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Abstract:

A novel method for enhancing the accuracy of direction of arrival estimation for two closely spaced targets
by optimizing the geometric array configuration of a Binary-Phase Reconfigurable Intelligent Surface
based on Minimum Redundancy Linear Arrays is proposed. In Binary-Phase Reconfigurable Intelligent
Surfaces, the phases of the reflected signals at the Reconfigurable Intelligent Surfaces elements remain
unchanged or undergo a 180-degree phase shift, making it significantly more cost-effective in terms of
hardware compared to traditional direction of arrival estimation systems. This cost reduction, however,
leads to an increase in the correlation of dictionary atoms. To compensate for this drawback, we regularize
the optimization problem using atomic norm. Subsequently, the problem is transformed into its dual form
to facilitate solving with existing solvers. Simulation results demonstrate that the proposed method can
estimate the direction of arrival with higher accuracy for closely spaced targets in the angular domain,
compared to existing Reconfigurable Intelligent Surfaces-based array methods, while maintaining the same

hardware complexity.
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Introduction

Recently, reconfigurable intelligent surfaces (RIS) [1] have been widely studied in the fields of wireless
communication, signal processing, and radar [2]. Given that RIS can intelligently and programmatically
reflect signals and alter the amplitude or phase of the received signal, it can be used to expand signal
coverage and enhance signal quality. This is particularly useful in scenarios where there is no direct line-
of-sight between the transmitter and receiver, or where multipath fading is severe. The elements of RIS are
essentially several varactor diodes or positive intrinsic negative (PIN) diodes, and their values are updated
by the control channel as the wireless environment changes. However, in [3], the authors propose MARISA,
a self-configuring metasurface solution that aims to operate without requiring constant adjustments to the

RIS measurement matrix by a control channel as the wireless channel conditions change.

On the other hand, direction of arrival (DOA) estimation plays a crucial role in wireless communications.
Given that RIS has low maintenance costs and, unlike traditional array structures, it can estimate the angle
of arrival with only a limited number of discrete phase shifts, it presents a viable option for positioning and
signal angle estimation. Another advantage of using RIS for estimating the angle of the received signal is
that in environments where there is no direct line-of-sight (LOS) between the transmitter and receiver, RIS
can be strategically placed in a location that has LOS with both the targets and the receiver. This allows for

the accurate estimation of the angle of arrival of the signal at a receiver equipped with only a single antenna.

Unlike most papers, which approach the calculation of the elements of the RIS measurement matrix by
solving an optimization problem to maximize the quality of service (QoS) or the received SNR in specific
reception and transmission directions, [4] represents the first effort in this domain to tackle the selection of
element values from the perspective of reducing correlation between the columns of the RIS measurement

matrix, rather than enhancing SNR. To this end, a genetic algorithm is employed to design a matrix such

. . 1
that the correlation between any two rows is less than —————, where K represents the number of targets

(2K +1)
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or the sparsity degree of the vector that needs to be recovered. Its results for DOA estimation have been
promising. In [5], the authors have addressed DOA estimation by introducing a hew atomic norm without
knowing the element values of the measurement matrix and without the need for its optimization. They
have extended their idea for the array structure in [6], assuming that the positions of the RIS elements have

uncertainties following a Gaussian distribution.

To mitigate the need for complex data recovery techniques, such as sparse minimization problems or
exhaustive grid search, in the estimation of DOA for a source with RIS in non-line-of-sight (NLOS)
propagation, [7] proposes a polarized architecture. However, this solution necessitates the incorporation of
more costly and intricate hardware in both the Base Transceiver Station (BTS) and the Reconfigurable
Intelligent Surface (RIS), as it requires the installation of Electromagnetic Vector Sensor (EMVS) arrays
arbitrarily placed at both locations. The concept of RIS-Aided DOA is explored in [8] and [9]. Considering
an array structure instead of a single antenna configuration for the receiver, [10] also uses learning-based

methodology for DOA estimation with RIS.

