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Abstract: 

This paper provides a hybrid control strategy for the aim of nullifying the vibration of flexible 

appendages in satellite structures. These vibrations often occur during the deployment of satellite 

panels. To maintain performance and ensure attitude stability, a robust control framework is essential. 

To achieve this, piezoelectric actuators are incorporated into the panels to actively suppress structural 

vibrations. Lyapunov Nonlinear Model Predictive Control (LNMPC) is introduced in order to guarantee 

satellite stability and robustness. This algorithm is similar to the Piece-Wise Affine(PWA) method, but 

the nonlinear dynamics of the system is used instead of linearization. Additionally, Anti-Unwinding 

Sliding Mode Control is employed into this algorithm and combined with LNMPC to neutralize the 

vibration actively, furthermore this composite controller assists to control both kinematics and 

dynamics properly also steering the reaction wheels to zero after every maneuver to save energy in the 

presence of uncertainty, external disturbance and actuators dynamics considered into the algorithm. 

Furthermore, close loop stability analysis is provided by utilizing a candidate Lyapunov function. 

 

Keywords: Hybrid controller , Flexible satellite , Nonlinear Model Predictive Control , Anti-

Unwinding Sliding Mode Controller , Vibration suppression, momentum management 

 

1 – Introduction 

Over the past few years, the use of satellites to assist with various tasks has become a common practice 

in the field of space exploration. However, significant costs are often associated with these missions, 

which frequently encounter numerous challenges. Once deployed into their predetermined orbits, 

flexible satellites unfold their solar panels to absorb sunlight and generate electricity. This process can 

cause vibrations that may disrupt the satellite's attitude. Therefore, designing an appropriate control 

system is essential to ensure satellite stability. 

 

Lyapunov nonlinear model predictive control is a robust control strategy that is widely used across 

different industries. It employs a cost function to optimize the algorithm and guide the system toward a 

steady state. Two common optimization methods are the active set method and sequential quadratic 

programming. In this paper, we have chosen the active set method due to its ability to solve quadratic 

programming problems with high accuracy and speed. Active set method usually are used in linear 

applications but in this study it’s correspondence with nonlinear systems are discussed[1].  
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Anti-unwinding sliding mode control(AUSMC) is employed additionally to assurance kinematics 

convergence. This issue has been recognized by many scientists and researchers, a linear model 

predictive control and a terminal sliding mode controller are combined to passive suppress the satellite’s 

vibrations in  and enhance satellite stability in the presence of actuator faults[2]. 

Hybrid controller involving model predictive control and feedback linearization are designed. This 

combination has ability to both control the attitude and angular velocity of the reaction wheels[3]. 

MPC used due to station keeping and momentum management of a low-thrust satellite. MPC is 

scheduled to maintain the satellite in a tight latitude and longitude frame[4].  

An extended model predictive control (EMPC) is employed in order to keep the satellite in a nadir 

direction in the presence of actuator faults. This MPC algorithm is similar to the linear model and it 

needs dynamics model linearization and Hildreth method to handling the constraints[5]. 

MPC algorithm named multi-horizon multi-model predictive(MHMM-PC) control is discussed.it used 

a quadratic cost function and sequential quadratic programming (SQP) method to optimize the 

algorithm due to stabilize a electromagnetic tethered  satellite[6]. 

MPC and LQG(Linear Quadratic Gaussian) are combined for the purpose of the control the satellite 

attitude and improve the accuracy during docking and refueling. One of the main challenges is fuel 

sloshing disturbance, and it can disrupt the satellite attitude to prevent this, these to controllers are 

merged to optimize and enhance the performance of the satellite. The linear MPC is used in this paper 

[7]. 

For the aim of control the high thrust in a cube sat with solid thruster a piece-wise affine model 

predictive control (PWA-MPC) is proposed. Solid thruster usually have a large eccentric torque and it 

can lead to rapid attitude maneuvering so MPC for the reason that it can frequently optimize the system 

can improve the cube sate thruster torque in an accuracy way is chosen and in this paper linear model 

is used[8]. 

