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Abstract  

Reservoir inflow prediction is critical for effective water management. By accurately forecasting these 

inflows, reservoir operators can make well-informed choices regarding water releases, which can influence 

both the availability of water downstream and the potential for flooding. This research introduces a novel 

predictive model called the Clockwork Recurrent Neural Network (CWRNN)-M5T, specifically designed 

to forecast monthly reservoir inflow. By synthesizing these two models, this study proposes a 

groundbreaking method that significantly improves prediction accuracy and provides critical insights for 

effective water resource management. The CWRNN-M5T model can predict inflow for one, two, and three 

months ahead. This study showcases the model's effectiveness, contributing to advancements in engineering 

informatics for water resource management and optimal dam operations. It also explores how the model's 

performance changes with longer prediction horizons, emphasizing its limitations and potential real-world 

applications. The models utilized the lagged reservoir inflow values as inputs. For one-month predictions, 

the CWRNN model yielded the best results. However, the CWRNN-M5T model surpassed all others, 

achieving a Nash Sutcliffe efficiency (NSE) of 0.98, compared to 0.94 for the CWRNN model. 

Additionally, the CWRNN-M5T model recorded the lowest mean absolute error (MAE) at 0.123, while the 

CWRNN model had an MAE of 0.210. For two-month predictions, the CWRNN-M5T model achieved the 

lowest root mean square error (RMSE) of 0.254. Overall, the CWRNN-M5T model has proven to be a 

highly effective tool for predicting reservoir inflow. 

Keywords: Deep learning models, Water resource management, hydrological prediction, hybrid model 
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1. Introduction  

Reservoir inflow prediction is important for effective reservoir management and operation [1]. 

Inflow predictions also aid in assessing and managing drought conditions. By analyzing long-term 

inflow patterns, water managers can identify drought-prone periods and develop strategies for 

water protection, demand management, and alternative water sources. Accurately predicting 

reservoir inflow can aid in planning water distribution, hydroelectric power generation, flood 

control, and drought management [2]. It can also aid in decision-making related to irrigation, 

municipal water supply, and environmental protection [3]. Reservoir inflow is a key factor that 

affects reservoir water level and storage capacity. In addition, inflow prediction can also reduce 

the risk of floods and other related disasters. Reservoir inflow prediction can be complex because 

it relies on different factors such as weather conditions, precipitation patterns, land use changes, 

and hydrological characteristics of the watershed [1]. Additionally, inflow is often affected by 

upstream activities such as dam releases or diversions, which can further complicate the prediction 

process [4]. Therefore, modeling and predicting reservoir inflow requires advanced techniques and 

a comprehensive understanding of the factors that affect inflow [5]. Machine learning models are 

useful for predicting reservoir inflow because they can capture complex non-linear relationships 

between various input variables, such as precipitation, temperature, and water level [6]. These 

models are able to learn from historical data patterns and produce highly accurate predictions that 

enable reservoir managers to make informed water allocation [7]. Additionally, machine learning 

models can process large amounts of data quickly, which is essential for real-time decision-making 

related to reservoir inflow prediction [8]. The M5Tree model is a machine learning model 

developed based on the M5 model tree algorithm [9]. It is designed for regression problems and 

can predict continuous numerical values. The M5Tree model is a type of decision tree algorithm 

that combines the benefits of decision trees and regression models [10]. The M5Tree model has 
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been effectively used in multiple fields including ecology, hydrology, and meteorology. It can 

predict various variables such as streamflow, rainfall, and air quality. Esmaeilzadeh et al [11] 

conducted a study at the Sattarkhan reservoir in Iran to assess the accuracy of different machine 

learning models for predicting next-day discharge. The study evaluated the performance of several 

models including artificial neural network (ANN), support vector regression (SVR), wavelet 

neural networks (WANN), and M5 model tree. The study concluded that wavelet transformation 

played a significant role in improving the accuracy of the different models. The WANN model, 

which used temperature, precipitation, and previous discharge as inputs, had the highest accuracy 

with an RMSE value of 0.31 m3/s. Yin et al [12] developed accurate and reliable river flow 

forecasting models using data-driven techniques. The study suggested that the M5Tree method 

could be used for short-term river flow forecasting in semiarid mountainous regions. Rouzegari et 

al [13] used the flow duration curve shifting method to estimate the environmental water demand 

of the Mahabad River in Iran. They used simulated annealing (SA), the M5 tree model, and non-

linear programming (NLP) methods to develop an optimal operating model for a reservoir. The 

