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Abstract 

In this study, the discrete wavelet packet transform (DWPT) has been used for the single-step and iterative 

denoising methods for enhancing data with high level of noise to identification of modal frequencies in 

ambient vibration tests on a petrochemical process tower in Shiraz, Iran. The ambient vibration test is 

performed by the wind load. All mechanical systems operated during the test; hence, different noise sources 

exist. Here, both high and low frequency ranges are decomposed effectively in the DWPT, and it provides 

a lot of global and localized information. The DWPT-based one-step denoising method fails to properly 

denoise the high-level noisy data with denoising-thresholds obtained by different theoretical methods. For 

this reason, the so-called peeling approached achieved by an iterative denoising method is used to enhance 

the quality of the signal. For this iterative method, the parameters are obtained by the trial-and-error method

. After the signal-enhancement stage, the signal processing step is performed by continuous wavelet 

transforms (CWTs) to detect the time-frequency information in the data. Furthermore, the modal 

frequencies are directly identified by the cross wavelet transform (XWT) and the corresponding spectral 

power density. Finally, the estimated frequencies by XWT are compared with the natural frequencies of a 

damaged model simulated by the finite element (FE) method. 

Key words: Ambient vibration test; Wavelet packet transform; Iterative denoising; Multiresolution 

analysis; Modal frequencies. 

   1. Introduction 

Ambient vibration tests are quick and cheap; they do not require excitation equipment and the source of 

excitation is environmental loads, such as: wind [1-5], traffic loads [6] and small to moderate earthquakes 

[7]. These tests are commonly used to identify modal parameters (i.e.: modal frequencies, damping and 
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modal shapes), in health monitoring studies [3, 8], assessment of real time qualifications [1-5, 8-15] and 

vibration controls [16]. Identifying the modal parameters of the system is challenging due to non-stationary 

responses and the high-level of noise in the recorded nonlinear signals in ambient vibrations. Wavelet 

transforms [3, 4, 7-12, 15, 17-22] provide the time-frequency information of the data with different 

resolution accuracies and decomposition levels in a non-parametric approach using only the output data. 

However, the high-level of noise causes also problems in the performance of this powerful transformation 

[23]. To reduce such shortcomings, here, the wavelet packet transform would be used. 

In this study, the main purpose is to identify physical features from data with a high-level of noise using 

discrete wavelet packet transform with multi-resolution analysis (MRA) approach. The wavelet packet 

analysis permits to access effectively the time-frequency localized information of both high and low 

frequency contents. Which is the shortcoming of the common discrete wavelet transform, that is for high-

frequency components, it is not possible to distinguish high frequency contents from each other. Two 

general data denoising or enhancement approaches can be counted in the MRA framework: (1) One-step 

denoising [24-29], and (2) Iterative-based enhancement [30-36]. In the first case, in one step of MRA, it is 

tried to remove noise from data. In the iterative approach, noise is estimated and removed from the data by 

using several iterative steps of MRA. This approach is useful for data with high-level of noise, where one 

step denoising methods may not be efficient. In noisy data, it is almost impossible to completely filter out 

the noise, Hence the iterative denoising method can improve or enhance the quality of denoised data. 

Iterative denoising schemes were initially proposed by Starck and Bijaoui [36], Coifman and Wickerhauser 

[30, 31], Hadjilleontiadis et al. [32, 33], and Ranta et al. [34, 35]. 

The results of the ambient vibration tests (e.g., modal frequencies, modal shapes, and damping) can be very 

sensitive to noise.  Few works studied only noise effects (especially effects of high-level of noise). Hence, 

one of our main goal is to focus on noise-effect reduction to decline sensitivity of results obtained by 

ambient vibration tests. Especially in this study, due to high-level of noise, the common denoising methods 

may not be effective. Hence her iterative denoising is introduced which was used before in some few studies 

for denoising of noisy sound from recorded sounds from lungs or medical images [30,31,36]. Introducing 

this powerful tool is one of our purposes of the current study. After data denoising in this study, modal 

frequencies of enhanced data are captured by common continuous wavelet-based transforms for a real case 

study.  

In the iterative method, the recorded raw (initial) signal is considered completely as noise for the first 

iteration, and the denoised signal is considered to have zero components. For the next iteration, the noise 

signal (in the previous iteration) is decomposed into different resolution levels by MRA by the wavelet 

packet transform. Regarding the decomposition results, at the last resolution level (𝐽min), wavelet 

coefficients that are large enough are considered as physical phenomenon. These coefficients are separated 
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from noisy information. These wavelet coefficients are reconstructed by the wavelet packet inverse 

transform and then are added to previous denoised (detected) information from the previous iteration (for 

instance, the zero vector at the first iteration). The remaining wavelet coefficients (with small values) are 

reconstructed as updated noise for use in the next iteration. This iterative procedure is repeated step-by-step 

until reaching a pre-determined criterion. Because physical information is collected layer by layer from 

residual noise, this approach is also expressed as “peeling off successive layers” scheme [30, 31]. In this 

iterative method, in each iteration, it is assumed that the wavelet coefficients with large enough values 

belong to physical information. These wavelet coefficients are detected based on (predefined) thresholds at 

the last resolution level in the wavelet-packet transform. These thresholds can be determined by means of 

the variance of wavelet coefficient values at the last resolution level (for instance see the last row, level 4, 

in Fig. 1; in this level, for each decomposed set of coefficients, corresponding variance can be calculated. 

For each set, then, the threshold value would be proportional to corresponding variance). In general, the 

threshold values can be chosen based on some criteria or even empirically. 

By comparing the results of the iterative denoising approach with the results of the one-step denoising 

approach for data with high-level of noise and so with small signal-noise-ratio (SNR) values (here, in 

ambient vibration testing), the importance of using the iterative denoising method would be confirmed. 

Although the quality of the signals is improved by the iterative algorithm, it is still a difficult and 

challenging task to determine the physical properties in such improved data.  

In this study, the concept of cross wavelet analysis [25, 37] and the corresponding spectral power have been 

used to improve the ability of detection of physical features. These transformations would be used for 

denoised data obtained from the iterative denoising algorithm. Cross-wavelet analysis allows the 

identification of physical features common in two signals with significant common energy in time-

frequency space. Since noise has a random property, two recorded data are expected to have different noise 

energies at different times and resolutions. Hence, noise effects would be diminished in cross analysis.  

Also, the spectral power of the cross-wavelet transform can help to identify the locally excited frequencies 

in the frequency domain. Features that have both time continuity and energy concentration with large values 

in spectral power representation could include physical phenomena. In identifying the modal frequencies 

for modes with small contributions, simultaneous investigation can be helpful, (which is later discussed in 

this study). 

At last, it should be noted that the abovementioned signal-enhancement method with iterative denoising 

concept can be integrated (as a preprocessor) with other wavelet-based methods developed to identify 

modal parameters, see e.g. [4, 12, 38].  

Here, wavelet-based time-frequency representations are used to detect physical features. There are other 

methods for studying MRA, such as the Hilbert-Huang transform (HHT) [18]. 
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This study is composed of nine parts. Section 2 presents briefly the study methodology. Section 3 reviews 

one-step denoising techniques by discrete wavelet transform. Section 4 devotes to issues related to the 

wavelet packet based iterative denoising. Section 5 surveys two wavelet-based signal processing and pattern 

recognition tools: XWT and spectral powers. Section 6 explains the general features of the periling tower 

and the corresponding ambient vibration tests. Section 7 presents a numerical benchmark problem to 

compare the performance of the one-step and iterative denoising methods. Section 8 presents the results of 

the signal enhancement and frequency detection of the recorded data from the ambient vibration test. The 

concluding remarks are presented in Section 8. 