A new NMPC algorithm named multivariate radial basis function-based autoregressive model which 

uses sequential quadratic programming(SQP) to optimize the system for the propose of satellite attitude 

control[9]. 

All these researches are compared to this work, in this study flexible satellite nonlinear dynamics are 

incorporated into a Toeplitz matrix and by optimizing it by active-set method the optimal control signal 

is yielded. Conventionally, the active-set method utilizes when inequality active constraints are in the 

problem, so in this work it is assumed that, if high maneuver is needed so satellite consumes high control 

effort and it is lead to active constraints in every optimal solution, moreover active -set method is able 

to be faster than SQP. Another problem is to steer the actuators to zero and ensure satellite stability 

every maneuvering in the presence of uncertainty, external disturbance and actuators dynamics , steering 

reaction wheels to zero will assist to save more energy and use it for the next maneuver. 

 

 

 

The contributions of this paper are listed below 
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1) Forming a Toeplitz matrix containing the nonlinear equations of a flexible satellite, also it is 

optimized by active-set algorithm which is faster and more accurate that SQP 

2) Merging LNMPC and AUSMC in order to neutralize the satellite vibration in active mode 

3) Focusing on satellite momentum management and the reaction wheels will be stop after 

maneuvering is accomplished. 

4) Considering Modified Rodriguez Parameters(MRPs) as satellite kinematics equation and analysis 

hybrid controller performance in the presence of uncertainty, external torques and actuator 

dynamics. 

In this paper, section 2 provides the 3DOF flexible satellite attitude dynamics, section 3 outlines about 

satellite control system design, section 4 is about the closed loop stability analysis, section 5 is 

illustrated the simulation diagrams and finally section 6 is a conclusion about our work. 

 

2 – Flexible satellite dynamics and kinematics 

Flexible spacecraft kinematics and dynamics equations are given.[10],[11]. Dynamic equations are 

represented by equations (1) and (2), where 
3

R  denotes the angular velocity matrix, 
3 3

J R
   is 

the positive definite symmetric matrix related to the momentum of inertia of the satellite.
3 n

R   The 

matrix represents the coupling between the rigid hub and the flexible appendages. 
n

R The vector 

signifies the modal coordinates related to the main body, and
3

u R , 
3

d R characterize the control 

effort vector and external disturbances, respectively. Additionally, 2 n n

n
C R     is the damping 

diagonal matrix, and 
2 3 n

n
K R

   is the stiffness diagonal matrix.,
3 3

p R   is the matrix indicates 

a coupling matrix related to the flexible. Furthermore,
3

pu R represents the piezoelectric control input 

acting on the flexible appendages. Equation (3) denotes the angular velocity skew-symmetric matrix, 

which is utilized in equation (1). 

 

 

J J u d        (1) 
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p pC K u           (2) 
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Equations(4) and (5) are represented piezoelectric actuator voltage input computation. 

 

y p  (4) 

 

 

T

pu p  (5) 

 

Equation (6) is used due to investigation the complexity of the model and considering the effect of the 

panels’ vibration into the equation and to improve accuracy, so in the whole of this paper this equation 

is utilized in the nonlinear equation. 

 

1

T
J J     (6) 

 

Equations (7) and (8) are related to the Euler angles of the satellite        and Fig.1 is 

depicted a schematic of a flexible satellite which is  extracted from [12]. 

R   (7) 

 

 

1

1 0 sin

0 cos sin cos

0 sin cos cos

R
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
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 


 
  

 

 

 

(8) 

 

 

Equation(9) indicates the kinematic equation, where 
3

R  is the vector related to the Rodriguez 

parameters. 
3 3

I R
 is the identity matrix. 

 

1
{(1 ) 2 2 }

4

T T
I          

(9) 
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Fig.1.Flexible satellite structure model  

 

 

 

 

2.2. Actuators Dynamics  

In this subsection, actuators dynamics are investigated inspired by [13]. Generally the reaction wheels 

are DC motors that are mounted in the satellite and can rotate any direction, these actuators should stop 

after any maneuver, it is for prevent actuators to be saturated or failed. Equation(10) is the differential 

equation for the armature of the DC motor circuits. 