M5 tree model was used to determine the optimal values of released water based on optimal water 

storage values, reservoir inflows, and monthly demands. The SA-M5 tree model extracted the 

operation rules accurately. These rules were represented as linear if-then statements, which might 

be useful for future applications. Although the M5 model is robust, it has some limitations. The 

M5 model tree may not be suitable for all prediction tasks. For example, it may not be effective 

for predicting complex nonlinear relationships or dealing with high-dimensional datasets. [14]. In 

addition, M5 can be prone to overfitting when the model is too complex or the data set is too small, 

resulting in poor generalization performance. Finally, the interpretability of M5 models can be 

challenging, as the resulting decision trees can become very large and difficult to understand, 
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especially for non-experts [15]. Thus, it is essential to address the limitations of the M5 models. 

In recent years, deep learning models have been increasingly used to overcome the limitations of 

classical machine learning models [16]. They have been used to overcome the limitations of 

classical machine learning models in various fields, including reservoir inflow prediction, weather 

forecasting, and public health.  Deep learning methods can handle larger datasets more efficiently 

and capture complex non-linear relationships, making them a suitable solution to overcome these 

limitations [16]. The hybrid deep learning- M5 model is a technique to overcome limitations of 

the M5 model.  

The hybrid deep learning-M5 model can address some of the disadvantages of the M5 model. A 

hybrid model that combines deep learning techniques with the M5 model can take advantage of 

both approaches and mitigate the weaknesses of the M5 model. Deep learning algorithms can 

improve prediction accuracy by capturing subtle patterns and handling complex nonlinear 

relationships [16-17]. This hybrid model can also address the limitations of the M5 model by 

reducing sensitivity to noisy data, handling missing data, and improving the scalability and 

generalization ability of the model. Additionally, the hybrid model can be used to overcome some 

of the limitations of the M5 model, such as the requirement for pre-processing and feature 

engineering, and can handle a variety of data types and formats. Additionally, the hybrid model 

can use techniques such as dropout and regularization to prevent overfitting by reducing the model 

complexity. A clockwork recurrent neural network (CW-RNN) is one of the most popular deep 

learning models. 

 A clockwork recurrent neural network (CW-RNN) is a type of recurrent neural network (RNN) 

that consists of multiple recurrent layers with different time scales [18]. The architecture of CW-

RNN includes multiple modules that process input data at different time scales [19]. Each module 
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has a specific responsibility to process the input data. Each module has its own clock rate, and the 

output of one module is used as the input to the next module [18]. The CW-RNN model uses 

different clock rates for different modules to capture different levels of temporal dependencies 

[20]. Thus, the CW-RNN is a robust deep learning model for handling complex problems. The 

CW-RNN model has a high potential to address the shortcomings of the M5 model.  

The hybrid CWRNN-M5 model can improve the performance of the M5 model by combining the 

advantages of both models. In addition, the CW-RNN model can avoid overfitting by effectively 

learning the relevant features of the time-series data and ignoring the noise and irrelevant features. 

By combining these two models, the hybrid model can capture both the structured and temporal 

information in the data, resulting in improved accuracy and better prediction performance. In this 

study, we use the CWRNN-M5 model to predict monthly reservoir inflow. Thus, the main 

innovation of the current paper is to develop a new model for predicting reservoir inflow. The new 

CWRNN-M5 model can significantly contribute to water resource management by providing more 

accurate and reliable predictions of reservoir inflow. This information can be used to improve 

water allocation and distribution strategies, optimize hydropower generation, and support effective 

flood management planning. By accurately predicting reservoir inflows at various lead times, the 

CWRNN-M5T model supports hydrological simulations. This information is crucial for 

simulating and modeling water flow, storage, and distribution within a hydrological system.  

