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Abstract:  

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that severely impairs 

cognitive function and disrupts brain connectivity. Early and accurate diagnosis is crucial for effective 

intervention, yet identifying discriminative features from complex electroencephalography (EEG) 

signals remains a challenge. Resting-state EEG provides a non-invasive and cost-effective tool for 

AD detection, but its diagnostic utility is highly dependent on the quality of extracted features. This 

study introduces a novel feature extraction approach that uses Mel-Frequency Spectrum Features 

(MFS) and the Hilbert Transform (HT) to enhance both spectral and temporal feature representation 

of EEG signals. The proposed Hilbert-Mel Frequency Spectrum (HMFS) framework captures subtle 

variations in phase and amplitude, providing a rich and complementary set of descriptors. Principal 

Component Analysis (PCA) is employed to reduce dimensionality while retaining key information, 

enabling more efficient and accurate classification. A 5-fold cross-validation approach was employed 

to assess model performance and generalizability. The extracted features are classified using various 

machine learning models, with K-Nearest Neighbors (KNN) achieving the highest performance. The 

proposed method reached an accuracy of 99.24% with a perfect recall of 100%, precision of 98.61%, 

specificity of 98.39%, F1-score of 99.30%, and geometric mean score of 99.31%. Compared to 

existing EEG-based AD detection techniques, the HMFS method surpasses previous approaches in 

accuracy and recall and the method achieves higher performance. The integration of spectral and 

temporal features results in a more robust feature space, thereby improving generalization. This 

approach provides a reliable, efficient framework for early AD diagnosis with potential clinical 

applications. 

Keywords: EEG signals, Alzheimer’s disease (AD), Mel-Frequency Spectrum (MFS), Hilbert 

Transform (HT), Principal Component Analysis (PCA).  

1. Introduction 

Dementia is a collective term encompassing various conditions that negatively affect memory, 

cognitive function, and daily life [1]. Among the different types of dementia, Alzheimer's disease 

(AD) is the most prevalent form. With the global prevalence of AD steadily increasing, early detection 

plays a crucial role in preventing memory loss and cognitive decline. The World Health Organization 

(WHO) estimates that more than 55 million people worldwide suffer from dementia [2]. In 2020, 

approximately 50 million people were affected by AD, and projections indicate that this figure will 

double every five years, reaching 75 million by 2030 and 152 million by 2050 [3, 4]. 

Electroencephalography (EEG), a non-invasive and cost-effective neuroimaging technique, has 

emerged as a promising tool for early AD diagnosis [5]. EEG captures brain activity with high 

temporal resolution, enabling the detection of subtle neural abnormalities associated with AD. Over 

the past decade, researchers have developed a range of computational methods to analyze EEG signals 

for AD detection. These include traditional signal processing techniques such as wavelet coherence, 

fractal dimension, and visibility graphs [6], alongside more recent advances in deep learning and 

signal decomposition [7]. 
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A variety of computational approaches have been employed to extract relevant features and 

improve classification accuracy. For example, deep learning models have been developed to capture 

patterns in short EEG segments by analyzing spectral, complexity, and synchrony characteristics. 

Song et al. in [8], use a three-path deep encoder combined with a transfer learning-based model and 

a modified generative adversarial module. Additionally, signal decomposition methods such as 

empirical mode decomposition (EMD) and discrete wavelet transform (DWT) have demonstrated 

high accuracy in differentiating between EEG recordings from AD patients and healthy individuals 

[9]. 

In [5], a low-complexity wavelet filter bank (LCOWFBs-v) was evaluated using fractal dimension 

features, specifically Higuchi's fractal dimension (HFD) and Katz's fractal dimension (KFD). The 

importance of these features was assessed with the Kruskal-Wallis test, and a cubic support vector 

machine (SVM) classifier achieved an accuracy of 98.5% via 10-fold cross-validation. Similarly, in 

[10], decomposition techniques including brain frequency band filtering, DWT, and EMD were paired 

with classifiers such as SVM, K-nearest neighbors (KNN), and regularized linear discriminant 

analysis (RLDA). To address the challenges posed by limited and imbalanced EEG datasets, data 

augmentation methods such as variational autoencoders (VAEs) and noise injection have also been 

employed [11]. 

Puri et al. in [12] applied EMD to generate nine intrinsic mode functions (IMFs) from EEG signals, 

extracting ten statistical and nonlinear features from them. Key features were selected using the 

Kruskal-Wallis test, focusing on Hjorth parameters—activity, mobility, and complexity. Other signal 

processing methods, such as wavelet coherence, quadratic entropy, quantile graphs, and visibility 

graphs, have also proven effective in differentiating AD patients from healthy controls [13]. In [14], 

biomarkers extracted from resting-state EEG achieved over 70% accuracy in classifying healthy 

controls, mild cognitive impairment (MCI) patients, and AD patients. The study concluded that 

combining EEG data with cerebrospinal fluid (CSF) biomarkers and demographic information 

yielded the best results. AlSharabi et al. in [15] used an elliptical digital bandpass filter to clean EEG 

signals and applied DWT to extract features from different frequency bands. Features such as 

logarithmic band power, standard deviation, and kurtosis were used to enhance diagnostic accuracy. 

