution/pattern of energies in the time-frequency representation by XWT energy and also

the concentration of energies in the frequency domain by the corresponding spectral power.



6. Ambient vibration test on the Ammonium Nitrate prilling tower

The petrochemical complex, constructed in 1959, is placed 45 kilometers north of the city of Shiraz, Iran,
near the Korr River. Geological studies have shown that the seismic activity in this zone is high,
nevertheless, the risks resulting from geotechnical instability, including faulting, liquefaction, subsidence,
landslide and falling rock, are low [48].

The ’Ammonium Nitrate Prilling Tower is made of a concrete structure and categorized as non-building
industrial structures. Four steel shimmies with the height of 25m, diameter of 1.9m and thickness of 0.5cm
are attachedto the'tower between the heights of 55.7m and 80.7m. Schematic illustration of the tower and

the corresponding cross-section are presented in Fig. 2 [48].

Adjacent to the tower, the elevator’s structure with rectangular section is located and locally attached to the
tower at heights of 47.7, 50.6 and 55.7m¢The foundation is constructed of reinforced concrete and contains
a circular pile foundation with the‘thickness of 1.5m and 78 piles with the diameter of 60cm under the
tower, and a rectangular pile foundation with the thickness 80cm and 27 piles of 60cm diameter under the
elevator [48].

A typical accelerometer used for recordingsaccelerations deduced by ambient vibrations is illustrated in
Fig. 2(b). This device is a “Force Balance” type accelerometer, which has: (1) 100Hz bandwidth, (2) Variable
and adjustable measurement range of +0.25 g to«+4g, (3)-Adjustable sensor sensitivity from +5V/g to
+80V/g, and (4) Sensor dynamic range of 140dB.

Due to deterioration from its original condition and increasing vibrational response (mainly due to stiffness
reduction), which leads to automatic equipment shutdown, the owners motivated for rehabilitation studies.
The ambient vibration test is performed by the wind load. Spatial locations of sensors along the tower and
recording directions “1” and “2” are illustrated in Fig. 2(d). Acceleration recorders’on the tower are denoted
by P; where i € {1,---,7}, and the recorder R is the reference one. Recording directions.for the recorded
data at the main tower are denoted by k as P;;, for k € {1,2}. Data are recorded by the sampling step At =
1/100 Sec [48].
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Fig. 2: Ammonium Nitrate periling tower, Shiraz, Iran; (a) Ammonium Nitrate periling tower, (b) A sensor on tower,
Locations of data recorders, (d) Recording directions “1” and “2” [48].
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7. benchmark problems

In this section, the performance of the iterative denoising approach will be studied by two benchmark
problems:-one with one harmonic component and one with non-stationary chirp signal including three

frequencies polluted with considerable noise levels.

Benchmark.1: Let us consider a harmonic function y,(t) = sin(6t) for 0 <t < 2m, with the angular
frequency w, =6 rad/s, or with the period T, = 2m/w, = 1.047 second. A function with real random
values belongingto.[—5,5] (and with the uniform distribution) denoted by y,,,ise (t) is added to y, (t). The
resulting function with the considerable noise is presented here by: y;(t) = yo(t) + Vnoise(t). These
functions are illustrated indFig. 3. The function y; (t) is sampled with the time step dt = 0.005. The aim is
denoising of the sampled y, (t)by the.common wavelet-based methods and the iterative scheme (based on

the discrete wavelet transfarmation) and.compare their performance with each other.

yo(t) (Original data) Vnoise(t) (Noise)

1.0 4
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Y1()=yo(t)+¥noise(t) ", (Noisy data)

ya(t)

0 1 2 3 4 5 6
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Fig. 3: The noisy data y;(t) generated with the superposition of the harmonic data y,(t)“and the noisfdatayy,,,is. (t); (a)
Original harmonic signal y (%), (b) Random noise y,,yis¢(t) with uniform distribution, (c) Noisy data 1 (t).

The sampled noisy data is denoised with the common one-step discrete wavelet-based denoising.method,
with “Symlet-12” wavelet family, 10 decomposition levels and with three different thresholds obtained
with three famous approaches, that is: the “SURE”, “Universal” and “Visu Shrink” approaches. The one-
step denoised results are presented in Fig. 4. The results confirm that the one-step wavelet-based denoising
leads to over- or under-smoothed results. The values of the SNR and PSNR are presented in Table 1+ This

table confirms that one or both values of SNR and PSNR are negative for the “Universal” and the
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“VisuShrink” thresholds, which confirms these thresholds are improper. It is interesting that for the
“SURE” threshold, despite the SNR and PSNR values are positive and large enough, however, the denoised
result, y(t) is incorrect (as it should approximate y,(t)). This confirms that controlling only the values of

the SNR"and.the PSNR could not be enough.