 

 

 

2. Proposed methodology 

One-step wavelet-based denoising methods have been used widely for denoising data with different wavelet 

families, decomposition levels, and thresholding methods. Designing new wavelet families [39], new 

wavelet transforms, or thresholding [40-44] is still an open research area for system identifications. For 

high levels of noise, however, the one-step denoising methods may not be so effective, and so iterative 

filtering is suggested, e.g. [45]. In this study, there are high-level of noises mainly due to the rigidity of the 

structure, elevators, machinery operations, fans and considering wind for the ambient test. Hence, here, the 

iterative wavelet-based method would be used to reduce noise effects as much as possible. The iterative 

method would use the discrete wavelet packet method and the hard-thresholding approach. The main 

question is how to choose the threshold value which is proportional to the noise-variance. In general, the 

theoretical methods to estimate noise levels may lead to over- or under-estimated results. Hence, the 

empirical methods can be recommended [46,47]. 

Our experiments show that for wavelet-packet-based iterative denoising choosing of the proper proportional 

coefficient may not be feasible through empirical observations based on either SNR or peak SNR (PSNR) 

(which was proposed in [46] for the iterative method based on common discrete wavelet transform). Hence, 

a proper value may be estimated by the trial-and-error method. 

By a benchmark problem, the robustness of the iterative method is studied. The problem is denoising a 

harmonic signal with high-level of noise with the wavelet-based one-step and the iterative schemes. 

After iterative denoising and enhancements of initial data, the possible modal frequencies would be detected 

simultaneously by using complex CWT and corresponding power spectra in the wavelet spaces. The 

complex CWT reveals the frequency contents through time and variation pattern in time. For modal 

frequencies, such frequencies would continuously be excited during time. Also to capture more precisely 
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the modal frequencies, the concept of cross-wavelet analysis is used to choose common mobilized 

frequencies. Finally, for several pairs of recorded signals in the main tower, the CWTs, corresponding cross-

wavelet analyses, and corresponding spectral powers would be performed. Those frequencies which are 

common in all cross-wavelet analyses would be known as the most possible modal frequencies. 

Finally, these frequencies would be compared with the results obtained by a simple linear finite element 

model, reported in another study [48].  

    3. MRA-based denoising based on wavelet packet transformation 

Here the wavelet packet transformation is used to distinguish effectively all possible localized information 

in time-frequency representation (both with low and high frequency contents). The schematic illustration 

of the decomposition process of the wavelet packet transform is presented in Fig. 1, where 𝐴 and 𝐷 denote 

the approximation and detail information, respectively; Also, 𝐻 and 𝐺 indicate high-pass and low-pass 

decompositions, respectively. Finally, the decomposed information belongs to the last level, level 4 or 

𝐽𝑚𝑖𝑛 = 4. All calculations would be performed for this level. 

The different stages of wavelet packet-based data improvement (denoising) can be summarized as follows: 

1) estimation of noise level in a process; 2) modification the detail coefficients {𝑑(𝐽𝑚𝑖𝑛 , 𝑘)} in the 𝐽𝑚𝑖𝑛th 

resolution level (the coarsest resolution level) and the location (or time) 𝑘/2𝐽𝑚𝑖𝑛 (for data belong to [0,1]); 

the modified detail set is denoted by {𝑑̂(𝐽𝑚𝑖𝑛, 𝑘)}; 3) reconstruction of the denoised signal by both 

{𝑑̂(𝐽𝑚𝑖𝑛, 𝑘)} and unchanged scale coefficients {𝑐(𝐽𝑚𝑖𝑛, 𝑙)} (belong to 𝐴𝐴𝐴𝐴 set in Fig. 1) [22, 26, 27].  

 

Fig. 1: Procedure for signal decomposition using wavelet packet transform. Where: A is approximate information, D denotes 
detailed information, H is low pass filter, and G is high pass filter [22]. 

Modifying detail coefficients can be performed by thresholding technique. For example, one can use the 

hard thresholding technique [26-28], which is a simple kill-or-hold method. In this technique, for a 
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predefined threshold ε, detail coefficients smaller than this threshold are considered zero. The soft 

thresholding method can be used to prevent sudden jumps in the modified (thresholded) detail coefficients, 

which is defined as [26-28]: 

𝑑̂(𝑗, 𝑘) = {
0,                                                |𝑑(𝑗, 𝑘)| ≤ 𝜀,

𝑆𝑖𝑔𝑛[𝑑(𝑗, 𝑘)][𝑑(𝑗, 𝑘) − 𝜀],    |𝑑(𝑗, 𝑘)| > 𝜀.
.  (1) 

Other thresholding functions such as semi-soft and Garrote [29] can also be used to have a smooth transition 

in the threshold coefficients. The threshold value can be independent of the resolution level 𝑗 or dependent 

on it. The independent level is known as global thresholding, where a predetermined threshold 𝜀 is used for 

all resolutions. But for the level-dependent case, for each resolution level, a different threshold is used, 

which is shown as 𝜀𝑗 for level 𝑗 [28]. Several methods have been proposed to estimate the threshold value, 

such as: SURE, Universal and GCV (generalized cross-validation) [26-28]. Each of these approaches has 

its own concept to determine the threshold values, but all of them try to minimize the mean squared error, 

𝑀𝑆𝐸(𝜀). These three methods can be developed as global and level-dependent thresholds. 

According to the number of denoising iterations on noisy data, two different approaches were developed: 

1) one-step [24-29], and 2) iterative method, also known as layering method [30-36]. In the one-step 

method, noise is removed by one-step of thresholding (with a general or level-dependent threshold value), 

while in the iterative method, noise is removed iteratively and step by step, until satisfying a convergence 

criterion. In each iteration, the data is the noise obtained from the previous iteration [30-36] .  

Based on the concept of 𝑀𝑆𝐸, two criteria, the signal noise ratio (SNR) and the peak signal noise ratio 

(PSNR), have been used to determine the quality of various data enhancement methods (denoising). These 

two criteria can be defined as [27, 28]: 

𝑆𝑁𝑅 ≔
𝐴𝑣𝑒.  𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟

𝐴𝑣𝑒.  𝑛𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟
= 10𝐿𝑜𝑔10 [

𝜎2(𝑠̂)

𝜎2(𝑠−𝑠̂)
] = 10𝐿𝑜𝑔10 [

𝜎2(𝑠̂)

𝜎2(𝑛𝑜𝑖𝑠𝑒)
] (dB),   

    𝑃𝑆𝑁𝑅 = 10𝐿𝑜𝑔10 [
𝑀𝑎𝑥(|𝑠̂𝑖|)2

𝜎2(𝑠−𝑠̂)
] = 10𝐿𝑜𝑔10 [

𝑀𝑎𝑥(|𝑠̂𝑖|)2

𝜎2(𝑛𝑜𝑖𝑠𝑒)
] (dB), 

(2) 

where 𝑠̂ and 𝑠 denote denoised and original (noisy) signals, respectively; 𝜎2(𝑍) is the variance of 𝑍; 𝑠̂𝑖 is 

the 𝑖th element of 𝑠̂; and 𝜎2(𝑠 − 𝑠̂) measures the variance of the noise: 𝑠 − 𝑠̂ . Function 𝑅 = 𝜎2(𝑠 − 𝑠̂) 

denotes the risk-function, which is equivalent to 𝑀𝑆𝐸 [28]. The unit of measurement for both SNR and 

PSNR is dB (decibel). The parameter SNR measures the ratio of average power of a signal to average power 

of power. Also, PSNR measures the ratio between the maximum possible value of power of a signal and 

the power of noise. Hence, the larger values of the SNR and PSNR indicate the better performance of the 

denoising (or compression) methods, because these two parameters have inverse relationships with the 

noise variance (𝜎2(𝑠 − 𝑠̂)). For practical applications, values larger than 30 dB are recommended for 

PSNR. 
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   4. Iterative denoising based on wavelet packet transform 

Despite the widespread use of one-step denoising methods for signal processing problems, this method may 

not lead to suitable results for highly noisy data. Iteration-based denoising methods have been developed 

to improve the results of one-step methods [30-36]. An iterative denoising approach is followed in this 

section to improve data with a high level of noise. For a noisy signal 𝒁 = {𝑧[1], ⋯ , 𝑧[𝑁]}, assuming the 

signal 𝒁 as noise is the first step of the iterative denoising algorithm. Then, coherence and significant 

features across the noise can be obtained. 