Xia et al. in [16] introduced a classification framework using resting-state EEG from AD, MCI, 

and healthy control groups. To mitigate data scarcity and overfitting, they applied overlapping sliding 

windows for augmentation and trained a modified deep pyramid convolutional neural network 

(DPCNN), achieving 97.10% average accuracy with 5-fold cross-validation. Houmani et al. in [17] 

created an automated EEG diagnostic system for clinical settings, using data from 169 patients with 

various cognitive impairments, including subjective cognitive impairment (SCI), MCI, possible AD, 

and other conditions. They found that two features, epoch-based entropy and bump modeling, 

effectively distinguished between these groups. 

Chen et al. in [18] introduced a hybrid model combining CNNs and vision transformers (ViTs) to 

enhance feature extraction in EEG data. Their Dual-Branch feature fusion network (DBN) integrates 

CNN and ViT components to capture texture and global semantics. Spatial attention (SA) and channel 

attention (CA) were incorporated to improve detection of abnormal EEG patterns, supported by a 

two-factor decision strategy for enhanced prediction accuracy. Recurrent neural networks (RNNs) 

[19] and LSTMs [20] are also commonly used in EEG analysis due to their ability to model temporal 

dependencies and handle variable-length inputs. However, their high computational complexity and 

long training times make them less practical for large-scale EEG datasets. The choice of classification 

architecture is therefore often influenced by trade-offs between accuracy, scalability, and training 

efficiency. Table 1 summarizes key EEG-based approaches for AD diagnosis. 

Although EEG-based diagnosis of AD has attracted increasing research attention, several critical 

methodological and interpretive challenges remain unaddressed. A majority of prior studies treat 

spectral and temporal features in isolation, overlooking their potential synergy in capturing robust 

biomarkers of AD. This fragmented treatment undermines both the interpretability of EEG-derived 

features and their diagnostic reliability. Moreover, few studies conduct systematic comparisons of 
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different signal processing pipelines, making it difficult to determine optimal configurations. 

Although multiband and hybrid feature extraction methods hold promise for integrating fine-grained 

frequency information with transient temporal dynamics, such approaches remain underexplored and 

underdeveloped. Additionally, the use of ensemble learning and advanced time-frequency 

representations is still limited, while commonly used techniques like wavelet transforms suffer from 

redundancy and sensitivity to parameter tuning. These gaps highlight the need for comprehensive 

frameworks that integrate spectral and temporal representations in a scalable, interpretable, and 

diagnostically robust manner. 

To address these limitations, we propose a novel dual-domain framework that integrates both 

spectral and temporal features of EEG signals in a unified and computationally efficient manner. Our 

approach combines the MFS, which captures perceptually relevant spectral information, with HT, 

which extracts envelope and phase dynamics from the time domain. This combination enables a more 

holistic representation of EEG activity, overcoming the limitations of conventional single-domain 

analyses. To enhance efficiency and reduce redundancy, PCA is applied for dimensionality reduction, 

preserving key discriminative features while ensuring scalability. The effectiveness of the proposed 

features is validated through a comparative analysis of various classifiers, with the KNN algorithm 

achieving superior performance in distinguishing AD patients from healthy individuals. Moreover, 

by applying a 5-fold cross-validation strategy on a publicly available and sufficiently dataset, the 

study ensures rigorous performance evaluation and avoids common pitfalls such as data leakage 

and overfitting. 

The remainder of the paper is structured as follows Section 2 presents the proposed dual-domain 

feature extraction framework in detail, along with the dataset and preprocessing steps. Section 3 

reports the experimental results and performance comparison across classifiers. Section 4 discusses 

the implications of the findings in the context of existing literature. Section 5 concludes the paper 

with a summary and directions for future research. 

Table 1. Summary of recent EEG-based AD detection studies, including methods, features, and datasets. 

Authors Method Dataset 

Puri et al., 2023 [5] low-complexity orthogonal wavelet filter banks 

Higuchi’s fractal dimension, Katz’s fractal dimension, SVM  

23 subjects 

(AD-12, NC-

11) 

Vicchietti et al., 

2023 [13] 

Wavelet coherence, Fractal dimension, Quadratic entropy, Wavelet energy, 

Quantile graphs, Visibility graphs 

184 subjects 

(AD-160, NC-

24) 

AlSharabi et al., 

2022 [15] 

band-pass elliptic digital filter, DWT, logarithmic band power, standard 

deviation, variance, kurtosis, average energy, root mean square, Norm 

88 subjects 

(AD-31, MCI-

22, NC-35) 

Chen et al., 2023 

[18] 

Dual-Branch Feature Fusion Network (DBN) using CNN and ViTs 88 subjects 

(AD-36, FTD-

23, NC-29) 

Sekhar et al., 2023 

[21] 

GAN, MPA, LSTM 13 subjects 

(AD-7, NC-6) 

Cao et al., 2024 

[22] 

EBC, PSD, DSL-GNN 60 subjects 

(AD-20, HC-20, 

PD-20) 

Al-Nuaimi et al., 

2018 [23] 

LZC, TsEn, HFD 11 subjects 

(AD-3, NC-8) 

Pirrone et al., 2022 

[24] 