 

( )

a

a a a b i a

di
L R i K e

dt
     

 

(10) 

 

a
R  is the armature, 

a
L  denotes the armature inductance, 

b
K indicates the back emf constant,   is the 

angular velocity of the motor, a
i  is the armature current and 

a
e denotes the applied armature voltage. 

 

a b

d
e K

dt


  

 

(11) 

 

 signifies the angular displacement of the motor shaft and the r
u  produced by motors, equation(12) 

denotes the torques produced by actuators motors and m
K is the motor torque constant. 

 

 

( )r i m a
u K i  (12) 
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In equation (13) , b is the viscous coefficient of the motors. 

 

( ) ( ) ( ) ( ) , 1,2,3r i i i r i m aJ b u K i i       (13) 

 

Equations(14) and (15), 
t

K  and 
m

T are the motor gain constant and motor time constant respectively. 

m

t

a m b

K
K

R b K K



 

(14) 

 

( )
m a r a m b

T R J R b K K    (15) 

 

( )

( ) ( ) ( ) ( )

i t

r i i i i a

m m

I K
J I e

T T



     
 

(16) 

 

 

1 1( ) ( ) ( ( ))
r r r t m a r m d

J J J J J K T e J T T               (17) 

 

 

p p
C K u          (18) 

 

Equations (17),(18) outline the nonlinear dynamics of the flexible satellite in the presence of actuators 

dynamics. In equation(16) 
a

e is considered as control input.  

 

3-Attitude Control System Design 

This section focuses on controller design. Fig.2 illustrates the configuration of the proposed hybrid 

controller. This diagram shows the integration of the Anti-Unwinding Sliding Mode Controller 

(AUSMC) with the Lyapunov Nonlinear Model Predictive Controller (LNMPC). In this block diagram, 

an arbitrary input is applied to the LNMPC, and the desired output is fed back to the input in order to 

minimize the error to zero. Sections 3 is dedicated to the design of the controllers. 
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Fig.2.Block diagram of the hybrid controller  

 

3.1. Lyapunov Nonlinear Model Predictive Control Design 

Lyapunov nonlinear model predictive control equations are derived according to [14]. Totally model 

predictive control is based on optimal control so for solving the optimal control problem we need a cost 

function. This function which is shown in(19), it optimizes dynamic system error in a finite prediction 

horizon and optimal control derivative vector will be computed, and first element of the vector is applied 

to the system. the predicted outputs are y h     . Q  and R  are the weighting matrices 

related to the trajectory error and control effort variation respectively. In NMPC by minimizing the 

quadratic cost function, the predicted output y  can be converge to it’s set point y  faster and smoother. 

 

 

2
1

2

0

min (( ( | ) ( | )) ( | )
p u

N N

j i
u

j N i

J Q y k j K y k j k R u k i k



 

         

(19) 

 

As mentioned previously, one of the  advantages of the MPC is to take constraints into account. 

Equations (20), (21), and (22) discuss these constraint limitations. In this paper, the control effort u  and 

variations in control effort u are the system's constraints 

min max( | )u u k i k u   . (20) 

 

min max( | )u u k i k u    (21) 

 

min max( | )u u k i k u       (22) 

 

In Equation (23), the term Y represents the estimated output of the system. This term is determined by 

solving the optimization problem outlined in Equation (26). F  The steady states relevant to this problem

G  are expressed here as well. The Toeplitz matrix, as described in Equation (29), is used to analyze the 
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differences between past and future behaviors of the system over the finite prediction horizon pN

concerning variations in control effort. 

Y F G U    (23) 

 

( 1| ) ( | )

( 2 | ) ( 1| )
,

( | ) ( 1| )p c

y k k u k k

y k k u k k
Y U

y k N k u k N k

    
          
   
   

       

 

 

 

(24) 

 

1pN
F Y   (25) 

 

 

1

2

T T
J U U U       

(26) 

 

 

2( )T
G QG R    (27) 

 

 

( )T
G Q F Y    (28) 

 

 

( 1)
0 0

( )

( 2) ( 2)
0

( ) ( 1)

( ) ( ) ( )

( ) ( 1) ( 1)

p p p

u

y k

u k

y k y k

u k u kG

y k N y k N y k N

u k u k u k N

  
 
 
    

     
 
 
      
       

 

 

 

 

 

(29) 

 

Equations (30) and (31) are denoted the predicted output and control effort variations. 