 

2. Materials and Methods  

2.1 Structure of the M5 model 

The M5 model is a decision tree-based algorithm suitable for regression and classification tasks 

[9]. It operates by recursively dividing the input space into smaller regions and fitting simple 

models to each region [21]. The model starts with a root node representing the entire input space. 
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It selects the best attribute for data division based on the highest variance reduction (Kisi et al., 

2022). This is calculated to determine how much the variance of the target variable decreases when 

data is split by a specific attribute. It is computed as the difference between the original variance 

and the weighted average of the variances in each subset [14]. 

The attribute with the highest variance reduction is chosen at each level. Internal nodes represent 

decisions based on the selected attribute, and the model continues splitting until it meets a stopping 

criterion, such as a minimum number of instances or maximum tree depth [22]. Each leaf node 

represents a simple model predicting the target variable for instances in that region, typically using 

a linear regression model [14]. After constructing the tree, the M5 model prunes it to prevent 

overfitting by removing unnecessary branches [23]. It evaluates the performance of internal nodes 

against leaf nodes, replacing non-improving internal nodes with leaf nodes. 

To predict new instances, the model compares attribute values with internal and leaf nodes and 

uses stored coefficients to calculate the predicted target variable. This structured approach 

enhances the model's generalization capabilities while simplifying its complexity. 

2.2 Structure of a clockwork recurrent neural network 

The CW-RNN is a type of recurrent neural network that uses multiple clockwork recurrent layers. 

This architecture allows the model to capture the hierarchical temporal structure of the data, which 

is particularly useful for hydrological time-series, where the relationships between variables can 

be complex and non-linear. The CW-RNN-M5T model includes lagged values of the target 

variable, which can improve the accuracy of the predictions by capturing the historical patterns 

and relationships between the variables. The CWRNN-M5T model is trained separately for 

different lead times, which allows it to learn the specific patterns and dependencies for each lead 
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time. The CWRNN-M5T model uses an ensemble learning approach, where multiple models are 

trained and combined to improve the overall accuracy of the predictions. 

A clockwork recurrent neural network (CW-RNN) has a hierarchical structure that consists of 

multiple modules [18]. The structure of a Clockwork Recurrent Neural Network (CW-RNN) can 

be explained level by level: 

Level 1: Input layer 

The input layer of the CW-RNN model receives input data and passes it to the next layer. 

Level 2: Clockwork layer 

The clockwork layer consists of multiple modules that process input data over different time scales. 

Each module has its own clock speed and processes the input data at its designated time scale [24]. 

A clockwork layer is a specialized type of recurrent neural network layer that operates with varying 

clock rates for different groups of neurons. The modules that have a slower clock speed are 

designed to manage long-term information, like seasonal trends or yearly cycles. In contrast, the 

modules with a faster clock speed focus on processing continuous data, such as daily or hourly 

variations [25]. A clockwork recurrent neural network (CW-RNN) module with a high clock speed 

processes information over a longer period of time. For example, a module with a clock speed of 

one week can capture weekly patterns, whereas a module with a clock speed of one day can capture 

daily patterns. 

Level 3: Hidden layer 

The hidden layer of the CW-RNN receives input from the clockwork layer and processes it using 

activation functions [24]. 

Level 4: Output layer 
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The output layer of the CW-RNN receives input from the hidden layer and produces the final 

output. 

Level 5: Feedback connections 

The network uses feedback connections to connect the output to the input or hidden layer. 

Feedback connections help the network improve its performance by learning from its own 

predictions. 