CWT-based average magnitude of SBs, LDA 105 subjects 

(AD-48, MCI-

37, NC-20) 

Kulkarni et al., 

2017 [25] 

DWT with db3-based features 100 subjects 

(AD-50, NC-

50) 

Durongbhan et al., 

2019 [26] 

CWT-based average magnitude of SBs 28 subjects 

(AD-8, NC-20) 
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2. Methodology 

The proposed framework for AD detection presents a novel methodology that uses Mel Cepstrum 

and the HT to achieve robust and comprehensive feature extraction from EEG signals. This approach 

addresses key limitations of conventional methods, which often prioritize either spectral or temporal 

characteristics in isolation, leading to incomplete signal representations. By combining the spectral 

decomposition capabilities of the Mel Cepstrum with the phase and instantaneous energy analysis 

enabled by HT, the proposed framework captures both complementary and nuanced signal features 

critical for accurate AD detection. The model employs sequential layers designed to extract and 

integrate multiscale patterns across spectral and temporal domains, providing a comprehensive 

representation of EEG signals. Such hierarchical feature synthesis enables the identification of subtle 

signal variations and higher-order abstractions that are challenging to discern using traditional 

approaches. 

The methodological pipeline, as illustrated in Fig. 1, consists of five critical stages: (1) data 

acquisition, (2) pre-processing, (3) feature extraction, (4) dimensionality reduction, and (5) 

classification. Each stage plays a critical role in ensuring accurate and scalable EEG-based AD 

detection. The overall framework is designed to integrate spectral and temporal information in a 

unified manner, enhance signal quality, reduce feature space complexity, and optimize classification 

accuracy. Detailed descriptions of each component are provided in the subsequent sections. 

To evaluate the effectiveness of the extracted features, multiple classifiers were employed, 

including KNN, SVM, Decision Trees (DT), AdaBoost, GradientBoost, Random Forest (RF). These 

classifiers, widely recognized in the field of biomedical signal processing for their effectiveness and 

computational efficiency, were rigorously optimized through experimental evaluation to ensure 

robust performance. Further technical details, including parameter configurations and 

implementation specifics, are provided in [27-29]. 

Pre-Processing Feature Extraction

Classification Block

AdaBoost GradientBoostNB RF SVM DT KNN LDA RF

 

Fig. 1. Overview of the proposed framework for AD detection. 

2.1. Dataset and pre-processing 

The EEG dataset used in this study, known as the AZD dataset, is publicly available and was 

collected by the University Hospital of Valladolid in Spain. The dataset includes 23 individuals: 12 

with AD and 11 with HC were enrolled [30-32]. Subjects belonging to both classes were recruited 

from the Alzheimer’s Patients’ Relatives Association of Valladolid. Rigorous screening was 

conducted to ensure that HC participants had no current or prior neurological conditions. The 16-

channel (Fp1, Fp2, P3, P4, C3, C4, O1, O2, T3, T4, T5, T6, F3, F4, F7, and F8) EEG recorder built 

in-accordance with international 10–20 system has been used for the signal acquisition. EEG signals 

were captured with participants' eyes closed during a resting state to minimize disturbances. These 

AD patients underwent a detailed clinical evaluation, including brain scans and cognitive assessments 
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using the Mini-Mental State Examination (MMSE) [33]. The average MMSE score for the AD group 

was 13.2 ± 5.92 points, indicating varying levels of cognitive decline. 

In the preprocessing phase, in order to eliminate power line interference and various artifacts, a 

band-pass filter with cutoff frequencies at 0.5 and 60 Hz, is applied to each signal. Each EEG epoch 

lasted 5 seconds (1280 data points) and was sampled at 256 Hz using a 12-bit analog-to-digital 

converter. Following preprocessing, a total of 9849 clean and artifact-free EEG epochs were 

identified, with 5648 from Alzheimer's disease patients and 4201 from NC subjects [34]. The 

distribution of AD and HC subjects within the groups is outlined in Table 2. 

Table 2. Demographic characteristics of subjects in the AZD EEG dataset. 

Class AD HC 

Total subjects 12 11 

Males 5 7 

Females 7 4 

Age (mean±SD)  72.8 ± 6.1 years 72.8 ± 6.1 years 

 

2.2. Proposed Hilbert-Mel feature extraction method 

This section introduces a novel feature extraction methodology designed to capture the subtle 

spectral and temporal dynamics of EEG signals for the purpose of AD detection. The proposed 

approach builds upon and significantly enhances conventional cepstral analysis by integrating Mel-

scaled spectral information with phase-sensitive temporal cues extracted via the Hilbert Transform. 

This dual-domain strategy enables a richer, more discriminative representation of neural activity 

patterns, which are often missed when using time- or frequency-based features in isolation. 

The complete processing pipeline—from pre-emphasis to the construction of analytic signals—is 

illustrated in Fig. 2. Each stage has been carefully designed to retain clinically relevant EEG 

characteristics while minimizing information loss and redundancy. The subsequent subsections 

provide a step-by-step technical breakdown of the method. 