 

( ) ( 1)y y k y k     (30) 

 

 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



9 
 

( ) ( 1)u u k u k      (31) 

 

The equations above have been used to solve the quadratic cost function in (26), and the optimization 

was performed using the active-set method in MATLAB. One of the advantages of this algorithm is its 

use of a candidate Lyapunov function in the matrix G , which allows for stability analysis to be 

integrated into the algorithm. It  assists to enhance the robustness of the controller. It is important to 

note that matrix G is the forced response and the matrix F is the free response. 

 

3.2. Anti-Unwinding Sliding Mode Control design 

 In this section anti-unwinding sliding mode controller is presented. This nonlinear controller is used 

due to guarantee  kinematics asymptotic stability[15]. Sliding mode is a nonlinear controller which 

employs a sliding surface to stabilize the steady states. One the common problems of sliding mode 

controller is chattering phenomenon. Chattering is a harmful event which occurs in control effort signal 

and it could damage actuators.to prevent it, some kind of sliding mode controller have been developed 

by researchers and it can be seen in many papers. Briefly, unwinding is a phenomenon that satellite to 

reach it’s desired attitude from an arbitrary point needs to rotate more than   so anti-unwinding method 

makes satellite to keep this rotation less than  .  at first it is need to design a sliding surface S  and 

steady states should be in it. In equation(32) predicted angular velocity   and Modified Rodriguez 

parameters  is put into the sliding surface. term is a positive weighting constant and assume to be 

0.3 due to control the kinematics.  

 

S     (32) 

 

 

Equation (33) depicted the AUSMC control law( u ). equ , nu  are obtained by solving the (34) to (38).in 

nominal control law ( nu ), 1  is a positive constant and chosen to be 0.1, 2  is acquired by (36). 

 

1 2

( )

( ( )) ( )

eq n

eq

n

u u u

u J JM

u t Jf s

s

    

 

 



  
 

  
 

   
   

 

 

 

(33) 

 

 

 

2

3

1
( ) [(1 ) 2 2 ]

4

T
M I        

(34) 
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3 2

3 1

2 1

0

0

0

e

 

  

 



 
 

 
 
  

 

(35) 

 

 

2 ( )t g   (36) 

 

The following relations are presented to define the boundary conditions, and equation (38) is a positive-

valued function. The term  is a small positive value, and as it approaches zero, it improves anti-

unwinding performance 

. 

,arctan
4

,arctan
4

T

s T

g


  


  

 
  

  
  
  

 

(37) 

 

 

 

,

( )

,

s
if s

s
f s

s
if s






 
 
 

  
 
  

 

(38) 

 

 

 

The AUSMC algorithm is derived from the equations above and will help ensure that kinematics 

converges to zero while making controller signals as smooth as possible. 

 

 

4. stability analysis 

In this section the closed loop stability is proved by a candidate Lyapunov function. In this proof the 

candidate Lyapunov function is based on sliding surface in equation(32)  

 

Proof: 

The candidate Lyapunov function is given as follows 
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1

2

T
V S S  

 

(39) 

 

By taking a time derivative the equation(39) is yielded 

 

( ) T
V t S S  (40) 

 

By substituting the equation(33) into the equation(40), equations(41) and (42) are obtained respectively. 

1( ) ( ( ) )T
V t S J J u d           (41) 

 

1 1

1 2( ) ( ( ) ) ( (( ( )) ( ))T T

n
V t S J u J d S J t Jf s              (42) 

 

 

1 2 2( ) ( ) ( )V t S t S t S        (43) 

 

So in equation(43), the ( ) , ( ) 0V t V t   are achieved and the closed loop system is asymptotically 

stable. 