Noise detection is performed by the decomposition of 𝒁 by MRA (here by the wavelet packet transform), 

and then at the last level of resolution (with the coarsest resolution level 𝑗 = 𝐽𝑚𝑖𝑛 or 𝐽𝑚𝑖𝑛 = 4 in Fig. 1), 

those detail coefficients that are larger than a specified threshold (which represent important phenomena) 

are identified. Using the statistical approach, the distribution of detail coefficients 𝑑(𝐽𝑚𝑖𝑛, 𝑘) is measured 

(at coarsest scale 𝐽𝑚𝑖𝑛) and is shown by the variance of the detail coefficients, i.e.: (𝜎𝑛
𝐽𝑚𝑖𝑛)

2
. Then, detail 

coefficients larger than 𝐶 × 𝜎𝑛
𝐽𝑚𝑖𝑛 are assumed to belong to a considerable physical phenomenon, for 𝐶 ≥

1. The selected detail coefficients with the (unchanged) scale coefficients at the coarsest resolution level 

𝐽𝑚𝑖𝑛 are reconstructed as the first estimate of the denoised signal, and the remaining of the detail coefficients 

along with zero scale coefficients are reconstructed and named as updated noise data. The denoised data at 

the end of each iteration is added to the denoised data obtained in the previous iteration. The above 

procedure is repeated for the new updated noise data in the next iteration. In fact, significant information is 

frequently removed from the initial data containing high-level of noise. In this regard, this approach is also 

known as the peeling method. 

   5. Information detection of the enhanced data by continuous wavelet transform 

In the previous section, the signal enhancement method was described based on the discrete wavelet packet 

transform. In this section, after improving the signal, the time-frequency information of the data can be 

studied and detected by using the CWTs, where for data 𝑓(𝑡) and wavelet 𝜓(𝑡), CWT can be defined as: 

𝑊𝜓𝑓(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑓(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡

+∞

−∞
, where: 𝑎 and 𝑏 denote the scale and location parameters, 

respectively; and the symbol “*” shows the imaginary conjugate of a function. This means by the 

continuous wavelet transform, a signal is watched locally with a moving window of different width (by 

moving 𝜓(𝑡/𝑎)) Hence, localized information in time-frequency can be detected. In this work, the complex 

Merlot wavelet is used to detect instantaneous frequencies, defined as: 
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𝜓(𝑡) =
1

√𝜋 × 𝜐𝑏

(𝑒2𝜋𝑖𝜐𝑐𝑡 − 𝑒−𝜐𝑏(𝜋𝜐𝑐)2
)𝑒−𝑡2/𝜐𝑏  

(3) 

where 𝜐𝑏 denotes the bandwidth frequency and 𝜐𝑐 is the central frequency. It is assumed that: 𝜐𝑏 = 2 and 

𝜐𝑐 = 1.10. Hence, the condition of complexity of the Merlot wavelet, that is √𝑣𝑏𝑣𝑐 ≥ √2 would be 

satisfied. XWT and related spectral power are two powerful signal processing tools developed based on 

CWTs. At first, the concept of spectral power of wavelet transform is presented. This concept helps identify 

energy concentration in the frequency (or scale) domain. Spectral power is defined as follows: 

𝑃𝑊(𝑎) =
1

𝐿
∫ |𝑊𝜓𝑓(𝑎, 𝑏)|

2
𝑑𝑏

𝑡0+𝐿

𝑡0

 
(4) 

where 𝑏 represents the location of the scaled wavelets 𝜓(𝑡/𝑎); 𝐿 denotes the duration of data. 

5.1 XWTs and corresponding spectral powers  

Two analyses that can be performed based on the coefficients of CWTs are: 1) XWTs and 2) Spectral power 

of XWTs. Regarding XWTs, in practical calculations, it is often effective to detect possible links between 

two signals. Based on the concept of XWT (denoted by 𝑋𝑊𝜓) energy coherence can be evaluated. For 

signals 𝑓(𝑡) and 𝑔(𝑡), 𝑋𝑊𝜓(𝑓, 𝑔) can be defined as [24]: 

𝑋𝑊𝜓(𝑓, 𝑔) = 𝑊𝜓𝑓(𝑎, 𝑏) × 𝑊𝜓𝑔(𝑎, 𝑏)∗ (5) 

In the above relation, the symbol “*” represents the imaginary conjugate of a function. XWT identifies 

regions where two data have power (energy) coherence in frequency-time space. Due to the random nature 

of noise, it is expected that two recorded data, at different times and resolutions, have unrelated noise 

energies. Regarding the spectral power of XWTs, in identifying the energy coherence between two data in 

the frequency domain, the power of XWTs can be useful; the XWT power is defined as: 

𝑃𝑋𝑊(𝑎) =
1

𝐿
∫ |𝑋𝑊𝜓(𝑓, 𝑔)|𝑑𝑏

𝑡0+𝐿

𝑡0

 
(6) 

Identifying physical (real) phenomena in data is possible by simultaneously studying two powerful signal 

processing tools, that is XWTs and corresponding spectral powers. It can simultaneously show the 

continuous distribution/pattern of energies in the time-frequency representation by XWT energy and also 

the concentration of energies in the frequency domain by the corresponding spectral power. 
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6. Ambient vibration test on the Ammonium Nitrate prilling tower 

The petrochemical complex, constructed in 1959, is placed 45 kilometers north of the city of Shiraz, Iran, 

near the Korr River. Geological studies have shown that the seismic activity in this zone is high, 

nevertheless, the risks resulting from geotechnical instability, including faulting, liquefaction, subsidence, 

landslide and falling rock, are low [48]. 

The Ammonium Nitrate Prilling Tower is made of a concrete structure and categorized as non-building 

industrial structures. Four steel shimmies with the height of 25m, diameter of 1.9m and thickness of 0.5cm 

are attached to the tower between the heights of 55.7m and 80.7m. Schematic illustration of the tower and 

the corresponding cross-section are presented in Fig. 2 [48]. 

 

Adjacent to the tower, the elevator’s structure with rectangular section is located and locally attached to the 

tower at heights of 47.7, 50.6 and 55.7m. The foundation is constructed of reinforced concrete and contains 

a circular pile foundation with the thickness of 1.5m and 78 piles with the diameter of 60cm under the 

tower, and a rectangular pile foundation with the thickness 80cm and 27 piles of 60cm diameter under the 

elevator [48].  

A typical accelerometer used for recording accelerations deduced by ambient vibrations is illustrated in 

Fig. 2(b). This device is a “Force Balance” type accelerometer, which has: (1) 100Hz bandwidth, (2) Variable 

and adjustable measurement range of +0.25 g to +4g, (3) Adjustable sensor sensitivity from +5V/g to 

+80V/g, and (4) Sensor dynamic range of 140dB. 

Due to deterioration from its original condition and increasing vibrational response (mainly due to stiffness 

reduction), which leads to automatic equipment shutdown, the owners motivated for rehabilitation studies. 

The ambient vibration test is performed by the wind load. Spatial locations of sensors along the tower and 

recording directions “1” and “2” are illustrated in Fig. 2(d). Acceleration recorders on the tower are denoted 

by 𝑃𝑖 where 𝑖 ∈ {1, ⋯ ,7}, and the recorder 𝑅 is the reference one. Recording directions for the recorded 

data at the main tower are denoted by 𝑘 as 𝑃𝑖𝑘 for 𝑘 ∈ {1,2}. Data are recorded by the sampling step ∆𝑡 =

1/100 Sec [48]. 
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(a) (b) 

 

 

(c) (d) 
 

Fig. 2: Ammonium Nitrate periling tower, Shiraz, Iran; (a) Ammonium Nitrate periling tower, (b) A sensor on tower, (c) 
Locations of data recorders, (d) Recording directions “1” and “2” [48].  
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   7. benchmark problems 

In this section, the performance of the iterative denoising approach will be studied by two benchmark 

problems: one with one harmonic component and one with non-stationary chirp signal including three 

frequencies polluted with considerable noise levels. 