The accuracy of DOA estimation is influenced by the sensor array's configuration. Optimizing the geometry
of the antenna array (e.g., arrays that are non-uniform or sparse) can provide better resolution and
robustness, particularly for closely spaced angles. For example, linear sparse arrays can offer larger
effective apertures with fewer sensors, providing better resolution for the same computational cost. To the
best of the authors' knowledge, the challenge of improving the resolution accuracy of Direction of Arrival
(DOA) estimation by strategically rearranging the RIS elements for closely spaced angular targets has not
been explored in the literature. In this paper, we focus on Minimum Redundancy Linear Arrays (MRLAS)
configure (the class of linear sparse arrays) to enhance the direction finding results using Binary-Phase
Reconfigurable Intelligent Surface (Binary-Phase RIS) for closely spaced angles. The proposed
methodology presents a significant advancement in DOA estimation, particularly for closely spaced targets,
without introducing additional hardware complexity. This improvement enhances target resolution in

challenging operational environments, which is fundamental for applications in wireless communication,
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radar systems, and the Internet of Things (loT). The approach's cost-efficiency and enhanced accuracy
contribute to the development of more sophisticated signal processing techniques, with profound

implications for domains requiring high-precision angular estimation.

In essence, as mentioned before, the proposed approach does not require additional hardware compared to
previous algorithms. Instead, it relies solely on altering the geometry of the RIS elements arrangement to
enhance the resolution accuracy for closely spaced angular targets using MRLA concept. The seminal paper
[11] introduced the concept of MRLAS, which achieve maximum unigue spatial lags with the fewest
possible elements. It laid the theoretical foundation for efficient array geometries that enhance angular

resolution and reduce hardware complexity—principles directly utilized in our proposed RIS configuration.

In our solution, owing to Binary-Phase RIS, the atoms exhibit correlation. So, we also utilized the atomic

norm for angle recovery as it does not require the atoms to be uncorrelated.

Notations: Boldface italic upper-case and lower-case letters represent matrices and column vectors,
respectively. The symbols (-)" and (-)" denote the transpose and Hermitian transpose of a matrix,

respectively.

MRLA Binary-Phased RIS-aided model for DOA estimation

Recently, there are some papers on RIS with sparse arrays or RIS with coprime arrays. In [12], a hybrid
sparse-active RIS architecture (L-shaped sparse subarrays) is used for joint sensing and communication
(ISAC), and they apply nuclear-norm based interpolation to fill in missing covariance entries for DOA
estimation over the sparse RIS. A sparse Bayesian learning approach is developed in [13], with a neural
unrolling architecture, for off-grid DOA estimation with one-bit quantization in non-uniform sparse

arrays—demonstrating robustness in realistic quantized array contexts.

In the context of the MRLA binary-phased RIS-aided direction finding system, we employ NN RIS

elements to construct a Sparse Linear Array (SLA), as illustrated in Fig.1.
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There is an obstacle between both transmitters (target 1 and target 2) and a single antenna receiver.
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Fig. 1. The schematic model for Direction of Arrival (DOA) estimation using a one-dimensional MRLA RIS.

However, the RIS, configured as an MRLA, maintains line-of-sight (LOS) with both transmitters and the
receiver. As a result, it can receive the signals emitted by the transmitters and reflect them to the receiver.
All the reflected signals from the RIS are received by a single antenna system at a fixed and known

direction, denoted asy .



AUT Journal of Electrical Engineering
10.22060/EE].2025.24292.5674

40 DOA Estimation using ULA with 16 Elements

30 b

20 B

10 1

Spatial Spectrum (dB)

-10 1 L e 1 L | 1 TR—

-100 -80 -60 -40 -20 0 20 40 60 80 100
Angle (degrees)
DOA Estimation using MRLA with 16 Elements

30

20 b

10F .

10+ 4

Spatial Spectrum (dB)

_20 1 1 Il 1 1 1 1 1 1
-100 -80 -60 -40 -20 0 20 40 60 80 100

Angle (degrees)

Fig. 2. The spatial spectrum for DOA estimation with ULA and MRLA for three targets at angles of -20°, 30.56°, and 32.24°. The
detailed structure of the MRLA is discussed in the simulation section.