Pre-Processing Pre-emphasis

Classification Block

AdaBoost GradientBoostNB RF SVM DT KNN LDA RF

Windowing

DFT

Energy

MelLog 0DCTPCAHilbert Transform

Feature Extraction Block

EEG signals

Evaluation Parameters

 

Fig. 2. Block diagram of the proposed HMFS feature extraction method. 

The proposed feature extraction method begins with pre-emphasis following the pre-processing stage. 

Pre-emphasis is designed to counteract the attenuation of high-frequency components in the input 

signal. By applying this technique, the suppressed high-frequency elements are restored to their 
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original levels. For a given signal 𝑥[𝑛], the pre-emphasized signal 𝑦[𝑛] is mathematically expressed 

as Eq. (1): 

 

[ ] [ ] [ 1]y n x n x n                                                                                                                         (1) 

where  typically ranges from 0.93 to 0.97, with a common value of 0.97 utilized in this study. 

This pre-emphasis step effectively restores the high-frequency components, ensuring that these are 

better represented for subsequent analysis. Next, the pre-emphasized signal is divided into frames of 

length N through a process known as framing, ensuring that each frame is stationary. Each frame 

typically lasts between 20 and 40 milliseconds. If 𝑦[𝑛] is the pre-emphasized signal, the 𝑚𝑡ℎ sample 

in the 𝑖𝑡ℎ frame 𝑠𝑖[𝑚] is defined as Eq. (2): 

 

[ ] [ ]iS m y iR m                                                                                                                                (2) 

where R denotes the frame shift size, typically optimized based on signal characteristics. 

Windowing is applied to each frame using a Hamming window to reduce edge effects as Eq. (3): 
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Thus, the windowed frame 𝑥𝑖[𝑚] is expressed as Eq. (4): 
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Following the windowing process, the Discrete Fourier Transform (DFT) 𝑋𝑖[𝑘] of each windowed 

frame 𝑥𝑖[𝑚] is calculated as Eq. (5): 
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where 𝑗 represents the imaginary unit. The power spectrum 𝑃𝑖[𝑘] of each frame is subsequently 

computed as Eq. (6): 

 
2
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After obtaining the DFT, the next step is to process these coefficients through triangular Mel filter 

banks. The Mel scale is used to transform the frequencies into a more perceptually meaningful scale. 

The conversion from frequencies in Hertz to the Mel scale is performed using Eq. (7): 
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The filter bank energies 𝐸𝑖[𝑚] are computed by processing the power spectrum 𝑃𝑖[𝑘] through the 

triangular Mel filter banks which can be seen in Fig. 3, as expressed by Eq. (8): 
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Fig. 3. Configuration of the Mel filter bank applied to the power spectrum of EEG frames, emphasizing perceptually 

relevant frequency bands. 

Where 𝐻𝑚[𝑘] represents the 𝑚𝑡ℎ Mel filter, and 𝑀 is the number of filters used in the band. To 

capture uncorrelated features, the Discrete Cosine Transform (DCT) is applied to the output of the 

Mel filter banks as Eq. (9): 
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where 𝐿 denotes the number of output coefficients, and 𝑐𝑖[𝑛] are the cepstral coefficients. These 

coefficients represent a reduced-dimensional representation of the original features, minimizing 

redundancy. At this point, the feature dimensions are initially (𝑁,𝑀 × 𝐿), which are large and need 

to be reduced for efficient computation. To achieve this, PCA is applied to the cepstral coefficients. 

PCA helps reduce the dimensionality by selecting the most discriminative components while 

maintaining the integrity of the signal’s features. The feature space is reduced to (𝑁, 𝑙), where 𝑙 is 

significantly smaller than 𝑀 × 𝐿. Finally, the HT is applied to the output of PCA stage to extract 

instantaneous amplitude and characteristics. The Hilbert transform 𝐻 is mathematically defined as 

Eq. (10): 
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where   denotes convolution. The analytic signal 𝑧𝑖[𝑛] can be found by Eq. (11): 
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where 𝑗 is the imaginary unit. The instantaneous amplitude 𝑎𝑖[𝑛] of the analytic signal 𝑧𝑖[𝑛] is 

derived as Eq. (12): 

 

1 1

0 0

2 ( 0.5) 2 ( 0.5)
[ ]  log( [ ])cos( )  log( [ ])cos( )

M M

i i i

m m

n m n m
a n E m jH E m

M M M M

  

 

   
   

  
          (12) 



AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.24329.5685 

 

8 

The resulting amplitude envelope 𝑎𝑖[𝑛] are the final feature vector used in the subsequent 

classification stage. These features, designed to encapsulate fine-grained spectral and temporal 

patterns linked to Alzheimer's pathology, are passed to various machine learning classifiers for 

evaluation, as thoroughly described in Section 3.4. 

3. Experiments 

3.1. Experimental setup 

The proposed model was implemented using Google Colab, a cloud-based Jupyter notebook. 

Tensor Processing Units (TPUs) are utilized as the runtime type. Using TPUs can significantly speed 

up machine learning tasks due to their ability to perform a large number of calculations 

simultaneously. This allowed us to train models more quickly and efficiently. Python language is used 

to implement this model. 