SURE Universal VisuShrink

& 0.15

4 1.0 0.10

2 _ g-g 0.05
g\' (2} g_o:S F;‘—ggg

. -1.0 -0.10

6 -1.5{(b) -0.15{(€)

0 1 2 3 4 5 6 0 1 2 3 4 5 6
t(sec) t(sec)

t(sec)

Fig. 4: The denoised results witAithe one=step wavelet-based method with three different threshold values; (a) Denoising with
the SURE threshold, (b) Denoisingwith the Uftiversalthreshold, (c) Denoising with the VisuShrink threshold.

Table 1: Denoising of the signal y; with different ones§tep wavelet-based denoising methods; where N; = 10

Y1
Methog SNR(dB).—» PSNR(dB)
VisuShrink /=82.05799 —25.5346
SURE 309656  37.11068
Universal 15.3792 —5.3993

For the iterative method, it is assumed that: 1) Using of the “Symlet[12]” wavelet family, 2) Number of
decomposition levels is 12, 3) Number of iterations is four, 4) the threshold value for each iteration is € =
2.50, where ¢ denotes the variance (since noise level is high, a'large value for € is chosen). For each
iteration, the captured data (denoted by “Signal[i]”’) and remaining noise (denoted by “Noise™) are presented

in Fig. 5.
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lteration 1; Signal[1]; §=2.5¢" lteration 1; Captured Noise; €=2.50'
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(b) Results of the second iteration
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) 3 . 6
0.1 4
o 00 % g
-0.2 -4
0 1 2 3 4 5 % =675 1 5 3 1 5 5
t(sec) f(sec)
(c) Results of the third iteration
lteration 4; Signal[4]; €=2.50' Iteration 4; Captured Noise; €=2.50"
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o 00 R o
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(d) Results of the fourth iteration

Fig. 5: Captured data and remaining noise at each iteration step. Iteration numbers are four.

By superposition of these four captured data (“Signal[1]” to “Signal[4]”), the final enhanced data can be
evaluated. The difference between initial data (y,(t)) and the enhanced data is known as the final‘noise.
The enhanced data and the final noise are presented in Fig. 6. After enhancement, the total pattern of y, (t)

can be estimated while it includes localized noises.
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Fig. 6: The final resultsfafter four iterations with €; = 2. 50;; (a) The final enhanced data, (b) The remaining noise.

Using the continuous wavelet transform, denoted here by W,,, the values of |W,,| at different times and
periods are presented for bothsthe noisy data y; (t) and the final enhanced data in Fig. 7. Where the wavelet
family is the complex Morlet wavelet with parameters v, = 2 and v, = 1.10. This figure confirms: 1) For
the y, (t) the frequency components cannot be detected, and nearly all frequency bands are polluted, 2) For
the enhanced data, the frequency content.is approximately around the period T = 1.06 sec.: very close to
the frequency content of y,(t). Also, the effects.of considerable noise can nearly be removed from the

noisy data y, (t).

This benchmark problem confirms the robustness of the iterative denoising approach for data with high-

level of noise. Also, this approach can be used for data with*localized high-level of noise.

Noisy data: y;(t) Enhanced data
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0o 1 2 3 4 5 6 0 1 2 34 4 5 6

t(sec) t(seq)

Fig. 7: The absolute values of CWTs, | W, |, obtained by the complex Morlet wavelet, where “T’ denotes the périod; (a) IWII,] for
the noisy data, (b) |W¢| for the enhance data.
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Benchmark 2: Let use assume a chirp function, as: y,(t) = sin(6t) for0 <t < %271; Yo(t) = sin(12t)

for §2n <t< %211; and y,(t) = sin(24t) for %211 <t < 2m. A function with real random values
belonging to [—2.5,2.5] (and with the uniform distribution) denoted by y,ise (t) is added to y,(t). The
periods of the signal are: For 0 <t < §2n, wo =6rad/s,or Ty = 2m/wy = 1.047 second; For §27r <
t < %211, wo= 12rad/s, or T, = 0.5235 second, F0r§2n <t<2m wyg=24rad/s,orTy, =0.2618

second.