We assume the minimum distance between two adjacent MRLA binary-phased (MRLA-BP) RIS elements

is half a wavelength, referred to as grid spacing d. Let K denote the number of targets, §, the direction of

the k-th target towards the MRLA-BP RIS, and S, the signal from the k-th target. It is noteworthy that MRLA

belongs to a class of non-uniform linear arrays.

The MRLA employs a minimal number of elements within the array structure to generate all gaps between
zero and a predefined maximum number (in this case, six, as shown in Fig. 1). The primary advantage of
MRLA is its ability to construct the longest aperture in co-prime arrays while utilizing the least number of
array elements. Consequently, it offers the highest resolution for separating closely spaced angular targets.
Fig. 2 illustrates the spatial spectrum for DOA estimation of two linear arrays: the uniform linear array
(ULA) and the MRLA, for three targets with emission angles of -20°, 30.56°, and 32.24°. As depicted in
Fig.2, only the MRLA is capable of distinguishing between the two nearly angularly close targets, whereas

the ULA fails to do so, despite both arrays employing the same number of elements.
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The 4-element MRLA depicted in Fig. 1 performs comparably to a standard ULA with a 7-element aperture.

Specifically, a spatial delay of 1 is achieved by the element pair{P0 =0,P, = d} , a spatial delay of 2 by
{P,=4d,P,=6d}, aspatial delay of 3 by{P, =d, P, =4d}, a spatial delay of 4 by {P, =0,P, =4d} , a
spatial delay of 5 by{P, =d, P, =6d} , and finally, a spatial delay of 6 by {P,=0,P,=6d} .

Assume that the position of the n-th element of the MRLA-BP RIS is denoted as P,. The emitted signals

towards the MRLA-BP RIS during the m-th (m =0,1,...,.M —1) measurement snapshot are given by:

K1 jen2 R sing,

[e/#0 Sse’ mmlzsk j25ksing, gl 123 JZ”N*S'“"k (1)
k=0
Where¢m'ne{0,7z} is a phase of the n-th MRLA binary-phased RIS element at m-th measurement.
Restricting the phase quantization to only two levels significantly reduces implementation complexity;
however, it inevitably imposes limitations on the achievable estimation accuracy [14].S, is the k-th target

signal value during the m-th measurement. We assume that the values{sk }tj) remain constant during the

M snapshots. Therefore, the scalar m-th measurement received by the receiver can be written as:

n=0

P, .
NZ|: J¢m . KZSkeﬂ/r sing, :| 127r75mw + Wm (2)

Letw,, represent the AWG noise at the receiver. Suppose the positions of the MRLA-BP RIS elements are
collected in the position vectorp =[Py, P,,...,P, ', the target’s DOA in 0=[6,,6,,...,6,,] ,

T . T i
[So.S1s---+S¢4] + and the noise vector w =[W,,W,,..., W, | . Then the M measurements at the receiver

can be represented in matrix form as:
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Finally, we have:
A
r£UA,(v.p).A (0,p)s+w (4)

where U is referred to as the MRLA-BP RIS measurement matrix.

It is important to note that the elements of the measurement matrix U are either -1 or +1. As U is a
rectangular matrix rather than a square one, it is challenging to satisfy the Restricted Isometry Property
(RIP) condition. This difficulty is particularly pronounced when the element values are chosen randomly,
with no intention of adhering to the RIP in their design. In this study, the element values were also selected
randomly.

Design and Optimization of an MRLA for enhanced precision

The principle behind employing MRLA for BP-RIS instead of the conventional uniform linear arrays
(ULAs)—as commonly adopted in the literature—is to improve DOA estimation accuracy for closely
spaced targets, while maintaining the existing hardware complexity.