 

5 - Simulation and validation 

This section presents the results of computer simulations conducted using MATLAB software. We 

compare the performance of the proposed hybrid controller in actively suppressing vibrations in flexible 

appendages, all the simulations have done under uncertainty and external disturbance. This comparison 

aims to evaluate its superiority over the algorithm's performance. This section is divided into two 

subsections, in subsection 5.1 tuned controller gains which are obtained by trial and error are discussed 

and subsection 5.2 is related to the computer simulations. In all the simulations in the subsection 5.2 

external disturbance and 20 precents of the flexible satellite moment of inertia as uncertainty are 

employed. Furthermore, the Matrix damping is considered as 0C   to analyze the hybrid controller 

ability in order to neutralize the satellite vibration. 

 

 

5.1.gain tuning 

 To ensure the expected performance of the designed controller, the controller's gain must be adjusted 

rigorously. All performance parameters, including settling time, overshoot/undershoot, steady-state 

error, prediction horizon, and control horizon, should be considered. As mentioned in section 2, the 

prediction and control horizons are assumed 10N  to be set, and the controller's gains ,Q R are 

adjusted as (1500,1500,1500)Q diag (10,10,10)R diag respectively. The gains for the anti-
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unwinding sliding mode controller discussed in section 3 are tuned as follows. 0.3  1 0.1 

0.001   The simulation time is 100t s set, and the sampling period time step is also specified

0.01
s

t  . The parameters related to the appendage's vibration and piezoelectric actuators are adjusted 

(0.7681,1.1038,1.8733)diag (0.2,0.2,0.2)P diag to account for the vibration frequency and 

the positive definite matrix associated with the piezoelectric actuators, respectively. 

 

5.2. simulation results 

To enhance the clarity of the tracking performance and robustness of the controller, the diagrams below 

are provided. These graphs are generated based on specific initial conditions that mentioned in table 

1.To introduce uncertainty into the algorithm, it is assumed that 20 percent of the inertial matrix for the 

body frame of the flexible satellite is affected. parameters , ,    denote the Euler angles,  is the 

flexible satellite angular velocity,   is the vibration displacement and it is related to the flexible 

appendage and   is the Rodriguez Parameters related to the kinematics equation. It is supposed that 

the satellite reach the setpoint y  from the given numerical conditions. 

 

 

Table 1. Initial Conditions  

Number Parameter  Initial Conditions 

1 , ,    10 20 100
T

    

2    0 0 0
T

 

3   
 0 0 0

T
 

4    1.5 0.5 0.3
T

  

5 
maxu  10  

 

 

 

Table2. actuators specifications 

Number Parameter Value 

1  
 

( )
a

R ohm  1  

2  
b

K   

0.0005  

3  
( )m

Mm
K

A
 

 

0.2  

 

4  .
( )

.

N m
b

rad s
 

31.21 10  
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Table.2 represents the values of actuators parameters and it is based on actuators motors specifications. 

 

 

 

 

 

LNMPC is unable to nullify vibration with low frequency, so it is merged AUSCM to tackle this 

problem. if LNMPC perform as a lowpass filter and just able to neutralize the high frequency the 

satellite attitude would be interrupted, Fig.2 and Fig.3 are bode diagrams and are given to prove this 

claim. 

The satellite's inertia matrix, coupling matrix, and coupling matrix related to the flexible part are 

expressed as follows: 

420.8 3.6 4.2

3.6 410.6 9.4

4.2 9.4 690.7

J

 
 


 
  

 

(44) 

 

 

2.62 0.007 0.003

0.001 0.124 2.73

0.001 0.437 0.051



 
 

  
 
   

 

(45) 

 

 

 

70.26 4.23 2.34

4.80 31.93 1.24

1.05 2.55 29.84

p

 
 


 
  

 

(46) 

 

 

By assuming that flexible satellite is placed 500 Km far from the earth surface the external disturbance 

that  is employed to it’s actuators is[16]. 

 

0
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2 cos( ) sin( )
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Where 
0  is the orbital angular velocity and it is considered as 0.0011 rad/s and the amplitude of the 

disturbance is 2. 