2.3 Structure of a hybrid CWRNN- M5Tree model 

The CWRNN-M5Tree model combines a Clockwork Recurrent Neural Network (CW-RNN) with 

an M5Tree model to improve reservoir inflow prediction accuracy. At the first level, input data 

(e.g. historical inflow data and weather forecasts) are preprocessed and fed into the CW-RNN 

model. The CW-RNN employs multiple modules that operate at different clock speeds, allowing 

it to separately manage long-term and continuous information, which sets it apart from traditional 

recurrent neural networks. In the second stage, the output from the CW-RNN is input into the 

M5Tree model, which utilizes decision trees to forecast reservoir inflow. The M5Tree model is 

adept at handling non-linear relationships between the input and output variables. Finally, the 

output from the M5Tree model undergoes post-processing to yield the final prediction for reservoir 

inflow. In summary, the CWRNN-M5Tree model combines deep learning and decision tree 

techniques to effectively capture the intricate relationships between various input factors and 

reservoir inflow. The Adam optimization algorithm is employed to fine-tune the parameters of the 

CW-RNN during training. The Adam algorithm includes momentum and regularization terms that 

prevent overfitting and improve generalization performance [26]. The algorithm uses a momentum 

term that dampens oscillations in the optimization process, leading to faster convergence. The 

weights and biases of the CWRNN model are randomly initialized. Clockwork layers and feedback 
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connections are used to learn and predict patterns in the data. During each training iteration, the 

optimizer computes the gradients of the loss function with respect to the model parameters [26]. 

The optimizer uses the gradients to update the parameters using a combination of the first and 

second moments of the gradients. The updated parameters are then used to compute the next set 

of predictions. The structure of the CWRNN-M5T is presented in Fig.1. 

 

Figure 1. Structure of the CWRNN-M5T 

2.4 Benchmark models  

A multilayer perceptron (MLP) is a type of artificial neural network (ANN) featuring one or more 

hidden layers [27]. Each neuron in the MLP receives inputs, computes a weighted sum, applies an 

activation function, and passes the result to the next layer [28]. The hidden layers enable the 

network to learn complex patterns through nonlinear transformations. MLPs are utilized for tasks 

like classification, regression, and time-series prediction [29]. Another type of ANN is the radial 

basis function neural network (RBFNN), where the input layer sends values to a hidden layer 
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consisting of radial basis functions. These functions transform input data into a higher-dimensional 

space based on their distance from center points. The output layer then produces the final results. 

RBFNNs learn weights and centers using optimization methods like gradient descent, evaluated 

through metrics such as mean square error or classification accuracy [30]. 

The Backpropagation algorithm is commonly used for training ANNs. It computes the gradient of 

the loss function relative to the network's weights, adjusting them to minimize prediction errors. 

During training, input data is processed to generate output, errors are calculated, and these errors 

are propagated back through the network to update the weights, thus reducing loss. 

3. Case Study  

The Aidoghmoush Dam is a large arch dam located in the northwest of Iran, near the city of 

Maragheh. The Aidoghmoush climate is generally characterized as a semi-arid climate with hot 

summers and cool winters. The region is situated in the northwest of Iran, and it is characterized 

by its proximity to the Caspian Sea, the Elburz mountain range, and the Mediterranean climate 

zone. The annual precipitation is approximately 500-700 mm. The summer months are hot and 

dry, with temperatures reaching up to 40 °C. The climate of the region is an important factor that 

affects water resources management. The Aidoghmoush dam is used for hydroelectric power 

generation and water supply. The Aidoghmoush dam is one of the largest dams in Iran and is an 

important source of power and water for the region. The average annual discharge and rainfall are 

190 *106 m3 and 378 mm, respectively. Accurate inflow prediction can help optimize water 

release, plan for droughts and floods, manage water for irrigation and generate hydropower. 

Additionally, inflow prediction can be useful in maintaining the ecological health of downstream 

river systems and ecosystems. The dam crest has a length of 297 m and a width of 12 m. Its height 

is 1,350 m above sea level. In this study, researchers used past reservoir inflow values with 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



11 
 

different time lags to predict reservoir inflow for periods of one, two, and three months ahead. 

Using lagged inflow values as inputs reduces the number of variables required for the predictive 

model, making it simpler and more efficient. This is especially important for real-world 

applications where the number of input variables may be limited due to data availability or 

computational constraints. Lagged inflow values are directly related to current reservoir inflow, 

whereas climate parameters may have indirect or complex relationships with reservoir inflow. 