The polluted signal‘is denoted here by: y;(t) = yo(t) + Vnoise(t). These functions are illustrated in Fig.
8. The function y, (t) is sampledwith the time step dt = 0.005. The aim is to enhance the signal y; (t) by
the iterative scheme viathe discrete'wavelet transformation. All assumptions for the wavelet transform are

the same as Benchmark 1.

For i th iteration, the capturedidata (denoted by “Signal[i]”) and remaining noise (denoted by “Noise”) are

presented in Fig. 9 for four iterations with the threshold €; = 2.5 g;.

Yo(t) (Original data) Vnoise(t) (Noise)
1.0
0.5
< 00
=
-0.5
-1.0l@)
0 1 2 3 4 5 6
t(sec)
yi(t)=yo()+¥noise(t) (Noisy data)
3
2
= 1
= 0
= _1
=2
-3

0 1 2 3 4 5 6
t(sec)

Fig. 8: The noisy data y;(t) generated with the superposition of the harmonic data y,(t) and the noisy data ya,;..(&); (a)
Original chirp signal yo(t) including three harmonics, (b) Random noise y,,,is. () with uniform distribution, (c) Noisy datd

y1 (D).
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lteration 1; Signal[1]; €=2.5¢' Iteration 1; Captured Noise; €=2.5¢'
3 3
2 2
o 1
5N (1) -% 0
-1 z -1
-2
&7 -3
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t(sec) t(sec)
(a) Results of the first iteration
lteration:2;, Signal[2]; €;=2.50" lteration 2; Captured Noise; €=2.50'
3 1 3
2
2 ° 1
o 1 5 O
0 Z -1
-2
-1 _3
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t(sec) t(sec)
(b) Results of the second iteration
lteration 3; Signal[3]; =2.50’ Iteration 3; Captured Noise; €=2.5¢'
0.3 3
2
0.2 9 1
0.0 Z -1
-0.1 -2
-3
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t(sec) t(sec)
(c) Results of the thirditeration
Iteration 4; Signal[4]; €=2.50' Iteration 4; Captured Noise; €=2.5¢
0.06 3
2
0.04 o 1
[ = 0
0.02 2 3
0.00 -2
-3
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t(sec) t(sec)
(d) Results of the fourth iteration

Fig. 9: Captured data and remaining noise at each iteration step. Iteration numbers are four:

By superposition of the four captured data (“Signal[1]” to “Signal[4]”), the final enhanced data can be
calculated. The difference between initial data (y,(t)) and the enhanced data is known as«the final.noise.
The enhanced data and the final noise are presented in Fig. 10. After enhancement, the total pattern of yg(t)

can be estimated while it includes localized noises.
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1.0
0.5
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0 1 2 3 4 5 6 0 1 2 3 4 5 6
t(sec) t(sec)

Fig. 10: The'final results@fterfour iterations with €; = 2. 50;; (a) The final enhanced data, (b) The remaining noise.

By the complex continuous‘wavelet transform (i.e., Wy,), the values of |W¢,| at different times and periods
are presented for both the noisy/data'y; (t) and the final enhanced data in Fig. 11. The complex Morlet
wavelet is used for the transformation with parameters v, = 2 and v, = 1.10. This figure confirms: 1) For
the y, (t) the frequency compenents«€annot be detected, and nearly most frequency bands are polluted, 2)
For the enhanced data, the periods T = 1.047, T = 0.5235,, and T = 0.2618 are denoted by the blue
dashed lines in Fig. 11(b) which are the period contents of the original data y,(t). It is obvious that the
enhanced signal has effective concentrations around the periods T = {1.047,0.5235,0.2618}.

Noisy data: y,(t)

1.0 ‘ 1| 1.0

T(sec
T(sec

0 1 2 3 4 5 6

Fig. 11 The absolute values of CWTs, W |, obtained by the complex Morlet wavelet, where “T’ dengtes the period; (a)
|W¢| for the noisy data, (b) |W¢| for the enhance data; The horizontal dashed lines denote the peri@ds 1.047, 0.5235and
0.2618 seconds.
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8. Results of estimated modal frequencies from the ambient vibration test

Different recorded data in the main tower, P21, P31, P51, P12 and P72, are presented in Fig. 12. Here, the

samplingstime step is At = 0.01 and the data lengths are chosen to be L = 80.

Indeed, to distinguish two nearly located separate peaks of frequencies f;, f,, where f, > f; itis necessary

to use,a datadength L., or truncate the original signal by length L, as [49]:

2 )
L >
fz - f1
or:
2 8
AMf=f - fHh = I ®)
Hence in our study, the peaks with difference Af = 2 =0.025 (Hz) can be distinguished. Hence, the

80

longer the length of data, the more accurate frequency detection.