Benchmark 1: Let us consider a harmonic function 𝑦0(𝑡) = sin (6𝑡)  for 0 ≤ 𝑡 ≤ 2𝜋, with the angular 

frequency 𝜔0 = 6 𝑟𝑎𝑑/𝑠, or with the period 𝑇0 = 2𝜋/𝜔0 = 1.047 second. A function with real random 

values belonging to [−5,5] (and with the uniform distribution) denoted by 𝑦𝑛𝑜𝑖𝑠𝑒(𝑡) is added to 𝑦0(𝑡). The 

resulting function with the considerable noise is presented here by: 𝑦1(𝑡) = 𝑦0(𝑡) + 𝑦𝑛𝑜𝑖𝑠𝑒(𝑡). These 

functions are illustrated in Fig. 3. The function 𝑦1(𝑡) is sampled with the time step 𝑑𝑡 = 0.005. The aim is 

denoising of the sampled 𝑦1(𝑡) by the common wavelet-based methods and the iterative scheme (based on 

the discrete wavelet transformation) and compare their performance with each other. 

 

Fig. 3: The noisy data 𝒚𝟏(𝒕)  generated with the superposition of the harmonic data 𝒚𝟎(𝒕) and the noisy data 𝒚𝒏𝒐𝒊𝒔𝒆(𝒕); (a) 
Original harmonic signal 𝒚𝟎(𝒕), (b) Random noise 𝒚𝒏𝒐𝒊𝒔𝒆(𝒕) with uniform distribution, (c) Noisy data 𝒚𝟏(𝒕). 

The sampled noisy data is denoised with the common one-step discrete wavelet-based denoising method, 

with “Symlet-12” wavelet family, 10 decomposition levels and with three different thresholds obtained 

with three famous approaches, that is: the “SURE”, “Universal” and “Visu Shrink” approaches. The one-

step denoised results are presented in Fig. 4. The results confirm that the one-step wavelet-based denoising 

leads to over- or under-smoothed results. The values of the SNR and PSNR are presented in Table 1. This 

table confirms that one or both values of SNR and PSNR are negative for the “Universal” and the 
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“VisuShrink” thresholds, which confirms these thresholds are improper. It is interesting that for the 

“SURE” threshold, despite the SNR and PSNR values are positive and large enough, however, the denoised 

result,  𝑦̂(𝑡) is incorrect (as it should approximate 𝑦0(𝑡)). This confirms that controlling only the values of 

the SNR and the PSNR could not be enough.  

  

Fig. 4: The denoised results with the one-step wavelet-based method with three different threshold values; (a) Denoising with 
the SURE threshold, (b) Denoising with the Universal threshold, (c) Denoising with the VisuShrink threshold. 

 

Table 1: Denoising of the signal 𝒚𝟏 with different one-step wavelet-based denoising methods; where 𝑵𝒅 = 𝟏𝟎 

Method 
y1 

SNR(dB) PSNR(dB) 

VisuShrink −32.05799 −25.5346 

SURE 30.9656 37.11068 

Universal 15.3792 −5.3993 

 

For the iterative method, it is assumed that: 1) Using of the “Symlet[12]” wavelet family, 2) Number of 

decomposition levels is 12, 3) Number of iterations is four, 4) the threshold value for each iteration is 𝜖 =

2.5𝜎, where 𝜎 denotes the variance (since noise level is high, a large value for 𝜖 is chosen). For each 

iteration, the captured data (denoted by “Signal[i]”) and remaining noise (denoted by “Noise”) are presented 

in Fig. 5. 
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Fig. 5: Captured data and remaining noise at each iteration step. Iteration numbers are four. 

 

By superposition of these four captured data (“Signal[1]” to “Signal[4]”), the final enhanced data can be 

evaluated. The difference between initial data (𝑦1(𝑡)) and the enhanced data is known as the final noise. 

The enhanced data and the final noise are presented in Fig. 6. After enhancement, the total pattern of 𝑦0(𝑡) 

can be estimated while it includes localized noises. 
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Fig. 6: The final results after four iterations with 𝝐𝒊 = 𝟐. 𝟓𝝈𝒊; (a) The final enhanced data, (b) The remaining noise. 

 

Using the continuous wavelet transform, denoted here by 𝑊𝜓,  the values of  |𝑊𝜓| at different times and 

periods are presented for both the noisy data 𝑦1(𝑡) and the final enhanced data in Fig. 7. Where the wavelet 

family is the complex Morlet wavelet with parameters 𝜐𝑏 = 2 and 𝜐𝑐 = 1.10. This figure confirms: 1) For 

the 𝑦1(𝑡) the frequency components cannot be detected, and nearly all frequency bands are polluted, 2) For 

the enhanced data, the frequency content is approximately around the period 𝑇 ≈ 1.06 𝑠𝑒𝑐.: very close to 

the frequency content of 𝑦0(𝑡). Also, the effects of considerable noise can nearly be removed from the 

noisy data 𝑦1(𝑡). 

This benchmark problem confirms the robustness of the iterative denoising approach for data with high-

level of noise. Also, this approach can be used for data with localized high-level of noise. 

 

Fig. 7: The absolute values of CWTs, |𝑾𝝍|, obtained by the complex Morlet wavelet, where “T’ denotes the period; (a) |𝑾𝝍| for 

the noisy data, (b) |𝑾𝝍| for the enhance data. 
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Benchmark 2:  Let use assume a chirp function, as: 𝑦0(𝑡) = sin (6𝑡)  for 0 ≤ 𝑡 ≤
1

3
2𝜋; 𝑦0(𝑡) = sin (12𝑡)  

for 
1

3
2𝜋 ≤ 𝑡 ≤

2

3
2𝜋; and 𝑦0(𝑡) = sin (24𝑡)  for 

2

3
2𝜋 ≤ 𝑡 ≤ 2𝜋. A function with real random values 

belonging to [−2.5,2.5] (and with the uniform distribution) denoted by 𝑦𝑛𝑜𝑖𝑠𝑒(𝑡) is added to 𝑦0(𝑡). The 

periods of the signal are: For 0 ≤ 𝑡 ≤
1

3
2𝜋, 𝜔0 = 6 𝑟𝑎𝑑/𝑠, or 𝑇0 = 2𝜋/𝜔0 = 1.047 second; For 

1

3
2𝜋 ≤

𝑡 ≤
2

3
2𝜋, 𝜔0 = 12 𝑟𝑎𝑑/𝑠, or 𝑇0 = 0.5235 second; For 

2

3
2𝜋 ≤ 𝑡 ≤ 2𝜋, 𝜔0 = 24 𝑟𝑎𝑑/𝑠, or 𝑇0 = 0.2618 

second.  

The polluted signal is denoted here by: 𝑦1(𝑡) = 𝑦0(𝑡) + 𝑦𝑛𝑜𝑖𝑠𝑒(𝑡). These functions are illustrated in Fig. 

8. The function 𝑦1(𝑡) is sampled with the time step 𝑑𝑡 = 0.005. The aim is to enhance the signal 𝑦1(𝑡) by 

the iterative scheme via the discrete wavelet transformation. All assumptions for the wavelet transform are 

the same as Benchmark 1. 

For 𝑖 th iteration, the captured data (denoted by “Signal[i]”) and remaining noise (denoted by “Noise”) are 

presented in Fig. 9 for four iterations with the threshold 𝜖𝑖 = 2.5 𝜎𝑖. 

 

 

Fig. 8: The noisy data 𝒚𝟏(𝒕)  generated with the superposition of the harmonic data 𝒚𝟎(𝒕) and the noisy data 𝒚𝒏𝒐𝒊𝒔𝒆(𝒕); (a) 
Original chirp signal 𝒚𝟎(𝒕) including three harmonics, (b) Random noise 𝒚𝒏𝒐𝒊𝒔𝒆(𝒕) with uniform distribution, (c) Noisy data 
𝒚𝟏(𝒕). 
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Fig. 9: Captured data and remaining noise at each iteration step. Iteration numbers are four. 

 

By superposition of the four captured data (“Signal[1]” to “Signal[4]”), the final enhanced data can be 

calculated. The difference between initial data (𝑦1(𝑡)) and the enhanced data is known as the final noise. 