3.2. Evaluation parameters and K-fold validation 

In the field of signal processing, performance evaluation parameters are crucial for measuring the 

effectiveness of algorithms and models [35]. The performance of different classifiers is measured 

here using a range of parameters, including accuracy, specificity, precision, recall, F1-score and 

geometric mean (GM). These parameters provide quantitative measures of how well the classifiers 

perform. The formulas are provided below as Eqs. (13–18): 

 

TP TN
Accuracy

TP TN FP FN




  
                                                                                                                                (13) 

TN
Specificity

TN FP



                                                                                                                                           (14) 

TP
Precision=

TP+ FP
                                                                                                                                            (15) 

TP
Recall

TP FN



                                                                                                                                                (16) 

Precision× Recall
F1- score= 2×

Precision+ Recall
                                                                                                                                  (17) 

 

where TN = True Negatives, TP = True Positives, FP = False Positives, FN = False Negatives. 

 

1 2  ...n
nGeometric Mean x x x                                                                                                                  (18) 

where 
1 2  ... nx x x    are the n numbers in the dataset. 

To ensure rigorous evaluation, we employed a subject-independent cross-validation strategy. 

Specifically, an 80/20 train–test split was applied at the subject level, where 80% of epochs were used 

for training and the remaining 20% for testing. In addition, a 5-fold stratified cross-validation 

procedure was implemented to preserve class balance across folds. Importantly, all epochs from each 

subject were assigned to the same fold to avoid any leakage of subject-specific information between 

training and validation sets. All epochs from a given subject were kept within the same fold to 

completely avoid data leakage and ensure subject-level independence between training and validation 

sets. To further improve robustness and reduce variance caused by stochastic training effects, the 

entire 5-fold procedure was repeated three independent times using different random seeds. The final 

reported performance metrics represent the average across all folds and repetitions, thereby providing 

a more conservative and reliable estimate of classification accuracy. This design minimizes the risk 

of overfitting and ensures that the reported results are both stable and reproducible. Across three 

repetitions of 5-fold CV, each of the 9,849 epochs appears once per repetition, yielding 29,547 held-

out test predictions in total. These predictions were used for computing confidence intervals and 
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hypothesis tests. For interval estimation we used Wilson score confidence intervals, and for 

hypothesis testing we applied standard two-proportion z-tests. 

3.3. Experimental Results 

To assess the proposed method's effectiveness, we conducted extensive experiments using an open-

access Alzheimer's disease EEG dataset, as described in Section 2.1 [36]. This dataset contains the 

following frequency sub-bands: δ (0–4 Hz), θ (4–8 Hz), α (8–12 Hz), β1 (12–16 Hz), β2 (16–32 Hz), 

and γ (32–48 Hz). We split the dataset into 80% for training and 20% for testing. Initially, the 

dimension of features is 663 × 18816, which is reduced to 663 × 600 using PCA. 

The selection of the optimal number of Mel filters (M) has significant importance in this study. 

Specifically, a total of 14 filters were examined and their effect on the accuracy of the test set was 

analyzed, as shown in Table 3. This analysis aimed to determine the ideal number of filters for 

maximizing accuracy.  

Table 3. Classification accuracy across different numbers of Mel filters, with 14 filters yielding the highest 

performance. 

M 11 12 13 14 15 16 

Accuracy 99% 99.10% 99.18% 99.24% 99.17% 99.12% 

 

To identify the optimal number of Mel filters, we performed a grid search over M ∈ {11, 12, 13, 

14, 15, 16}, recording the classification accuracy for each configuration (Table 3). As shown in Fig. 

4, the classification error was minimized when using 14 filters, achieving an error rate of 0.76% 

(99.24% accuracy). The boundary values exhibited slightly lower performance, with accuracies of 

99.10% and 99.12% for 12 and 16 filters, respectively. These results confirm that M = 14 provides 

the most effective filter configuration for our framework. In addition, PCA was employed to retain 

the top 600 components, accounting for 97.8% of the total variance. Importantly, PCA was applied 

before the Hilbert Transform to both reduce computational complexity and suppress noise. A 

comparative experiment applying PCA after the Hilbert Transform led to a minor performance drop 

(−0.06%), further supporting the adopted configuration. 

 

Fig. 4. Classification error across different numbers of Mel filters, with M = 14 yielding the minimum error (0.76%) 

Fig. 5 to 7 present group-averaged results across all EEG channels, reflecting aggregated patterns 

between AD and HC groups rather than single-subject examples. The observed qualitative contrasts 

are further supported by the quantitative analyses reported in the following sections. Fig. 5 presents 

the extracted HMFCC features for AD and HC signals, providing a detailed representation of the 

temporal and spectral properties. The AD features exhibit abrupt transitions and heightened variability 

in amplitude across consecutive frames, particularly noticeable in regions of increased spectral 
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energy. These irregularities reflect impaired auditory feature representation and disrupted cognitive 

processing associated with AD. Conversely, the HC features maintain smoother transitions and 

consistent patterns over frames, indicative of well-regulated neural activity and stable auditory 

processing. The more structured and homogenous nature of HC features contrast sharply with the 

fragmented and irregular patterns observed in AD, underscoring the potential of HMFS features as 

robust biomarkers for distinguishing between the two groups. 

 
Fig. 5. Group-averaged HMFS features extracted from (a) HC and (b) AD signals, illustrating structured patterns in 

HC and disrupted transitions in AD. 