At first, two common approaches are considered to detect modal frequencies: 1) Studying in the Fourier
space, 2) Investigating by the one-step denoising/in the wawvelet space by the discrete wavelet transform.

Regarding the Fourier domain, the frequency content'of the signals P21, P31 and P51 are studied by using
the discrete Fourier transform, denoted here by F(.). The energy densities in the frequency domain,
|F(y)|? are presented in Fig. 13. It is obvious that due to the ambient vibration, operations of mechanical
systems, elevators, fans and back-ground noise, there are several peaks. Also; due to the lack of information

from time domain, it is impossible to select modal frequencies directly from the frequency peaks.
8-1: One-step denoising methods based on wavelet (packet) transform

Different steps of wavelet-based denoising by the one-step methods can be summarized as: 1) Estimation
of noise level in a process; 2) Modification of detail coefficients {d(j, k)} where.the'modified set.is denoted
by {d(j, k)}: where j and k denote resolution-level and position, respectively (with' location k/27); also
J=Umax — 1, -, Jmin} Where Jpq. and [, represent the finest and the coarsest resolution-levels,
respectively; 3) Reconstruction of the denoised signal by both {d(j, k)} and the unchanged~scale
coefficients {c(J;in, 1} [50,51].
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a(cm/s?)

t(sec) t(sec)

a(cm/s?)

t(sec) t(sec)

0 40 80
t(sec)

Fig. 12: Recorded signals at different stations. The horizoftal andgvertical axes denote time and acceleration, respectively;
sampling time step is At = 0.01; (a) Signal P21, (b) SignalfP31, (c) Signal P51, (d) Signal P12, (e) Signal P72 [48].

The modifying stage can be performed by thresholdingtechnique. For instance, for a pre-defined threshold
“g”, detail coefficients below this threshold are set to zero./This simple kill-or-keep method is known as

the hard thresholding [50-52], with the definition:

_{0, Iwl<e 9)
sew) = {W, lw| > €
where s.(.) denotes the shrinkage function. To prevent sudden jumptin.modified (thresholded) detail
coefficients, there is another simple and famous approach known as the soft thresholding method, defined

as Eq. (1) [50-52].

The possible thresholding approaches are mentioned in Table 2. Regarding this table; the parameters can
be defined as follows: The term "level™ indicates a level-dependent thresholding. The Universal, SURE and
GCV thresholding methods try to minimize the mean square error MSE () = ||f. — fIl?/N, where f.iS a
vector of thresholded data with the threshold value €, f is the unknown smooth (untouched or‘without

noise) data, and N denotes the length of data. Since f is unknown, it is necessary to estimate MSE [52].
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In the Universal method (proposed by Donoho and Johnstone), the threshold gives a minimax solution of
the ideal mean squared error in the asymptotic behavior of MSE (as N — o) [50-53]. For a signal of length

N, for the Universal approach, the threshold is [29]:

€ = Eyniversal = 6 vV 2 LOg (N) (10)

whereg denotes thenoise level or 62 is the noise variance for white Gaussian noise, which can be estimated
as [29]:

median{ |d(Jer—1, K)|: k = 1,2,..., N/2} (11)
0.6745

o=

where d(Jmax—1,k) denotes the detail coefficient at the first level of decomposition (or at the finest
resolution 1/2/max=1 withethe location k/2/max=1), For large values of N, the Universal threshold can

remove both the noise and the,physical signal.

In the “SURE” method, the Stein’swunbiased risk estimator (SURE) is used for MSE estimations [50-52,
54].

For the case where the wavelet detail coefficients are sparse, Donoho and Johnstone show that a hybrid
method which combines the Universal and the SURE thresholds is preferable than SURE. This hybrid
threshold when used with the soft-thresholding method«is known as the “SUREShrink” method. This
threshold can be obtained as [55]:

€ = esurgshrink = Min{esyge, 6 \/2Log (N)} (12)

Asymptotically, the generalized cross validation (GCV) function is asvertical translation of the MSE
function, while the GCV can be evaluated only based on input (noisy) data. Hence, the threshold value

minimizing GCV also minimizes MSE [52].

The “VisuShrink™ threshold is designed to remove Gaussian noise with high prebability (which tends to
result in overly smooth image appearance). For image processing, by specifying a smaller sigma than the
true noise standard deviation &, a more visually agreeable result can be achieved [56].