The enhanced data and the final noise are presented in Fig. 10. After enhancement, the total pattern of 𝑦0(𝑡) 

can be estimated while it includes localized noises. 
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Fig. 10: The final results after four iterations with 𝝐𝒊 = 𝟐. 𝟓𝝈𝒊; (a) The final enhanced data, (b) The remaining noise. 

 

By the complex continuous wavelet transform (i.e., 𝑊𝜓), the values of |𝑊𝜓| at different times and periods 

are presented for both the noisy data 𝑦1(𝑡) and the final enhanced data in Fig. 11. The complex Morlet 

wavelet is used for the transformation with parameters 𝜐𝑏 = 2 and 𝜐𝑐 = 1.10. This figure confirms: 1) For 

the 𝑦1(𝑡) the frequency components cannot be detected, and nearly most frequency bands are polluted, 2) 

For the enhanced data, the periods 𝑇 = 1.047, 𝑇 = 0.5235,, and 𝑇 = 0.2618 are denoted by the blue 

dashed lines in Fig. 11(b) which are the period contents of the original data 𝑦0(𝑡). It is obvious that the 

enhanced signal has effective concentrations around the periods 𝑇 = {1.047, 0.5235, 0.2618}.  

 

  

Fig. 11 The absolute values of CWTs, |𝑾𝝍|, obtained by the complex Morlet wavelet, where “T’ denotes the period; (a) 

|𝑾𝝍| for the noisy data, (b) |𝑾𝝍| for the enhance data; The horizontal dashed lines denote the periods 1.047, 0.5235, and 

0.2618 seconds. 
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   8. Results of estimated modal frequencies from the ambient vibration test 

Different recorded data in the main tower, P21, P31, P51, P12 and P72, are presented in Fig. 12. Here, the 

sampling time step is ∆𝑡 = 0.01 and the data lengths are chosen to be 𝐿 = 80. 

Indeed, to distinguish two nearly located separate peaks of frequencies 𝑓1, 𝑓2, where 𝑓2 > 𝑓1  it is necessary 

to use a data length 𝐿 , or truncate the original signal by length 𝐿, as [49]: 

𝐿 ≥
2

 𝑓2  −  𝑓1

 
(7) 

or: 

Δ𝑓 = 𝑓2  −  𝑓1  ≥
2

𝐿
 

(8) 

Hence in our study, the peaks with difference Δ𝑓 =
2

80
= 0.025 (𝐻𝑧) can be distinguished. Hence, the 

longer the length of data, the more accurate frequency detection. 

At first, two common approaches are considered to detect modal frequencies: 1) Studying in the Fourier 

space, 2) Investigating by the one-step denoising in the wavelet space by the discrete wavelet transform.  

Regarding the Fourier domain, the frequency content of the signals 𝑃21, 𝑃31 and 𝑃51 are studied by using 

the discrete Fourier transform, denoted here by ℱ(. ). The energy densities in the frequency domain, 

|ℱ(𝑦)|2 are presented in Fig. 13. It is obvious that due to the ambient vibration, operations of mechanical 

systems, elevators, fans and back-ground noise, there are several peaks. Also, due to the lack of information 

from time domain, it is impossible to select modal frequencies directly from the frequency peaks. 

8-1: One-step denoising methods based on wavelet (packet) transform 

Different steps of wavelet-based denoising by the one-step methods can be summarized as: 1) Estimation 

of noise level in a process; 2) Modification of detail coefficients {𝑑(𝑗, 𝑘)} where the modified set is denoted 

by {𝑑̂(𝑗, 𝑘)}: where 𝑗 and 𝑘 denote resolution-level and position, respectively (with  location 𝑘/2𝑗); also 

𝑗 = {𝐽𝑚𝑎𝑥 − 1, … , 𝐽𝑚𝑖𝑛} where 𝐽𝑚𝑎𝑥 and 𝐽𝑚𝑖𝑛 represent the finest and the coarsest resolution-levels, 

respectively; 3) Reconstruction of the denoised signal by both {𝑑̂(𝑗, 𝑘)} and the unchanged scale 

coefficients {𝑐(𝐽𝑚𝑖𝑛, 𝑙)} [50,51].  
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Fig. 12: Recorded signals at different stations. The horizontal and vertical axes denote time and acceleration, respectively; 
sampling time step is ∆𝒕 = 𝟎. 𝟎𝟏; (a) Signal 𝑷𝟐𝟏, (b) Signal 𝑷𝟑𝟏, (c) Signal 𝑷𝟓𝟏, (d) Signal 𝑷𝟏𝟐, (e) Signal 𝑷𝟕𝟐 [48]. 

The modifying stage can be performed by thresholding technique. For instance, for a pre-defined threshold 

“𝜀”, detail coefficients below this threshold are set to zero. This simple kill-or-keep method is known as 

the hard thresholding [50-52], with the definition: 

𝑠𝜖(𝑤) = {
0,   |𝑤| ≤ 𝜖
𝑤,   |𝑤| > 𝜖

 
(9) 

where 𝑠𝜖(. ) denotes the shrinkage function. To prevent sudden jump in modified (thresholded) detail 

coefficients, there is another simple and famous approach known as the soft thresholding method, defined 

as Eq. (1) [50-52]. 

The possible thresholding approaches are mentioned in Table 2. Regarding this table, the parameters can 

be defined as follows: The term "level" indicates a level-dependent thresholding. The Universal, SURE and 

GCV thresholding methods try to minimize the mean square error 𝑀𝑆𝐸(𝜀) = ‖𝒇𝜀 − 𝒇‖2/𝑁, where 𝒇𝜀 is a 

vector of thresholded data with the threshold value 𝜀, 𝒇 is the unknown smooth (untouched or without 

noise) data, and 𝑁 denotes the length of data. Since 𝒇 is unknown, it is necessary to estimate 𝑀𝑆𝐸 [52].  
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In the Universal method (proposed by Donoho and Johnstone), the threshold gives a minimax solution of 

the ideal mean squared error in the asymptotic behavior of 𝑀𝑆𝐸 (as 𝑁 → ∞) [50-53]. For a signal of length 

𝑁, for the Universal approach, the threshold is [29]: 

𝜀 ≡ 𝜀Universal = 𝜎̂ √2 𝐿𝑜𝑔(𝑁) (10) 

where 𝜎̂  denotes the noise level or 𝜎̂2 is the noise variance for white Gaussian noise, which can be estimated 

as [29]: 

𝜎̂ =
𝑚𝑒𝑑𝑖𝑎𝑛{ |𝑑(𝐽𝑚𝑎𝑥−1, 𝑘)|: 𝑘 = 1,2, … , 𝑁/2}

0.6745
 

(11) 

where 𝑑(𝐽𝑚𝑎𝑥−1, 𝑘) denotes the detail coefficient at the first level of decomposition (or at the finest 

resolution 1/2𝐽𝑚𝑎𝑥−1 with the location 𝑘/2𝐽𝑚𝑎𝑥−1). For large values of 𝑁, the Universal threshold can 

remove both the noise and the physical signal. 

In the “SURE” method, the Stein’s unbiased risk estimator (SURE) is used for 𝑀𝑆𝐸 estimations [50-52, 

54].  

For the case where the wavelet detail coefficients are sparse, Donoho and Johnstone show that a hybrid 

method which combines the Universal and the SURE thresholds is preferable than SURE. This hybrid 

threshold when used with the soft-thresholding method is known as the “SUREShrink” method. This 

threshold can be obtained as [55]: 

𝜀 ≡ 𝜀SUREShrink = 𝑚𝑖𝑛{𝜀𝑆𝑈𝑅𝐸 , 𝜎̂ √2 𝐿𝑜𝑔(𝑁)} (12) 

Asymptotically, the generalized cross validation (GCV) function is a vertical translation of the 𝑀𝑆𝐸 

function, while the GCV can be evaluated only based on input (noisy) data. Hence, the threshold value 

minimizing GCV also minimizes 𝑀𝑆𝐸 [52]. 

The “VisuShrink” threshold is designed to remove Gaussian noise with high probability (which tends to 

result in overly smooth image appearance). For image processing, by specifying a smaller sigma than the 

true noise standard deviation 𝜎̂, a more visually agreeable result can be achieved [56]. 