The aim of this section is to systematically choose an MRLA configuration by proposing an optimization
criterion that captures key objectives, such as maximizing the number of unique inter-element spacings,
minimizing redundancy, and adhering to physical constraints—specifically, maintaining a minimum

spacing of at least half a wavelength to ensure signal integrity and array performance.
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The MRLA consists of N elements at positions p =[P, P,..., P,H]T . We must first define a metric that

counts the number of unique spacings for the given configuration p. For every pair of elements (Pi, PJ.)

with 1< j, we define the spacing (lag):

dij:‘Pi_Pj‘ (5)
To use a metric defining the set of unique lags, let © be the set of all such pairwise spacings:
D(p)={[p-P|:0<i<j<N-1 6)
As the cardinality of a set refers to the size of the set, or the number of distinct elements it contains, the

cardinality of this set, |fD(p)| is the number of unique lags. Finally, the optimization problem of finding

the best MRLA configuration, p”, is formulated as follows subject to spacing and physical constraints:

p" =argmax|D(p)|,

0<i<N-2 (7)

subject to|P — P_,| 2%

Here, P represents the set of all feasible configurations and A is the wavelength.

To ensure the solvability of the problem (7), the minimum spacing between adjacent array elements is set
to half a wavelength. Additionally, it is assumed that the candidate positions for placing the array elements

are integer multiples of half a wavelength:

P=x

(8)

N r\)|§3

where each x; Z" denotes the slot index, where Z" is the set of positive integers.

Moreover, the maximum length of the MRLA is constrained within a specified limit, such asL,, , to

account for practical considerations and implementation feasibility.

So, the optimization problem in (7) changes to:
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K =arg max @(ixj
KEZ+N 2
subject to:

i — K| >1,0<i<N -2,

(9)

max (k)—min (k) <L,

Here, Z*™ represents the vector of N elements each belong to the set of positive integers.

{5

category of combinatorial optimization. To solve it, several approaches can be employed, including: 1)

Since the operator is both non-convex and non-differentiable, the problem (9) falls into the

Integer programming, which is suitable for small grid sizes where exhaustive computation is feasible [15]
, [16]. 2) Greedy search or heuristic methods, which provide approximate solutions efficiently by leveraging
problem-specific strategies [17],[18]. 3) Genetic algorithms, which utilize evolutionary principles to
explore the solution space and converge toward optimal configurations[19].

For the sake of simplicity and ease of implementation in software coding, the greedy search method is

employed to determine the optimal MRLA configuration, as outlined in Section 4.

Analytical justification of the greedy algorithm to determine the optimal MRLA configuration
This section provides a precise mathematical justification for employing a greedy search algorithm to

maximize the number of unique inter-element spacings, ensuring an optimal array configuration.

Suppose min (K) =0andlet & = {O, 1, Lmax} be the allowable element-slot indices (in units of 4/ 2).

. A L
For any N-element subset k — ¢, define f (K) = ‘@(EK] , as the total number of unique inter-element

spacings, where ® is defined in (6) with consideration of (8). We wish to select an N-element subset

K={Ky, Ky} S, (10)
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S0 as to maximize the number of unique inter-element spacings. Define the set of all pairwise lags of k as

@(%K] The objective is f (k)= ‘@(%Kj .

By construction, f(¢):0 and f is integer-valued and nondecreasing: if kcQc &, then

@(%xjc@(%q] so f(k)<f(Q).

For any current partial selection S — & and any candidate X e &\_S, define the marginal gain:

a(x]8)=f(Su{x})-f(s), (11)

Concretely, if S ={xy,--, K}, then

a(x18) =[{lx —x,[;0<i < <k =1fU{x=r|:i =0, k=L =[{|i —x [;0<i < j<k-1f] (22
)

Intuitively, A(X | S)counts how many new lags |X - K'i| (for 1 =0,---,k —1) are not already present among
the f(S)distinct lags.

We can show that f satisfies a diminishing-returns (submodularity) property:

(x| A)>a(x|B)whenever Ac B &,x¢B. (13)
In other words, adding a new element x to a smaller set A can only produce as many or more “new spacings”

than adding it to a larger set B. Because if B already contains more elements, many of the potential lags
: A
|X - b| may already be “covered” in D > B .