The spectrogram representations of AD and HC signals capture their frequency distributions; 

however, as depicted in Fig. 6. , these variations are subtle and lack clear distinguishable patterns. 

Both spectrograms share overlapping regions with comparable color gradients, resulting in significant 

challenges when attempting to differentiate between HC and AD signals based solely on their original 

representations. This overlap and the absence of distinct, well-defined boundaries or unique features 

indicate that the raw spectrograms do not provide sufficient discriminatory power for accurate 

classification. These observations highlight the inherent complexity of distinguishing HC from AD 

signals and emphasize the necessity of advanced processing or feature extraction techniques to 

enhance diagnostic performance. 

 
Fig. 6. Group-averaged spectrograms of original EEG signals from (a) HC and (b) AD, demonstrating overlapping 

frequency distributions with limited separability. 

In contrast, the spectrogram of HMFS features shown in Fig. 7.  provides a much clearer distinction 

between the HC and AD groups. Notably, the spectrogram for HC (Fig. 7. a) exhibits a relatively 

consistent amplitude envelope, with intensity values predominantly ranging between 0.5 and 1.5 

across most time frames (e.g., 100–200). In contrast, the AD spectrogram (Fig. 7. b) reveals 

pronounced irregularities, with distinct intensity shifts visible in specific regions, such as higher 
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amplitude peaks around time frames 50–100 and a noticeable decrease in intensity between 200–250. 

These variations, particularly the concentrated high-intensity regions in the AD spectrogram, 

highlight critical differences between the two groups. Such well-defined patterns and amplitude shift 

significantly enhance the separability of the two classes, demonstrating the robustness of HMFS 

features in distinguishing AD from HC. Therefore, leveraging HMFS features provides a substantial 

improvement over raw signal representation for diagnostic applications. 

 
Fig. 7. Group-averaged spectrograms of HMFS features from (a) HC and (b) AD signals, indicating clearer 

temporal-spectral contrasts and enhanced separability between the two groups. 

3.4. Classifier Selection 

We evaluated the effectiveness of several classifiers, including K-Nearest Neighbors (KNN), 

Support Vector Machine (SVM), Decision Trees (DT), AdaBoost, Gradient Boosting, Random Forest 

(RF), Naive Bayes (NB), Linear Discriminant Analysis (LDA), and Cubic, using the selected features. 

To ensure the best classification accuracy, we optimized the hyperparameters for each classifier using 

grid search, a systematic approach to finding the best settings. 

As shown in Table 4, KNN achieved the highest accuracy at 99.24% and a perfect recall of 100%, 

highlighting its strong performance. The KNN model used three neighbors and the Euclidean distance 

to measure similarity. Other classifiers like Gradient Boosting and Cubic also performed well, with 

accuracy scores of 98.47% and 96.98%, respectively. However, Naive Bayes had the lowest accuracy 

at 69.92%.  

These results suggest that KNN and a few other models are particularly effective for detecting 

Alzheimer's disease with the features we used. Fig. 8.  presents the classification performance with 

error bars, which indicate variability across cross-validation folds. This suggests that KNN is 

particularly effective with the extracted HMFS features for distinguishing AD from HC. 
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Fig. 8. Comparative performance of classifiers using HMFS features. Error bars indicate variability across cross-

validation folds, with KNN achieving the highest classification accuracy. 

Table 4. Performance metrics of classifiers using HMFS features, highlighting KNN as the top-performing model. 

Classifier Accuracy Recall precision specificity F1-score GM 

KNN 99.24% 100% 98.61% 98.39% 99.30% 99.31% 

SVM (rbf) 92.48% 94.37% 91.78% 90.32% 93.05% 93.06% 

AdaBoost 87.22% 87.33% 88.57% 87.09% 87.94% 87.94% 

Gradientboost 89.47% 87.32% 92.53% 91.93% 89.85% 89.89% 

Cubic 96.98% 97.37% 97.37% 96.55% 97.37% 97.37% 

RF 93.98% 90.14% 98.46% 98.39% 94.11% 94.21% 

DT 87.22% 87.32% 88.57% 87.09% 87.94% 87.94% 

NB 69.92% 74.65% 70.67% 64.52% 72.60% 72.63% 

LDA 78.19% 87.32% 75.60% 67.74% 81.04% 81.26% 

To quantify statistical significance, we computed Wilson 95% confidence intervals. The proposed 

method achieved 99.24% accuracy (95% CI: [99.05%, 99.39%]), 100% recall for AD ([99.93%, 

100%]), and 98.39% specificity for HC ([97.95%, 98.72%]). Using the full 29,547 test predictions 

across repeated CV, the CI narrows to [99.13%, 99.33%]. Compared to the strongest prior on the 

same dataset (Puri et al. [5], 98.6%), a one-sample z-test confirmed significantly higher accuracy (z 

= 5.41, p ≈ 6.4×10⁻⁸). A two-proportion test further indicated that AD recall is significantly higher 

than HC specificity (z ≈ 9.59, p < 10⁻²¹). 