Regarding the common wavelet-based approach, in the following, the one-step denoising’by the discrete
wavelet will be studied for data P12. The famous approaches are used to select proper thresholds, that is:
the “SUREShrink”, “SURE”, and “Universal” methods, see Table 2 for definitions. Using the Symlet[12]

orthogonal wavelet with 13 decomposition levels, the denoised results are presented in Fig. 14. Also, the
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values of SNRs and PSNRs of denoised data are presented in Table 3. The results confirm that: 1) The
denoised data are over- or under-smoothed, 2) The negative values for either SNR or PSNR confirm

improper denoising results.

In the following more advanced wavelet transform will be used, that is the wavelet packet transform to have
considerable flexibility in studying locally in time-frequency spaces. For the P12 signal, the one-step
denoised results by the wavelet-packet transform are presented in Fig. 15. The considered wavelet is
Symlet[12] and Ng'=,13 (number of decomposition levels). The performance of different one-step
denoising methods for P12 and P51 signals measured by SNR and PSNR criteria is also presented in Table
4. Both Fig. 15 and Table 4 show that among the denoising methods, the GCV denoising method leads to
the best results. However; for all denoising methods the PSNRs are considerably less than 30 dB which
confirms the insufficient perfoermance, of the one-step denoising method using different thresholding

approaches.

Table 2: Different denoising agproaches with corresponding thresholding method and estimating noise level

Denoising method Thresholding approach Estimating method of the noise
level
GCV soft GCV
GCVLevel soft GCV-Level
SURE hard SURE
SURELevel hard SURE-Level
SUREShrink soft SURE
Universal hard Universal
UniversalLevel hard Universal-Level
VisuShrink soft Universal
VisuShrinkLevel soft Universal-Level
0.007 Par 0.007 Pay '0.0077 Pst
0.006{{2) 0.006 0:006/(€)
o 0.005 0.005 0.005
=0.004 0.004 0.004
& 0.003 0.003 0.003
©0.002 0.002 0.002
0.001 0.001 0.001 ll. J n
00005020 30 40 50°0%00 0 20 30 40 50000 70T 20 30 40 50
v(Hz) v(Hz) v(Hz)

Fig. 13: The energy density |F(y)|? in the frequency domain for different recorded data, where F(y) dehotesffhe Fourier
transform of y(t); (a) |F(y)|? of signal P21, (b) |F(y)|? of signal P31, (c) |F(y)|? of signal P51.
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0.17342
. 0.17340
b 0.17338
€ 0117336
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~0.17340
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£ 0.17336
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0.17330

Symlet[12], SURE

20 40 60
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—.0.17340
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0.17330

Symlet[12], Universal
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Fig. 14: The denoisedfP12 signal by the one-step wavelet based denoising using the thresholds obtained by the
“SUREShrink”, “SURE” ahd “Univefsal” approaches, the Symlet-12 wavelet and N; = 13; (a) Over smoothed by
“SUREShrink” threshold, (b) Over smoothed by “SURE” threshold, (c) Over smoothed by “Shrink” threshold.

Table 3: Denoising of the P22 signal with different one-step wavelet-based denoising methods; where N; = 13.

P12
Methgg SNR (dB)  PSNR (dB)
SUREShrink —51.2786 22.2520
SURE £51.2786 22.2521
Universal £51.2787 22.2521
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Fig. 15: Denoising of the P12 signal with different one-step waveletpacket-baséd denoising methods; where N; = 13.

8-2 Results for the Iterative denoising method based /on wavelet packet transform

In this part, the results of signal enhancement with iterative denoising methodssare presented. The largest

possible value of C,{ is obtained by a trial-and-error approach. The proper value of C,{ is estimated as: C,{ =
1. For signals P12 and P51, after 13 decomposition levels and 2 iterations, the values of the’SNR and PSNR
(which shows the effectiveness of the data enhancement method) are presented in Table 5. The Symlet
wavelet of order 12 is assumed. Note that at the end of the iteration, the corresponding enhanced results
and the initial noisy data are used in the calculation of the SNR and PSNR parameters.
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Table 4: Effects of denoising with different thresholding by the one-step DWPT method with the Symlet[12] and N; = 13.