A standard greedy algorithm builds k one element at a time. At step k, suppose we have already chosen

Sk :{Ko""ka—l}- (14)

We pick the next element x, to maximize the marginal gain:
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=arg m X .
K =arg max a(x|S,.) (15)
Thus each iteration greedily chooses the slot x whose addition yields the largest increase in the count of

unique spacings. Denote the resulting set of size N by

Kgreedy ={K0"”’KN—1}' (16)

Since f is nondecreasing and exhibits the diminishing-returns property, it is a submodular set function. A

well-known result from submodular optimization (Nemhauser—Wolsey theorem [20]) says that, under a

cardinality constraint|i| < N , the greedy solution K, satisfies

greedy

f (Koo ) (1— 1) f (). (17)

e

. &
where K is the (NP-hard) exact maximizer of f (K)over all [|N|] choices. In other words, the greedy

algorithm is guaranteed to achieve at least 0.632 f (K) ;

Grid-free DOA estimation using atomic norm optimization

Traditional high-resolution DOA estimation methods such as MUSIC [21] and ESPRIT [22] have long
served as foundational techniques in array signal processing. These subspace-based estimators exploit the
orthogonality between the signal and noise subspaces to achieve angular superresolution, yet their
performance strongly depends on accurate model order selection, sufficient snapshots, and high SNR
conditions. [23] provides a theoretical analysis of spatial smoothing techniques, which are fundamental in
handling correlated sources and sparse array geometries.

In contrast, the atomic-norm-based framework introduces a gridless and convex formulation for DOA
estimation, effectively overcoming the basis mismatch and discretization errors inherent to grid-based or

subspace methods.
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The atomic norm is a convex measure that represents the smallest weighted combination of basic building
blocks—called atoms—needed to express a signal. It promotes sparsity by encouraging representations
using as few atoms as possible from a predefined atomic set.

By directly promoting spectral sparsity in the continuous domain, atomic norm minimization enables
super-resolution recovery of closely spaced sources even under low-SNR or hardware-constrained
scenarios, thereby offering a significant advantage—especially within our proposed MRLA-RIS
architecture, where binary-phase limitations and limited measurements make conventional subspace
methods less effective.

Given that dictionary learning is less critical when using the atomic norm, the atomic norm can be
incorporated as a regularization component within the cost function of the optimization problem to

determine DOAs as follows:

.1
minJUA, (y.p)y =r, +£l], (18)

where ¢ is the regularization parameter controlling the sparsity level as well as recovering accuracy and the

atomic norm | y|, is defined as:

] N-1 N-1 T 7
il =0t Sy = Yo (p) 055 | 09
n=0 n=0
As can be seen from the definition of ||y||A , the unknown &, could be any angle in(—%,%}, where

Al(é?n,p) denotes the n-th column ofAl(G,p), and 0 is replaced with the unknown 6, (It is assumed
that p is precisely known upon solving the optimization problem (18).)
If we position the receiver such that w7 =0, then A, (z//, p) =1 where I is the identity matrix of size

N, and the notations are simplified. Additionally, N represents the virtual aperture size of the MRLA-binary-

phased RIS (which is 6 in Fig. 1).
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The problem (18) can be rewritten as

.1
min E”a - r||§ +é&|y|, sta=UA,(v,p).y (20)

where its Lagrangian function is obtained as:

£(av.) =1+ el + 47 a(-UA, (v.p)) @)

where  represents the Lagrange multipliers vector corresponding to the equality constraint
a=UA,(v.p)y.

The dual function ¢ (B) is defined as the infimum of the Lagrangian with respect to the primal variables y
and a .

g(B)=inf £(a,y,p)=inf (%Ila—rlli +B u}“fgf (&l ~BTUA; (w.p) )
| (22)

1
=2 (Irl: —IIr—B||§)+§up<ﬁTUAz(w,p)-v—ellvlw
The Lagrangian is always concave because it is the pointwise infimum of a family of affine functions.