Lagged inflow values provide a more accurate representation of historical inflow patterns, which 

can improve the accuracy of the model. Figure 2 shows the location of the case study. Figures 3a, 

3b, and 3c show time-series data for one, two, and three months ahead. The monthly data were 

collected from 2005–2015.  

 

Figure 2. Location of case study (Ashofteh et al [31]) 
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Figure 3. Inflow time-series for a: one-month ahead, b: two-month ahead, and c: three-month ahead 

4. Discussion and Results 

4.1 Selection of input parameters  

Lagged reservoir inflow refers to the historical inflow values of the reservoir in previous periods. 

Lagged reservoir inflow can affect current reservoir inflow because the inflow to a reservoir at any 

given time is influenced by various factors, including precipitation, evapotranspiration, and runoff 

from upstream areas. By analyzing previous inflow values, it is possible to identify patterns and 

trends over time. Lagged reservoir inflow values can provide insights into the historical trend of 

water inflow into the reservoir, improving the accuracy of predicting the current reservoir inflow. 

By adding lagged inflow values as predictors to a prediction model, the model can account for the 

historical water inflow pattern, which can enhance prediction accuracy for the current period. 

Table 1 shows correlation values between target variables and lagged inflow values. Predictor 

variables with a correlation coefficient greater than 0.90 with the target variable are selected. A 

correlation coefficient greater than 0.90 indicates a strong positive linear relationship between the 
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predictor variable and the target variable. By selecting predictor variables with high correlation, 

the model can better capture the underlying patterns and relationships, resulting in more accurate 

predictions.  

Table 1. Correlation values between inputs and outputs (bold values=selected inputs) 
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INFt+Δt 

Δt=1 
0.98 0.96 0.94 0.90 0.87 0.85 0.85 0.84 0.80 0.78 0.77 0.70 0.68 

INFt+Δt 

Δt=2 
0.97 0.94 0.92 0.90 0.86 0.84 0.82 0.80 0.78 0.77 0.76 0.68 0.67 

INFt+Δt 

Δt=3 
0.97 0.94 0.90 0.89 0.86 0.85 0.84 0.80 0.78 0.76 0.75 0.70 0.68 

 

4.2 Evaluation of the accuracy of the models 

Table 2a shows training results for one-month ahead. The performance of five different models 

for reservoir inflow prediction can be compared. The CWRNN-M5T model outperformed the other 

models with an RMSE of 0.245, while the CWRNN model had the second-best performance with 

an RMSE of 0.35. The MLP model had the highest RMSE of 0.56, followed by the RBFNN model 

with an RMSE of 0.654, and the M5T model with an RMSE of 0.671.  The CWRNN-M5T model 

again outperformed the other models with an NSE of 0.98, followed by the CWRNN model with 

an NSE of 0.94. The MLP, RBFNN, and M5T models had NSE values of 0.92, 0.90, and 0.89. 

The CWRNN-M5T model had the lowest MAE value of 0.123, followed by the CWRNN model 

with an MAE of 0.210. The MLP model had the highest MAE of 0.45, followed by the RBFNN 

model with an MAE of 0.555, and the M5T model with an MAE of 0.567. The CWRNN-M5T 

model had the lowest PBIAS value of 5, followed by CWRNN with a PBIAS of 7. The MLP model 
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had the highest PBIAS of 9, followed by RBFNN with a PBIAS of 12, and M5T with a PBIAS of 

15. The M5T model had the highest RMSE and MAE values among all models.  

Table 2b shows testing results for the one-month ahead. Based on the performance metrics of NSE, 

PBIAS, MAE, and RMSE, the CWRNN-M5T model outperforms the other models, including 

CWRNN, MLP, RBFNN, and M5T. The CWRNN-M5T model had the highest NSE value of 0.97, 

indicating a high accuracy level. It also had the lowest PBIAS value of 6, indicating a low bias 

level. The CWRNN-M5T model had the lowest MAE and RMSE values of 0.224 and 0.248, 

respectively, indicating a high precision level.  