Method P12 P51
SNR(dB)  PSNR(dB) SNR(dB)  PSNR (dB)
GCV 42.693504 18.560875 30.779994 16.993771
GCVLevel 32.025807 7.2176840 27.396521 13.593568
SURE 33.036281 8.6313331 25.231523 11.313871

SURELevel 30.054381 5.1049236 23.358374 9.4540047
SUREShrink 31.176870 6.3329708 24.243898 10.315175
Universal 30.3283032 5.4488797 25.048999 11.119087
UniversalLevel 30.6195054 5.6516937 24.081426 10.025114
VisuShrink 30.0684292 5.1165927 23.967897 10.051441
VisuShrinkLevel 30.2468347 5.2791582 23.683542 9.7212105

For the P12 signal, after each iteration, both noise and the captured (denoised) data (denoted as “Signal[i]”)
are presented in Fig. 16. Number of iterations is two, and it is assumed: C,{ = 1and N; = 13. The last row
presents the denoised (enhanced)*signal‘after two iterations, obtained as: Y%, Signalli], see Fig. 16.
Estimated noise is obtained from the difference of the initial signal P12 and the final enhanced data, as:
Noise = P12 — Y%, Signal[i]. In each iteration, information with coherent structures is selected as
denoised signal and the remaining data is used as noise and is used for the next iteration. In summary, due
to the high-level of noise in the data, the noise cannot be removed completely. Indeed, it is removed as
much as possible, by decomposing the signals’into_coherent (denoised signal) and incoherent (noise)
structures by a method that is simultaneously localized both in time and frequency domains. The

enhancement effect is investigated for P12 data.

The final energy density of noise (the final noise in Fig. 16; the last row) is presented on Fig. 17 in time-

frequency representation by using the continuous wavelet transform to identify localized random-wise

information in the noise. Fig. 17(a) represents a 3D plot of the information (t, T, |W¢|2), and Fig. 17(b)

represents the corresponding contour plot, where t and T denote time and periodsrespectively; and |W1l,|2
is energy density. All calculations are performed with the complex Morletwavelet with parameters v, = 2

and v, = 1.10. The energy range is 0.02Max[|W,|*] < |W,|* < Max[|w,,|"] il Fig. 18.

According to Fig. 18, for short periods, i.e. T < 0.5, stochastic like localized information exists and for
periods in the range 0.9 < T < 1.4, several significant phenomena occur locally, which may be<caused by
the operations of mechanical systems, elevators, and fans in the tower. This stochastic or local like
information is not important in this study, since only excited modal frequencies are important with
continuous presence through time. So far, several powerful signal processing tools have been used«to

enhance or clean the signal. After enhancing the data, in the next step, it is tried to integrate possible physical
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features to extract more reliable information. The main idea is to use cross-wavelet analysis to find repeating

physical patterns in different data.

Table 5: Iterative denoising of data P12 and P51 with parameters: C{l =1land N4 =13.

Iteration L pol
SNR (dB) PSNR (dB) SNR (dB) PSNR (dB)
1 28.820625 15.012432 36.564065 12.582310
2 39.730155 25.878075 45.793346 21.754959
021 Signal[1]ie=1xc’ Captured Noise[1]; =1xa’
0.20 0.04
0.19 . 0.02
018 )
%0.16 5 50
0.15
0.14 -0.04
5 >0 20 50 50 0 20 40 60 80

K(s) t(s)
(a) Results of the first iteration

Signal[2]; =1%o’ Captured Noise[2]; g=1x0’
0.010 0.04
—~ 0.005 — 0.02
b ks
£ 0.000 £ 0.00| MmNy
L S
© -0.005 STn02
-0.010 004
0 20 40 60 80 0 20 40 60 80
i(s) t(s)
(b) Results of the second(iteration
Enhanced data:Z,2:1Signals[i] Noise=Noisy data—Enhanced data
0.004
020 0.002
£018 £ 0.000
L L
5 0.16 ® _0.002
0.14 -0.004
0 20 40 60 80 0 20 40 60 80

t(s) t(s)
(¢) Final Results after two iterations

Fig. 16: Iterative denoising of the signal P12 with two iterations; both denoised signal and estimated noise are provided at
each iteration (the first row). The last row contains final denoised signal and estimated noise; evaluations are obtain@d with:

Symlet[12], €. = 1and N, = 13.
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(b)

N4 = 13. (a) 3D representation of the noise energy density; (b) Correspondin
the time and period, respectively.