Regarding the common wavelet-based approach, in the following, the one-step denoising by the discrete 

wavelet will be studied for data P12. The famous approaches are used to select proper thresholds, that is: 

the “SUREShrink”, “SURE”, and “Universal” methods, see Table 2 for definitions. Using the Symlet[12] 

orthogonal wavelet with 13 decomposition levels, the denoised results are presented in Fig. 14. Also, the 
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values of SNRs and PSNRs of denoised data are presented in Table 3. The results confirm that: 1) The 

denoised data are over- or under-smoothed, 2) The negative values for either SNR or PSNR confirm 

improper denoising results. 

In the following more advanced wavelet transform will be used, that is the wavelet packet transform to have 

considerable flexibility in studying locally in time-frequency spaces. For the P12 signal, the one-step 

denoised results by the wavelet-packet transform are presented in Fig. 15. The considered wavelet is 

𝑆𝑦𝑚𝑙𝑒𝑡[12]  and 𝑁𝑑 = 13 (number of decomposition levels). The performance of different one-step 

denoising methods for P12 and P51 signals measured by SNR and PSNR criteria is also presented in Table 

4. Both Fig. 15 and Table 4 show that among the denoising methods, the GCV denoising method leads to 

the best results. However, for all denoising methods the PSNRs are considerably less than 30 dB which 

confirms the insufficient performance of the one-step denoising method using different thresholding 

approaches. 

Table 2: Different denoising approaches with corresponding thresholding method and estimating noise level 

Denoising method Thresholding approach Estimating method of the noise 
level 

GCV soft GCV 
GCVLevel soft GCV-Level 

SURE hard SURE 
SURELevel hard SURE-Level 

SUREShrink soft SURE 
Universal hard Universal 

UniversalLevel hard Universal-Level 
VisuShrink soft Universal 

VisuShrinkLevel soft Universal-Level 

 

 

Fig. 13: The energy density |𝓕(𝒚)|𝟐 in the frequency domain for different recorded data, where 𝓕(𝒚) denotes the Fourier 

transform of 𝒚(𝒕); (a) |𝓕(𝒚)|𝟐 of signal 𝑷𝟐𝟏, (b) |𝓕(𝒚)|𝟐 of signal 𝑷𝟑𝟏, (c) |𝓕(𝒚)|𝟐 of signal 𝑷𝟓𝟏.  
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Fig. 14: The denoised 𝐏𝟏𝟐 signal by the one-step wavelet based denoising using the thresholds obtained by the 
“SUREShrink”, “SURE” and “Universal” approaches, the Symlet-12 wavelet and 𝑵𝒅 = 𝟏𝟑; (a) Over smoothed by 
“SUREShrink” threshold, (b) Over smoothed by “SURE” threshold, (c) Over smoothed by “Shrink” threshold. 

 

 

Table 3: Denoising of the 𝐏𝟏𝟐 signal with different one-step wavelet-based denoising methods; where 𝑵𝒅 = 𝟏𝟑. 

Method 
𝑃12 

SNR (dB) PSNR (dB) 

SUREShrink −51.2786 22.2520 

SURE −51.2786 22.2521 
Universal −51.2787 22.2521 
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Fig. 15: Denoising of the 𝐏𝟏𝟐 signal with different one-step wavelet-packet-based denoising methods; where 𝑵𝒅 = 𝟏𝟑. 

 

8-2 Results for the Iterative denoising method based on wavelet packet transform 

In this part, the results of signal enhancement with iterative denoising methods are presented. The largest 

possible value of 𝐶𝑛
𝑗
 is obtained by a trial-and-error approach. The proper value of 𝐶𝑛

𝑗
 is estimated as: 𝐶𝑛

𝑗
=

1. For signals P12 and P51, after 13 decomposition levels and 2 iterations, the values of the SNR and PSNR 

(which shows the effectiveness of the data enhancement method) are presented in Table 5. The 𝑆𝑦𝑚𝑙𝑒𝑡 

wavelet of order 12 is assumed. Note that at the end of the iteration, the corresponding enhanced results 

and the initial noisy data are used in the calculation of the SNR and PSNR parameters.  
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Table 4: Effects of denoising with different thresholding by the one-step DWPT method with the 𝑺𝒚𝒎𝒍𝒆𝒕[𝟏𝟐] and 𝑵𝒅 = 𝟏𝟑. 

Method 
𝐏𝟏𝟐 𝐏𝟓𝟏 

SNR (dB) PSNR (dB) SNR (dB) PSNR (dB) 

GCV 42.693504 18.560875 30.779994 16.993771 

GCVLevel 32.025807 7.2176840 27.396521 13.593568 

SURE 33.036281 8.6313331 25.231523 11.313871 

SURELevel 30.054381 5.1049236 23.358374 9.4540047 

SUREShrink 31.176870 6.3329708 24.243898 10.315175 

Universal 30.3283032 5.4488797 25.048999 11.119087 

UniversalLevel 30.6195054 5.6516937 24.081426 10.025114 

VisuShrink 30.0684292 5.1165927 23.967897 10.051441 

VisuShrinkLevel 30.2468347 5.2791582 23.683542 9.7212105 

 

For the P12 signal, after each iteration, both noise and the captured (denoised) data (denoted as “Signal[i]”) 

are presented in Fig. 16. Number of iterations is two, and it is assumed: 𝐶𝑛
𝑗

= 1 and 𝑁𝑑 = 13. The last row 

presents the denoised (enhanced) signal after two iterations, obtained as: ∑ 𝑆𝑖𝑔𝑛𝑎𝑙[𝑖]2
𝑖=1 , see Fig. 16. 

Estimated noise is obtained from the difference of the initial signal 𝑃12 and the final enhanced data, as: 

𝑁𝑜𝑖𝑠𝑒 = 𝑃12 − ∑ 𝑆𝑖𝑔𝑛𝑎𝑙[𝑖]2
𝑖=1 . In each iteration, information with coherent structures is selected as 

denoised signal and the remaining data is used as noise and is used for the next iteration. In summary, due 

to the high-level of noise in the data, the noise cannot be removed completely. Indeed, it is removed as 

much as possible, by decomposing the signals into coherent (denoised signal) and incoherent (noise) 

structures by a method that is simultaneously localized both in time and frequency domains. The 

enhancement effect is investigated for P12 data.  

The final energy density of noise (the final noise in Fig. 16, the last row) is presented on Fig. 17 in time-

frequency representation by using the continuous wavelet transform to identify localized random-wise 

information in the noise. Fig. 17(a) represents a 3D plot of the information (𝑡, 𝑇, |𝑊𝜓|
2

), and Fig. 17(b) 

represents the corresponding contour plot, where 𝑡 and 𝑇 denote time and period, respectively; and |𝑊𝜓|
2
 

is energy density. All calculations are performed with the complex Morlet wavelet with parameters 𝜐𝑏 = 2 

and 𝜐𝑐 = 1.10. The energy range is 0.02𝑀𝑎𝑥[|𝑊𝜓|
2

] ≤ |𝑊𝜓|
2

≤ 𝑀𝑎𝑥[|𝑊𝜓|
2

] in Fig. 18. 

According to Fig. 18, for short periods, i.e. 𝑇 < 0.5, stochastic like localized information exists and for 

periods in the range 0.9 < 𝑇 < 1.4, several significant phenomena occur locally, which may be caused by 

the operations of mechanical systems, elevators, and fans in the tower. This stochastic or local like 

information is not important in this study, since only excited modal frequencies are important with 

continuous presence through time. So far, several powerful signal processing tools have been used to 

enhance or clean the signal. After enhancing the data, in the next step, it is tried to integrate possible physical 
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features to extract more reliable information. The main idea is to use cross-wavelet analysis to find repeating 

physical patterns in different data.  

Table 5: Iterative denoising of data 𝐏𝟏𝟐 and 𝐏𝟓𝟏 with parameters: 𝑪𝒏
𝒋

= 𝟏 and 𝑵𝒅 = 𝟏𝟑. 