 

Fig.3 illustrates the bode diagram related to LNMPC active vibration suppression. We have 6 3 18   

graphs related to 3 inputs and 6 outputs (Euler angles an angular velocities). According to the diagram 

as frequency increases, the slope of the diagram converges to   it means that the controller is 

nullifying the high frequency and just pass the low frequency. In Fig.4 exactly the opposite happens, in 

low frequency, the frequency that is given in subsection 5.1 the slope remains in negative side or near 

zero and it is declared that the hybrid controller is nullifying the vibration with low frequency as well. 

 

 

 

Fig.3. Bode diagram during vibration suppression using the LNMPC 
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Fig.4. Bode diagram during vibration suppression using the Hybrid Controller 

 

In the rest of the paper, the figures related to the computer simulations are given. In all simulations the 

behavior of the composite controller during entering disturbance into the actuators are analyzed.Fig.5 

is the satellite Euler angles which are reached to the setpoint from the arbitrary conditions. Fig.6 is the 

control effort signals related to all three reaction wheels, Fig.7 is the Rodriguez parameters, Fig.8 is the 

flexible appendage’s vibration displacements, Fig.9 is flexible appendage’s vibration velocities, Fig.10 

is satellite angular momentums and they are properly steered to zero after maneuver.Fig.11 is the 

satellite angular velocities, Fig.12is the sliding surfaces and they are converged to zero as well, Fig.13 

is the piezoelectric control input voltage and Fig.14 is the reaction wheels motors angular velocities and 

they are similar to reaction wheels angular momentum converged to zero. It is essential to stop actuators 

after each maneuver to prevent overconsuming and save energy for the next maneuver. 

 

Fig.5.Flexible satellite Euler angles( , ,   )  
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Fig.6. Control effort signals ( , ,x y zu u u )  

 

 

 

 

Fig.7. Modified Rodriguez Parameters( , ,x y z   ) 
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Fig.8.Vibration displacements ( 1 2 3, ,   ) 

 

 

Fig.9. Vibration velocities ( 1 2 3, ,   )  
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Fig.10. Reaction wheels angular momentums ( , ,
x y z

h h h   )  

 

 

 

 

Fig.11. Flexible satellite angular velocities ( , ,x y z   )  
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Fig.12. Sliding surfaces ( , ,x y zS S S )  

 

 

 

Fig.13. Piezoelectric voltage inputs ( , ,
x y zp P Pu u u )  
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Fig.14. Reaction wheels motors angular velocities ( , ,x y z   )  

 

 

 

 

 

 

Table 3. hybrid controller characteristics in different methods 

 

Method 

name 

Euler angles settling 

time (s) 

Max 

Control 

effort 

(N. m) 

Max vibration displacement vibration displacement 

settling time (s) 

No 

external 

disturbance 

20, 20, 22      10  
1 2 30.0008, 0.003, 0.003      1 2 315, 50, 50      

Under 

external 

disturbance 

25, 25, 30      10  
1 2 30.0008, 0.003, 0.003      1 2 320, 55, 55      

 

 

Table 3. discussed about the behavior of the system after employing external disturbance. The Euler 

angels and Tip deflection settling times are raised, but it is not a quite different and it is a reason that 

the hybrid controller is robust enough to handle disturbance with high amplitude. The main reason that 

this controller is considered as a robust NMPC is the corresponding Toeplitz matrix that contains the 

nonlinear dynamics of the flexible satellite so it is able to deal with uncertainty and disturbance properly. 
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Fig.15. Euler angles error signals diagram 

 

Fig.15 depicts the Euler angles error signals comparison in two different states, with and without 

employing external disturbance. Equation(48) is the Euler angles error and equation(49) gives the 

convergent rate. 

 

In equation(48) the error of the Euler angles is denoted, where      . 

error    (48) 

 

_
e

convergence rate e
t


 


 
(49) 

 

Equation(50) and (51) are convergent rate computation, with and without external disturbance 

respectively. 

By assuming two value on the diagram,80 and 40 the convergence rate is calculated as follows 

 

80 40 40
10

12 8 4


 


 

(50) 

 

 

80 40 40
8

14 9 5


 


 

(51) 
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The convergent rate by employing the external disturbance is decreased, according to the Fig.5 after 

employing external disturbance, the settling time increased so it is denoted that the hybrid controller is 

robust but increasing in settling time is common.  