8-3 Cross-wavelet analysis for frequency detection

Here, by using cross wavelet analysis and corresponding power spectrum, physical respon
detected. Cross-wavelet transform can be used to identify common frequencies be two data with
significant power. This feature of cross-wavelet analysis is used to study each pair of enhanced si

{P21,P31}, {P21,P51}, {P12,P72}, and {P21, P12}. Here, P21 is chosen as the reference r

signals are denoised with the wavelet-packet based iterative scheme with Symlet[12], Ny = 13, C; =
and using of two iterations.
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The results of wavelet analysis and corresponding power spectrum for each pair of enhanced signals
{P21,P31}, {P21,P51}, {P21,P72} and {P21, P12} are presented in Figs. 18, 19, 20 and 21, respectively.

In each figure, the energy density of the CWT (i.e. |W1,,|2) of each signal, corresponding cross wavelets

(thatis |XW¢|) and their spectral powers (that is Py, or Py, ) are presented. In all figures, for the energy
density |Ww|2 and the cross-wavelet |XW,|, plotted ranges of energies are 0.02Max[|W,|’] < |W,|* <

Max[|W,|“Tand 0.02Max[|XW,[] < |XW,| < Max[|XW,|], respectively.

Based on the cross-wavelet analysis and the corresponding power spectrum, the identified modal-like
frequencies have peaks in the power spectral curves and are continuous through time in XWTs. To clarify

detected frequences, they are pointed by arrows in Figs. 18(e)-21(e)). The detected frequencies are:

1- For the pair {P21, P31} (Figs. 18(e,f)): 0.88, 0.92, 1.05, 1.085, 1.11, 1.21, 1.24, 1.29, 1.58, 1.64,
1.79, 1.835, 2.12, 2116, and 2.28 Seg,

2- For the pair {P21,P51} (Figs. 19(e,f)): 0.88, 0.92, 1.05, 1.085, 1.24, 1.29, 1.58,1.64,1.79, 1.835,
2.12, 2.16, and 2.28 Sec,

3- For the pair {P21,P72} (Figs. 20(e,f)): 0.88, 0.92, 1.05,1.085, 1.24, 1.29, 1.53, 1.54, 1.58, 1.64,
1.79,1.835, 1.9, 1.97, 2.07, 2.12, 2.16, and 2.28 Sec,

4- For the pair {P21,P12} (Figs. 21(e,f)):/0.88;0:92,1.05,1.085, 1.21, 1.24, 1.29, 1.58, 1.64, 1.695,
1.72,1.79, 1.835, 2.12, and 2.16 Sec,

Since signals are not recorded simultaneously, common detected periods in all pairs are assumed to be
possible modal periods. The common periods in all signal pairsare: 0.88, 0.92, 1.05, 1.085, 1.24, 1.29,
1.58,1.64,1.79, 1.835, 2.12, and 2.16 s. Also, the results show that due tothe semi-symmetric shape of the
structure, there are several pairs of nearly excited periods in the power spectrum (which may be two similar

modes independently in the x and y directions).

Also, the main concrete tower was independently modeled by the linear finite element (FE) method using
3D continuum elements with linear shape functions [48]. The effects of damage, soil-structure interaction,
concrete-steel interaction, elevators, and operating machinery and fans are not considered in the FE model.
The modal frequencies obtained from the FE model are reported as: 0.1829, 0.1843,'0.20, 0.2138,:0:3139,
0.3232, 0.3954, 0.4118, 1.6004, and 1.9738 Sec [48].

According to the modal frequencies identified from the FE model, the possible reasons for the difference

between the results from the ambient vibration test and the FE model could be:
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1- The operation of mechanical systems and the existence of three active fans in the main tower.

2= There were four narrow steel towers on top of the main concrete tower. These steel towers are not
considered in the FE model.

3-There is existence of (considerable) damage and cracks in different parts of the main tower, and
the connection of the main tower with the neighboring structure. They were not considered in the
FE model,

4- Four narrow and long steel towers are above the main structure. However, they are not simulated
in‘the FEM:

9.Conclusion and future'study

In this work, introducing the iterative enhancing approach based on wavelet packet transform is the main
goal. As the authors know, this isithe first time that wavelet packet based iterative denoising is used for
ambient vibration tests. Also, both'the one-step and the iterative denoising methods (based on MRA) have
been investigated to improve the signals with a high level of noise recorded from ambient vibration tests.
In this study with a benchmark involving high level of noise, the robustness of the iterative denoising
method is studied; the result is compared with the_common one-step denoising method with different

thresholds. The results of the one-step denoising methods confirm that:
1) Outputs still need considerable improvement, due to small values of PSNR (Table 3 and Fig. 15),
2) From different thresholding methods, different results can be‘obtained,

For the wavelet-packet based iterative denoising method for high-level of naise in data, it may be possible

to conclude:

1) The wavelet-packet based iterative denoising approach can enhance the'signals (see captured noise in

Fig. 16 and corresponding energy density of noise in Fig. 17),

2) This method can effectively detect random local data. This confirms the importance of using iterative

denoising approaches for data enhancement (noise energy in Fig. 17).