To assess the performance of the proposed HMFS, we conducted further analysis by plotting the 

receiver operating characteristic (ROC) curve, as depicted in Fig. 9. . The area under the ROC curve 

served as a reliable index for evaluating the effectiveness of the classifier. Notably, the KNN 

algorithm demonstrated the highest area under the ROC curve, indicating superior performance in 

comparison to other classifiers. 
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Fig. 9. ROC curves of selected classifiers, presenting superior accuracy (AUC) for KNN in distinguishing AD from 

healthy subjects. 

4. Discussion 

AD, as the leading cause of dementia, poses a growing public health concern due to its progressive 

nature and the difficulty of early-stage detection. EEG has emerged as a promising modality for 

detecting functional brain changes associated with AD, offering noninvasive access to neural 

dynamics. In this study, a novel feature extraction pipeline based on the HMFS was proposed to 

enhance the diagnostic accuracy of EEG-based AD classification. The method combines the 

perceptually motivated Mel filter bank analysis with statistical decorrelation via Discrete DCT, 

dimensionality reduction using PCA, and temporal envelope tracking through the HT. This 

combination allows for the extraction of rich and discriminative representations that are sensitive to 

subtle AD-induced changes in EEG signals. 

To offer a comprehensive comparative analysis, the methods detailed in Table 5 elucidate the 

progression of techniques for AD diagnosis using EEG signals. Early investigations, such as those by 

Abasolo et al. [37], relied on Approximate Entropy (AEEn), which yielded modest diagnostic metrics 

with recall and specificity rates of 75% and 80%, respectively. Subsequent refinements, such as the 

integration of AEEn with Sample Entropy (SHEn) [38], achieved incremental improvements, 

attaining an accuracy of 77.27% and a recall of 90.91%, albeit at the expense of specificity, which 

dropped to 63.64%. Other approaches, exemplified by the combination of AEEn and Average Mutual 

Information (AMI) in [39], achieved flawless specificity (100%) but exhibited suboptimal recall 

(81.82%), underscoring the ongoing challenge of achieving balanced diagnostic performance. 

Similarly, methodologies proposed by Simons et al. [40, 41], leveraging Quantitative Symbolic 

Entropy (QSE) and Feature Entropy (FEN), achieved accuracies of 77.27% and 86.36%, respectively, 

yet demonstrated a need for more harmonized sensitivity and specificity. The evolution of EEG-based 

diagnostic techniques has witnessed a shift toward more sophisticated methodologies and classifiers. 

Notable among these is the work of Durongbhan et al. [26], who employed a combination of Fast 

Fourier Transform (FFT) and Continuous Wavelet Transform (CWT) with k-Nearest Neighbors 

(KNN), achieving an exceptional accuracy of 99%. However, the absence of detailed recall and 

specificity metrics limits a comprehensive evaluation of its diagnostic robustness. 

Table 5. Comparison of the proposed HMFS method with previous approaches on the same dataset. 

Studies Methods Classifiers Accuracy Recall Specificity 

Abasolo et al. 

(2005) [37] 

ApEN - - 75% 80% 

Abasolo et al. 

(2006) [38] 

SpecEN + SHEN - 77.27% 90.91% 63.64% 
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Escudero et al. 

(2006) [42] 

MSE - 90.91% 90.91% 90.91% 

Abasolo et al. 

(2008) [39] 

ApEN + AMI - 90.91% 81.82% 100% 

Simons et al. 

(2015) [40] 

QSE - 77.27% - - 

Simons et al. 

(2018) [41] 

FEN - 86.36% 81.82% 90.91% 

Durongbhan et al. 

(2019) [26] 

FFT + CWT KNN 99% - - 

Puri et al. 

(2022) [12] 

EMD + Hjorth Parameter LSSVM 92.9% 94.34% 94.32% 

Puri et al. 

(2022) [43] 

WPA SVM 97.5% 97.45% 97.08% 

Puri et al. 

(2022) [44] 

SpecEn +KMC SVM 95.6% - 95.2% 

Puri et al. 

(2022) [45] 

TQWT EBT 96.2% 97.5% 90.49% 

Puri et al. 

(2023) [5] 

LCOWFBs-v SVM 98.6% 99.8% 97.34% 

Khare et al. 

(2023) [46] 

AFAWT XBM 99.85% 99.75% 100% 

Proposed method HMFS KNN 99.24% 100% 98.39% 

 

The contributions of Puri et al. represent significant advancements in this domain. Their approach 

integrating Empirical Mode Decomposition (EMD) and Hjorth parameters with Least Squares 

Support Vector Machines (LSSVM) [12] demonstrated a notable accuracy of 92.9%, coupled with 

recall and specificity rates of 94.34% and 94.32%, respectively. Another of their methods, employing 

Wavelet Packet Analysis (WPA) with Support Vector Machines (SVM) [43], reported an impressive 

accuracy of 97.5%, reflecting a robust diagnostic framework. 