 

 

5.3. Fact Checking 

In this subsection, a similar paper is selected to compare with the hybrid controller in this paper.[2] the 

hybrid controller that is used is merging linear MPC and terminal sliding mode controller. To prove our 

composite controller feasibility, the selected paper data is used into the composite controller in this 

paper. The flexible satellite moment of inertia and coupling matrix are given as follows[17]. 

 

0

487 15 1.2

14.9 177 7.3

1.2 7.3 404

J

 
 

 
 
   

 

 

(52) 

 

 

1 0.1 0.1

0.5 0.1 0.01

1 0.3 0.01



 
 


 
  

 

 

 

(53) 

 

 

Initial parameters including, gains, prediction horizon and initial angles are the same as Table 1. Fig.16 

to 25 are illustrated and compared each other. 

Fig.16 is the comparison of  the Euler angles of two different methods, and it is understood from the 

graph that the controller in this study has lower overshoot and undershoot rather than another controller, 

Fig.17 is the control effort comparison and Fig 18 and 19 are related to satellite angular velocity and 

angular momentum respectively.Fig.20 and Fig.21 are related to the vibration displacement and velocity 

respectively, Fig.22 denotes the piezoelectric actuators input control, Fig.23 is Rodiguez parameter, 

Fig.24 is sliding surfaces and they are converged to zero properly and the last one, Fig.25 is reaction 

wheels motors angular velocity and they are converged to zero and it means the reaction wheels after 

completing maneuver are rested.  

 

 

 

 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



23 
 

 

Fig.16. Flexible satellite Euler angles comparison ( , ,   )  

 

 

 

Fig.17. Control effort signals comparison ( , ,x y zu u u )  
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Fig.18. Flexible satellite angular velocities comparison ( , ,x y z   )  

 

 

 

 

 

 

Fig.19. satellite angular momentums comparison ( , ,
x y z

h h h   )  
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Fig.20.Vibration displacements comparison ( 1 2 3, ,   ) 

 

 

 

 

Fig.21. Vibration velocities  comparison ( 1 2 3, ,   )  
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Fig.22. Piezoelectric voltage inputs comparison ( , ,
x y zp P Pu u u )  

 

 

 

 

 

Fig.23. Modified Rodriguez Parameters comparison ( , ,x y z   ) 
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Fig.24. Sliding surfaces comparison ( , ,x y zS S S )  

 

 

 

Fig.25. Reaction wheels motors angular velocities comparison ( , ,x y z   )  
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Table 4. Controllers comparison 

 

Method 

name 

Euler angles settling 

time (s) 

Max 

Control 

effort 

(N. m) 

Max vibration displacement vibration displacement 

settling time (s) 

Controller 

in this 

study 

20, 15, 20      10  
1 2 30.001, 0.0025, 0.003      1 2 315, 50, 50      

Controller 

in the 

selected 

paper 

25, 20, 25      10  
1 2 30.002, 0.002, 0.0005      1 2 340, 20, 10      

 

 

 

According to the Table 4, the composite controller in this paper has performed quite well and the Euler 

angles could reach their setpoints in a shorter time. 

 

 

 

 

6-Conclusion 

This paper aims to clarify the effectiveness of the Lyapunov Nonlinear Model Predictive Controller 

(LNMPC) and its performance when combined with the Anti -Unwinding Sliding Mode Control 

(AUSMC). The active-set optimization algorithm, known for its speed and accuracy, enhances the 

usability of this approach, as demonstrated by simulation results. This combination effectively 

addresses uncertainties and external disturbance , resulting in a longer settling time but still robustness 

against them. The robustness of the LNMPC  is particularly beneficial for managing low-frequency 

vibrations, which is a significant aspect reflected in the results. Since satellite vibrations typically occur 

within a low-frequency range, relying solely on LNMPC  may not effectively mitigate these vibrations. 

Therefore, integrating LNMPC with AUSMC proves advantageous, as it leverages the strengths of both 

controllers. 
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