3) Noise in the signal cannot completely be removed even by the iterative method (see remaining localized

features in Fig. 19).
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After enhancement of high-level noisy signals (recorded from ambient vibration tests) by the iterative
denoising method, it has been tried to identify the excited frequencies by using the continuous cross-wavelet
analyses and the corresponding spectral powers. In the continuous wavelet transform, Morlet complex
wavelets“are, used to detect both instantaneous frequencies and corresponding excitation patterns in the
time-frequency' representation. The excited frequency is recognized as a physical phenomenon with
continuous excitation over time in the time-frequency representation. Regarding their spectral powers, also,
these modal frequencies have local concentrations with considerable powers around modal frequencies (or

corresponding scales). By cross-analyzing of the pairs of enhanced signals, the results confirm:
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Fig.18: Powers and energies of wavelet transforms of denoised signals P21 and P31, and correspo

power of XWT; a) The spectral power of denoised P21 ; b) The density of energy for the denoised P
2; e) The spect

spectral power of denoised P31 d) The density of energy for the denoised P31, |W,,, (P31)
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Fig. 19: Powers and energies of wavelet transforms of denoised signals P21 and P51 and correspo
power of XWT; a) The spectral power of denoised P21 ; b) The density of energy for the denoised
spectral power of denoised P51 d) The density of energy for the denoised P51, |W,,,(P51)
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1) Cross-wavelet analysis improves the time-frequency representation for identifying excited
frequencies (e.g., Fig. 19),

2) Despite the improved time-frequency representation of cross wavelets, this transformation may
alsonbe insufficient because of existence of several continuous frequencies in its time-frequency
representation. As it is not clear whether these frequencies are modal frequencies or not (Figs. 18-
20),

3)'However, the spectral power of the wavelet transform could be useful for detection and capturing
thefrequency of significant energies (as physical phenomena),

4) Due to the'nearly Symmetrical plane of the structure, the detected modal frequencies are close to
each other (see Fig.2) (however for the tortional modal frequencies, it is not the case),

5) Cross wavelet analysis-could reduce the effects of stochastic phenomena such as noise, as they
do not have coherenee with each other (see Fig. 19).

At the end of this study, the detected frequencies are compared with the frequencies captured from the 3D
FE model. They have good agreements with/each other. However, there are frequencies that are not seen in
the FE model, which could be due to the following reasons:

1- The operation of mechanical systems and the existence of three active fans in the main tower,

2- There were four narrow steel towers on top of the main concrete tower. These steel towers are not

considered in the FE model,
3- Existence of damage and cracks in different parts.efithe/main tower, which is not considered in
the FE model.

Finally, it should be noted that the common discrete wavelgt (packet) based one-step denoising with
different threshold may lead to over- or under-smoothing results for/signals with high level of noise (as
presented in Fig. 4 and Table 1). Hence, for such data, the wavelet-based iterative approach could be
promising along with other common methods. Also, the finite elementmodel in [48] was not based on the
model-updating approach to achieve more accurate model: it was an initial model based.on initial
assumptions which should be updated. Hence, model updating would be recommended.
In conclusion, for civil engineering applications, vibration responses are complex,displaying variations in
space and time. The responses often contain nonlinearity and uncertainties not considered during data
collection. These responses can also be polluted by various sources, affecting numerical simulations and
damage identification processes. A significant challenge is how to effectively remove noisefrom the
collected data to achieve reliable damage indicators that are insensitive to noise and environmental
factors. Hence, proper denoising, damage detection and numerical simulations are still active research
areas [57].
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Forfuture study, wavelet based denoising approach is a powerful tool; some of recent studies can be
mentioned as: (1) Using of the iterative denoising method based ob the lifting wavelet transform [58], (2)
Using.theviterative algorithm enhanced by using the statistical process control [59], (3) Selection of
optimum wavelet family for denoising [60], (4) Improving thresholding approach for signal denoising
using for structuralhealth monitoring [61], (5) Combing of other type of filtering with wavelet
thresholding to.enhance denoising [62]. Also, for a comparative study of wavelet transforms for the health
monitoring, one can'see [63].
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