Iteration 
P12  p51 

SNR (dB) PSNR (dB) SNR (dB) PSNR (dB) 

1 28.820625 15.012432 36.564065 12.582310 

2 39.730155 25.878075 45.793346 21.754959 

 

 

 

Fig. 16: Iterative denoising of the signal 𝐏𝟏𝟐 with two iterations; both denoised signal and estimated noise are provided at 
each iteration (the first row). The last row contains final denoised signal and estimated noise; evaluations are obtained with: 

𝑺𝒚𝒎𝒍𝒆𝒕[𝟏𝟐], 𝑪𝒏
𝒋

= 𝟏 and 𝑵𝒅 = 𝟏𝟑. 
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(a) 

 
(b) 

Fig. 17: Density of energy for the remaining noise after 13 iterations of the peeling algorithm for data 𝐏𝟏𝟐 where 𝑪𝒏
𝒋

= 𝟏 and 
𝑵𝒅 = 𝟏𝟑. (a) 3D representation of the noise energy density; (b) Corresponding contour-plot.  Parameters “t” and “T” denote 
the time and period, respectively. 

8-3 Cross-wavelet analysis for frequency detection  

Here, by using cross wavelet analysis and corresponding power spectrum, physical responses are 

detected. Cross-wavelet transform can be used to identify common frequencies between two data with 

significant power. This feature of cross-wavelet analysis is used to study each pair of enhanced signals 

{P21, P31}, {P21, P51}, {P12, P72}, and {P21, P12}. Here, P21 is chosen as the reference record. These 

signals are denoised with the wavelet-packet based iterative scheme with 𝑆𝑦𝑚𝑙𝑒𝑡[12], 𝑁𝑑 = 13, 𝐶𝑛
𝑗

= 1 

and using of two iterations. 
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The results of wavelet analysis and corresponding power spectrum for each pair of enhanced signals 

{P21, P31}, {P21, P51}, {P21, P72} and {P21, P12} are presented in Figs. 18, 19, 20 and 21, respectively. 

In each figure, the energy density of the CWT (i.e. |𝑊𝜓|
2
) of each signal, corresponding cross wavelets 

(that is |𝑋𝑊𝜓|) and their spectral powers (that is 𝑃𝑊 or 𝑃𝑋𝑊) are presented. In all figures, for the energy 

density |𝑊𝜓|
2
 and the cross-wavelet |𝑋𝑊𝜓|, plotted ranges of energies are 0.02𝑀𝑎𝑥[|𝑊𝜓|

2
] ≤ |𝑊𝜓|

2
≤

𝑀𝑎𝑥[|𝑊𝜓|
2

] and 0.02𝑀𝑎𝑥[|𝑋𝑊𝜓|] ≤ |𝑋𝑊𝜓| ≤ 𝑀𝑎𝑥[|𝑋𝑊𝜓|], respectively. 

Based on the cross-wavelet analysis and the corresponding power spectrum, the identified modal-like 

frequencies have peaks in the power spectral curves and are continuous through time in XWTs. To clarify 

detected frequences, they are pointed by arrows in Figs. 18(e)-21(e)). The detected frequencies are: 

1- For the pair {𝐏𝟐𝟏, 𝐏𝟑𝟏} (Figs. 18(e,f)): 0.88, 0.92, 1.05, 1.085, 1.11, 1.21, 1.24, 1.29, 1.58, 1.64, 

1.79, 1.835, 2.12, 2.16, and 2.28 Sec, 

2- For the pair {𝐏𝟐𝟏, 𝐏𝟓𝟏}  (Figs. 19(e,f)): 0.88, 0.92, 1.05, 1.085, 1.24, 1.29, 1.58,1.64,1.79, 1.835, 

2.12, 2.16, and 2.28 Sec, 

3- For the pair {𝐏𝟐𝟏, 𝐏𝟕𝟐} (Figs. 20(e,f)): 0.88, 0.92, 1.05,1.085, 1.24, 1.29, 1.53, 1.54, 1.58, 1.64, 

1.79, 1.835, 1.9, 1.97, 2.07, 2.12, 2.16, and 2.28 Sec, 

4- For the pair {𝐏𝟐𝟏, 𝐏𝟏𝟐} (Figs. 21(e,f)): 0.88, 0.92, 1.05,1.085, 1.21, 1.24, 1.29, 1.58, 1.64, 1.695, 

1.72, 1.79, 1.835, 2.12, and 2.16 Sec, 

Since signals are not recorded simultaneously, common detected periods in all pairs are assumed to be 

possible modal periods. The common periods in all signal pairs are: 0.88, 0.92, 1.05, 1.085, 1.24, 1.29, 

1.58, 1.64, 1.79, 1.835, 2.12, and 2.16 s. Also, the results show that due to the semi-symmetric shape of the 

structure, there are several pairs of nearly excited periods in the power spectrum (which may be two similar 

modes independently in the 𝑥 and 𝑦 directions).  

Also, the main concrete tower was independently modeled by the linear finite element (FE) method using 

3D continuum elements with linear shape functions [48]. The effects of damage, soil-structure interaction, 

concrete-steel interaction, elevators, and operating machinery and fans are not considered in the FE model. 

The modal frequencies obtained from the FE model are reported as: 0.1829, 0.1843, 0.20, 0.2138, 0.3139, 

0.3232, 0.3954, 0.4118, 1.6004, and 1.9738 Sec [48]. 

According to the modal frequencies identified from the FE model, the possible reasons for the difference 

between the results from the ambient vibration test and the FE model could be: 
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1- The operation of mechanical systems and the existence of three active fans in the main tower. 

2- There were four narrow steel towers on top of the main concrete tower. These steel towers are not 

considered in the FE model. 

3- There is existence of (considerable) damage and cracks in different parts of the main tower, and 

the connection of the main tower with the neighboring structure. They were not considered in the 

FE model, 

4- Four narrow and long steel towers are above the main structure. However, they are not simulated 

in the FEM. 

 

9.Conclusion and future study 

In this work, introducing the iterative enhancing approach based on wavelet packet transform is the main 

goal. As the authors know, this is the first time that wavelet packet based iterative denoising is used for 

ambient vibration tests. Also, both the one-step and the iterative denoising methods (based on MRA) have 

been investigated to improve the signals with a high level of noise recorded from ambient vibration tests. 

In this study with a benchmark involving high level of noise, the robustness of the iterative denoising 

method is studied; the result is compared with the common one-step denoising method with different 

thresholds. The results of the one-step denoising methods confirm that:  

1) Outputs still need considerable improvement, due to small values of PSNR (Table 3 and Fig. 15), 

2) From different thresholding methods, different results can be obtained, 

For the wavelet-packet based iterative denoising method for high-level of noise in data, it may be possible 

to conclude:  

1) The wavelet-packet based iterative denoising approach can enhance the signals (see captured noise in 

Fig. 16 and corresponding energy density of noise in Fig. 17), 

2) This method can effectively detect random local data. This confirms the importance of using iterative 

denoising approaches for data enhancement (noise energy in Fig. 17). 