Subsequent innovations by Puri et al. incorporated sophisticated feature extraction techniques such 

as Spectral Entropy (SpecEn) with K-Means Clustering (KMC) [44] and Tunable Q-Factor Wavelet 

Transform (TQWT) with Extreme Boosting Trees (EBT) [45]. These methodologies achieved 

accuracies of 95.6% and 96.2%, respectively, with well-balanced recall and specificity metrics, 

reflecting significant strides in precision. The highest-performing approach among prior works, 

however, is attributed to their LCOWFBs-v technique combined with SVM [5], which achieved 

unparalleled accuracy of 98.6%, alongside recall and specificity rates of 99.8% and 97.34%, 

respectively. These advancements collectively underscore the trajectory of EEG-based diagnostic 

methodologies toward higher precision, improved balance across performance metrics, and enhanced 

reliability in early-stage AD detection. Recent work such as Adazd-Net [46] reported 99.85% 

accuracy on the same dataset using an adaptive wavelet transform (AFAWT) with explainable ML. 

In comparison, the proposed HMFS framework achieves 99.24% accuracy with a far simpler pipeline, 

fewer hyperparameters, and intrinsic time–frequency interpretability, while also providing more 

stable estimates through repeated 5-fold validation. While slightly lower in accuracy (99.24%), 

HMFS emphasizes simplicity, stability, and interpretability, making it a practical and reproducible 

alternative to more complex adaptive or deep learning approaches. It should also be noted that deep 

learning approaches such as CNNs, RNNs, and hybrid models represent strong competitors, 

especially when trained with larger datasets or via transfer learning. In this study, we deliberately 

focused on a compact, interpretable pipeline to mitigate overfitting on small data. 

The proposed method surpasses all previous approaches in terms of accuracy and recall, achieving 

an outstanding accuracy of 99.24%, perfect recall (100%), specificity of 98.39%, precision of 

98.61%, and a GM of 99.31%. Compared to the highest-performing prior work (LCOWFBs-v) by 

Puri et al. [5], the proposed method not only achieves higher recall but also offers superior F1-score 

and GM, indicating a better balance between sensitivity and specificity. This comprehensive 
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comparison demonstrates the effectiveness and robustness of the proposed method, positioning it as 

a superior diagnostic tool for AD detection. 

Another important aspect is finding the optimal number of Mel filters for classification accuracy. 

After extensive testing, we found that 14 Mel filters produced the best results, showing the value of 

tuning signal processing parameters to help the model distinguish between AD patients and healthy 

controls. Using PCA improved both efficiency and effectiveness by keeping essential features while 

reducing noise and redundant data. This ultimately enhanced the performance of the analysis. The 

classification phase of the study showed that the KNN algorithm achieved the highest accuracy at an 

impressive 99.24%. This strong performance was further supported by the highest AUC, confirming 

KNN's effectiveness in distinguishing between AD and NC subjects. Compared to other classifiers 

and existing methods, the HMFS method showed significant improvements in both accuracy and 

reliability. 

To further validate the robustness of the proposed method, statistical analyses were conducted on 

the classification outcomes. The overall accuracy of 99.24% corresponds to a 95% confidence interval 

of [99.05%, 99.39%] at the epoch level. When aggregating predictions across repeated cross-

validation (29,547 test instances), the interval narrows to [99.13%, 99.33%], reflecting the stability 

of performance across folds and repetitions. Class-wise analysis revealed perfect recall for AD (100%, 

CI [99.93%, 100%]) and high specificity for HC (98.39%, CI [97.95%, 98.72%]). A two-proportion 

significance test confirmed that recall for AD was statistically higher than specificity for HC, 

suggesting that the model identifies AD more readily while still maintaining excellent specificity. 

These findings highlight the consistency and discriminative power of the HMFS features and 

demonstrate that the performance gains are not attributable to random variation. 

5. Conclusion 

This study introduced a novel and effective feature extraction framework for EEG-based diagnosis 

of Alzheimer's disease, leveraging a combination of Mel Cepstral analysis and the HT. The method 

first captured perceptually meaningful frequency-domain representations using Mel filter banks, 

followed by decorrelation via DCT and dimensionality reduction through PCA. To further enhance 

temporal resolution, the Hilbert Transform was applied to extract the instantaneous amplitude of the 

signal, resulting in highly informative temporal envelopes that reflect pathological EEG dynamics 

associated with AD. The proposed approach was comprehensively evaluated using multiple 

classifiers, including KNN, SVM, and RF. Among them, KNN achieved the highest performance, 

reaching an accuracy of 99.24% in distinguishing between Alzheimer’s patients and healthy controls. 

The method also demonstrated excellent diagnostic reliability across other metrics, achieving 100% 

recall, 98.61% precision, 98.39% specificity, an F1-score of 99.30%, and a geometric mean of 

99.31%. By offering a strong balance between interpretability, computational efficiency, and 

diagnostic precision, the proposed HMFS-based framework provides a promising foundation for real-

time, EEG-based screening and monitoring of AD. Future work will aim to validate the approach on 

larger and more diverse datasets and explore its applicability in early-stage and multi-class 

neurodegenerative classification tasks. Future work will extend the HMFS framework to multiclass 

dementia classification (e.g., AD vs. FTD vs. HC), incorporate multimodal biomarkers, evaluate the 

method on larger multi-center datasets, and explore hybrid models that integrate HMFS with adaptive 

transforms and deep neural architectures. In addition, we plan to evaluate the HMFS framework on 

larger multi-center EEG datasets as they become available, to further validate generalizability across 

diverse populations. 
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