Therefore, the dual problem is formulated as follows:

m?xg(ﬂ)zm/?x nan?n L(a,7.B) (23)

So the dual problem becomes

mﬂaxE(nrni —||r—B||§)+mfx(BTUAz(W,p)-Y—gnY”A)}:
(24)

.1
min (I ~Bl; ) + max (B7UA, (v.p) v ~¢|l,,)

Suppose that C = UA, (l,y, p). Utilizing a Lagrange duality technique and converting the soft constraint

into a hard constraint, the second term on the right-hand side of (24) is equivalent to:
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min(—y"C"B+¢ = min (—y"C"B),
By ( y B ||y||A) ﬂ’y’HyHAST( Y B) (25)
where 7 is unique such that there exists an equivalent z that ensures both the right-hand side and the left-

hand side of (25) yield the same solution. The optimization problem (25) with a hard constraint can be

transformed into:

min_—(y,C"B) = max (y,C"p) (26)

Bl = Bl =

By expanding (26) based on the definition of the atomic norm, it can be written as:

mex| YRe(ciAY (0,)C"p} < x| Tl A7 (0,0) )

N - N-1
(55 8ise wa (L]l
et (27)
: - A (0,p),C"
st é e(—ﬂ- £i| ﬂrﬂﬁésup@- 1( p) B>
’ "2

- emaxfc]
B A

Where”ﬁ”j 2 SUP 4 <[5, y> represents the dual norm of the atomic norm. Thus, the optimization problem

(24) becomes:
min > (Ir =Bl )+ = maxc*p] @29

By again employing the dual Lagrangian and transforming the soft constraint into a hard constraint, (28)

can be converted into:

min—(Jr-pf?) st Jcs], < 29)
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where the hard constraint on the dual atomic norm is applied to £ .The value of the hyperparameter £ can

be set as \/100'lSNR .MK. logMK [6]. The optimization problem (29) can be readily solved by CVX

package in MATLAB, with a computational complexity of O(N 3'5) . The final solution can be obtained

by peak picking in f (8)= <C”[i, Al(e,p)> in terms of 4.
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Simulation results

In this section, the performance of signal direction of arrival (DOA) estimation using the MRLA-BP RIS
is evaluated by comparing it with the results of three algorithms presented in [4], [6] and [24]. In [4], after
optimization using the genetic algorithm, a matrix U with 16 columns and 20 rows was employed. Similarly,
in our proposed MRLA method, the number of physical elements is set to 16 for a fair comparison. The
inter-element spacing d is set to half the wavelength, and simulations are conducted for two different

scenarios. In the first scenario, three targets are considered, with two positioned at closely spaced angles,

specifically at—20", 30.56 ", and 32.24". In the second scenario, three clearly distinct targets are located at

angles —20°, 0, and 32.24".The number of measurement snapshots is set to 20 for both scenarios. The

method used in [24] is called 11 singular value decomposition (11-SVD) where the received signals are
modeled as a linear combination of steering vectors from a dense grid of possible source directions and to
handle multiple snapshots (i.e., time samples), the method applies Singular Value Decomposition (SVD)
to the data matrix and then the sparse recovery problem is formulated as a second-order cone programming
(SOCP) problem.

For an MRLA configuration with an aperture consisting of 16 real elements, multiple possible combinations

of physical elements exist. To determine an optimal configuration of p, we employ the greedy search

method outlined in Section 3. Specifically, we set min () =0and computep” for max (k) = L, = 40.
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RMSE versus SNR for [-20° 30.56° 32.24°]
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Fig. 3. The RMSE of the DOA estimation across various SNR levels, considering scenarios where two of the three targets have
closely spaced angles.
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Fig. 4. The RMSE of the DOA estimation across various SNR levels, considering scenarios where all three targets are widely
separated in the angular domain.

TABLEI. MRLA ELEMENTS' POSITIONS AND THEIR CORRESPONDING LAGS

EXSEZ”;;;:?} ts Delays in terms of d

0-1 1d

0-4 4d

0-6 6d

0-10 10d

0-12 12d

34-38 4d

34-40 6d

38-40 2d

Applying the greedy algorithm, for example, results in the following possible configuration of physical

element positions for L, =40: ([0d, 4d, 6d, 10d, 12d, 15d, 18d, 20d, 23d, 25d, 29d, 31d, 34d, 38d, 40d]),

focusing on a configuration that uses 16 physical elements within the 40 slots to maximize unique inter-
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element spacings. The corresponding pairs of positions and delays for the given MRLA array are shown in
Table 1. There are a total of 120 unique delay values.