3) Noise in the signal cannot completely be removed even by the iterative method (see remaining localized 

features in Fig. 19). 
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After enhancement of high-level noisy signals (recorded from ambient vibration tests) by the iterative 

denoising method, it has been tried to identify the excited frequencies by using the continuous cross-wavelet 

analyses and the corresponding spectral powers. In the continuous wavelet transform, Morlet complex 

wavelets are used to detect both instantaneous frequencies and corresponding excitation patterns in the 

time-frequency representation. The excited frequency is recognized as a physical phenomenon with 

continuous excitation over time in the time-frequency representation. Regarding their spectral powers, also, 

these modal frequencies have local concentrations with considerable powers around modal frequencies (or 

corresponding scales). By cross-analyzing of the pairs of enhanced signals, the results confirm: 
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Fig.18: Powers and energies of wavelet transforms of denoised signals 𝐏𝟐𝟏 and 𝐏𝟑𝟏, and corresponding 𝑿𝑾𝑻 and spectral 

power of 𝑿𝑾𝑻; a) The spectral power of denoised 𝐏𝟐𝟏 ; b) The density of energy for the denoised 𝐏𝟐𝟏, |𝑾𝝍(𝑷𝟐𝟏)|
𝟐

; c) The 

spectral power of denoised 𝐏𝟑𝟏  d) The density of energy for the denoised 𝐏𝟑𝟏, |𝑾𝝍(𝑷𝟑𝟏)|
𝟐

; e) The spectral power of XWT 

for the denoised data 𝐏𝟐𝟏 and 𝐏𝟑𝟏; f) The density of |𝑿𝑾𝝍| for the denoised data 𝐏𝟐𝟏 and 𝐏𝟑𝟏 . In these figures, plotted 

graphs are for the range 𝟎. 𝟎𝟐𝑴𝒂𝒙[|𝑾𝝍|
𝟐

] ≤ |𝑾𝝍|
𝟐

≤ 𝑴𝒂𝒙[|𝑾𝝍|
𝟐

] or 𝟎. 𝟎𝟐𝑴𝒂𝒙[|𝑿𝑾𝝍|] ≤ |𝑿𝑾𝝍| ≤ 𝑴𝒂𝒙[|𝑿𝑾𝝍|] . 
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Fig. 19: Powers and energies of wavelet transforms of denoised signals 𝐏𝟐𝟏 and 𝐏𝟓𝟏 and corresponding 𝑿𝑾𝑻 and spectral 

power of 𝑿𝑾𝑻; a) The spectral power of denoised 𝐏𝟐𝟏 ; b) The density of energy for the denoised 𝐏𝟐𝟏, |𝑾𝝍(𝑷𝟐𝟏)|
𝟐

; c) The 

spectral power of denoised 𝐏𝟓𝟏  d) The density of energy for the denoised 𝐏𝟓𝟏, |𝑾𝝍(𝑷𝟓𝟏)|
𝟐

; e) The spectral power of XWT 

for the denoised data 𝐏𝟐𝟏 and 𝐏𝟓𝟏; f) The density of |𝑿𝑾𝝍| for the denoised data 𝐏𝟐𝟏 and 𝐏𝟓𝟏. In these figures, plotted 

graphs are for the range 𝟎. 𝟎𝟐𝑴𝒂𝒙[|𝑾𝝍|
𝟐

] ≤ |𝑾𝝍|
𝟐

≤ 𝑴𝒂𝒙[|𝑾𝝍|
𝟐

] or  𝟎. 𝟎𝟐𝑴𝒂𝒙[|𝑿𝑾𝝍|] ≤ |𝑿𝑾𝝍| ≤ 𝑴𝒂𝒙[|𝑿𝑾𝝍|] . 
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Fig. 20: Powers and energies of wavelet transforms of denoised signals 𝐏𝟐𝟏 and 𝐏𝟕𝟐 and corresponding 𝑿𝑾𝑻 and spectral 

power of 𝑿𝑾𝑻; a) The spectral power of denoised 𝐏𝟐𝟏 ; b) The density of energy for the denoised 𝐏𝟐𝟏, |𝑾𝝍(𝑷𝟐𝟏)|
𝟐

; c) The 

spectral power of denoised 𝐏𝟕𝟐  d) The density of energy for the denoised 𝐏𝟕𝟐, |𝑾𝝍(𝑷𝟕𝟐)|
𝟐

; e) The spectral power of XWT 

for the denoised data 𝐏𝟐𝟏 and 𝐏𝟕𝟐; f) The density of |𝑿𝑾𝝍| for the denoised data 𝐏𝟐𝟏 and 𝐏𝟕𝟐. In these figures, plotted 

graphs are for the range 𝟎. 𝟎𝟐𝑴𝒂𝒙[|𝑾𝝍|
𝟐

] ≤ |𝑾𝝍|
𝟐

≤ 𝑴𝒂𝒙[|𝑾𝝍|
𝟐

] or  𝟎. 𝟎𝟐𝑴𝒂𝒙[|𝑿𝑾𝝍|] ≤ |𝑿𝑾𝝍| ≤ 𝑴𝒂𝒙[|𝑿𝑾𝝍|] . 
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Fig. 21: Powers and energies of wavelet transforms of denoised signals 𝐏𝟐𝟏 and 𝐏𝟏𝟐, and corresponding 𝑿𝑾𝑻 and spectral 

power of 𝑿𝑾𝑻; a) The spectral power of denoised 𝐏𝟐𝟏 ; b) The density of energy for the denoised 𝐏𝟐𝟏, |𝑾𝝍(𝑷𝟐𝟏)|
𝟐

; c) The 

spectral power of denoised 𝐏𝟏𝟐  d) The density of energy for the denoised 𝐏𝟏𝟐, |𝑾𝝍(𝑷𝟏𝟐)|
𝟐

; e) The spectral power of XWT 

for the denoised data 𝐏𝟐𝟏 and 𝐏𝟏𝟐; f) The density of |𝑿𝑾𝝍| for the denoised data 𝐏𝟐𝟏 and 𝐏𝟏𝟐. In these figures, plotted 

graphs are for the range 𝟎. 𝟎𝟐𝑴𝒂𝒙[|𝑾𝝍|
𝟐

] ≤ |𝑾𝝍|
𝟐

≤ 𝑴𝒂𝒙[|𝑾𝝍|
𝟐

] or  𝟎. 𝟎𝟐𝑴𝒂𝒙[|𝑿𝑾𝝍|] ≤ |𝑿𝑾𝝍| ≤ 𝑴𝒂𝒙[|𝑿𝑾𝝍|]. 
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1) Cross-wavelet analysis improves the time-frequency representation for identifying excited 

frequencies (e.g., Fig. 19), 

2) Despite the improved time-frequency representation of cross wavelets, this transformation may 

also be insufficient because of existence of several continuous frequencies in its time-frequency 

representation. As it is not clear whether these frequencies are modal frequencies or not (Figs. 18-

20), 

3) However, the spectral power of the wavelet transform could be useful for detection and capturing 

the frequency of significant energies (as physical phenomena), 

4) Due to the nearly symmetrical plane of the structure, the detected modal frequencies are close to 

each other (see Fig. 2) (however for the tortional modal frequencies, it is not the case), 

5) Cross wavelet analysis could reduce the effects of stochastic phenomena such as noise, as they 

do not have coherence with each other (see Fig. 19). 

At the end of this study, the detected frequencies are compared with the frequencies captured from the 3D 

FE model. They have good agreements with each other. However, there are frequencies that are not seen in 

the FE model, which could be due to the following reasons: 

1- The operation of mechanical systems and the existence of three active fans in the main tower, 

2- There were four narrow steel towers on top of the main concrete tower. These steel towers are not 

considered in the FE model, 

3- Existence of damage and cracks in different parts of the main tower, which is not considered in 

the FE model. 

Finally, it should be noted that the common discrete wavelet (packet) based one-step denoising with 

different threshold may lead to over- or under-smoothing results for signals with high level of noise (as 

presented in Fig. 4 and Table 1). Hence, for such data, the wavelet-based iterative approach could be 

promising along with other common methods. Also, the finite element model in [48] was not based on the 

model-updating approach to achieve more accurate model: it was an initial model based on initial 

assumptions which should be updated. Hence, model updating would be recommended. 

In conclusion, for civil engineering applications, vibration responses are complex, displaying variations in 

space and time. The responses often contain nonlinearity and uncertainties not considered during data 

collection. These responses can also be polluted by various sources, affecting numerical simulations and 

damage identification processes. A significant challenge is how to effectively remove noise from the 

collected data to achieve reliable damage indicators that are insensitive to noise and environmental 

factors. Hence, proper denoising, damage detection and numerical simulations are still active research 

areas [57]. 
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For future study, wavelet based denoising approach is a powerful tool; some of recent studies can  be 

mentioned as: (1) Using of the iterative denoising method based ob the lifting wavelet transform [58], (2) 

Using the iterative algorithm enhanced by using the statistical process control [59], (3) Selection of 

optimum wavelet family for denoising [60], (4) Improving thresholding approach for signal denoising 

using for structural health monitoring [61], (5) Combing of other type of filtering with wavelet 

thresholding to enhance denoising [62]. Also, for a comparative study of wavelet transforms for the health 

monitoring, one can see [63]. 
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