Figs. 3 and 4 present the performance of the algorithms under two distinct scenarios: (1) when two out of
three targets are closely spaced in the angular domain, and (2) when all three targets are well-separated.
The results in these figures represent the average over 1000 independent trials for each setup.

In general, as the SNR increases, the performance of all algorithms improves in both scenarios, with sharper
RMSE reductions for the proposed method and Ref. [4]. However, the angular estimation accuracy is
notably lower for all algorithms in the first scenario (closely spaced targets) compared to the second
scenario (well-separated targets). This behavior aligns with expectations, as resolving closely spaced targets
is inherently more challenging.

Notably, in both scenarios, the proposed algorithm outperforms all other algorithms. In closely spaced
scenario, the RMSE significantly decreases as the SNR increases, reaching a very low value

(0.3351degrees) at 30dB . This indicates that the proposed method demonstrates strong robustness against

noise and achieves high accuracy at high SNR levels. For well-separated target scenarios, the RMSE

decreases rapidly with increasing SNR, achieving an extremely low value of 0.0359 degrees at30dB .

The superior performance of Ref. [4] compared to Ref. [6] and 11-SVD in both Figures 3 and 4 is due to
the use of a genetic algorithm to optimize the RIS observation matrix U. However, as evident from the Figs.
3 and 4, the improvement achieved by Ref. [4] is less significant than that obtained through the proper

arrangement of RIS elements in our proposed algorithm. It is worth mentioning that in our proposed

algorithm, the RIS elements are randomly selected from {irl}, and no optimization efforts were made

regarding the selection of the U matrix.

As illustrated in both Fig. 3 and Fig. 4, the performance of the 11-SVD method falls short of that achieved
by the approach in Ref. [4], and even more so when compared to our proposed method. This discrepancy
arises from the inherent limitations of grid-based techniques such as 11-SVD, where the angular domain is

discretized into dense grids. Such discretization increases the coherence of the measurement matrix, thereby
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degrading the recovery performance. In contrast, gridless approaches—such as the atomic norm
minimization employed in Ref. [4]—demonstrate superior performance under these conditions. It is also
noteworthy that the 11-SVD method consistently outperforms the technique presented in Ref. [6] across
both scenarios, including cases witho =0.02and o =0.2. This observation suggests that even gridless
methods, as in Ref. [6], may struggle to maintain robustness when the RIS element locations are subject to
uncertainty, whereas dense grid-based methods like 11-SVD can still offer competitive performance.

Additionally, the angular estimation performance of Ref. [6] with a standard deviation (STD) of positional
uncertainty of 0.02 outperforms Ref. [6] witho = 0.2, as the STD is ten times higher. Ref. [6] shows poorer
performance in the closely spaced target scenario, but performs relatively better in the well-separated target

scenario.

7. Conclusion
This study introduced a novel method for enhancing DOA estimation accuracy using a Binary-Phase
Reconfigurable Intelligent Surface (Binary-Phase RIS) configured as a Minimum Redundancy Linear
Array (MRLA). The proposed algorithm outperformed existing methods, achieving almost the lowest
RMSE across various SNR levels in both closely spaced and well-separated target scenarios, particularly
excelling in resolving closely spaced angular targets where other algorithms faced significant challenges.
Unlike some existing methods that rely on complex optimization of the RIS measurement matrix, the

proposed approach leverages a simple and efficient configuration of RIS elements, randomly selected from

{irl}, to achieve superior accuracy without additional hardware complexity. The results highlight the

critical role of properly arranging RIS elements to maximize spatial resolution, particularly in challenging
scenarios with closely spaced targets. This underscores the potential of MRLAS to achieve desirable

performance by maximizing unique inter-element spacings.
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