Table 2c shows training results for two-month ahead. The CWRNN-M5T model had the lowest 

RMSE (0.251), followed by the CWRNN model (0.372), the MLP model (0.591), the RBFNN 

model (0.666), and the M5T model (0.679). The CWRNN-M5T model had the highest NSE (0.96), 

followed by the CWRNN model (0.91), the MLP model (0.89), the RBFNN model (0.87), and the 

M5T model (0.86). The CWRNN-M5T model had the lowest MAE (0.226), followed by the 

CWRNN model (0.314), the MLP model (0.472), the RBFNN model (0.578), and the M5T (0.615) 

model. The CWRNN-M5T model had the lowest PBIAS (8), followed by the CWRNN model (9), 

the RBFNN model (16), the M5T model (17), and the MLP model (15). 

Table 2d shows testing results for predicting two-month ahead inflow. Based on the given table, 

the CWRNN-M5T model had the lowest RMSE value (0.254) compared to other models. The 

MLP and RBFNN models had the highest RMSE values (0.592 and 0.667, respectively). The 

CWRNN-M5T model had the highest NSE value (0.95), indicating a better agreement between 

observed and predicted values. The CWRNN-M5T model had the lowest MAE value (0.236), 

while the RBFNN model had the highest MAE value (0.625). The CWRNN-M5T model had the 
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highest PBIAS value (9), followed by the CWRNN model (10). The M5T model had the lowest 

PBIAS value (18), indicating a better fit than the other models. 

Table 2e shows training results for the next three months. The CWRNN-M5T model outperformed 

the other models with a PBIAS of 10. The CWRNN model had the second-best PBIAS value of 

11, followed by the MLP model with a PBIAS of 17, the RBFNN model with a PBIAS of 18, and 

the M5T model with a PBIAS of 19. Overall, the CWRNN-M5T and CWRNN models showed the 

smallest PBIAS values. The CWRNN-M5T model outperformed the other models with the lowest 

RMSE of 0.259, followed by the CWRNN model with an RMSE of 0.381. The MLP and RBFNN 

models had RMSE values of 0.594 and 0.669, respectively. Based on MAE values, the CWRNN-

M5T model had the lowest MAE (0.236), followed by the CWRNN model (0.319), the MLP model 

(0.487), the RBFNN model (0.589), and the M5T (0.625) model. Based on NSE values, the 

CWRNN-M5T model outperformed the other models, followed by the CWRNN model.  

Table 2f shows testing results for three-month ahead. Based on the NSE metric, CWRNN-M5T 

had the highest value of 0.92, followed by CWRNN with a value of 0.88. The CWRNN-M5T 

model had the lowest PBIAS value of 11, followed by CWRNN with a PBIAS of 14, MLP with a 

PBIAS of 18, RBFNN with a PBIAS of 19, and M5T with a PBIAS of 22. Based on the RMSE 

values, the CWRNN-M5T model had the lowest value of 0.262, indicating the highest level of 

accuracy. The next best performing model was CWRNN with an RMSE of 0.394, followed by 

MLP with an RMSE of 0.599, RBFNN with an RMSE of 0.673, and M5T with an RMSE of 0.694. 

The CWRNN-M5T model had the lowest MAE value of 0.241, followed by CWRNN with an 

MAE of 0.320, RBFNN with an MAE of 0.599, MLP with an MAE of 0.498, and M5T with an 

MAE of 0.632. 
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Table 2g shows Uncertainty at 95% (U95) of training and testing results for three-month ahead. 

U95 quantifies the width of the 95% prediction interval around the model's forecasts. Here U95 

calculated by (
 

0.50
2 295 1.96U SD RMSE 

) which SD is standard deviation and RMSE is root 

mean square error. It should be mentioned in this table a lower U95 indicates that the model is 

more confident in its predictions, while a higher U95 suggests greater uncertainty 

Table 2. Comparison of the accuracy of the models based on a: training results at one-month ahead, b: 

testing results at one-month ahead, c: training results at two-month ahead, d: testing results at two-month 

ahead, e: training results at three-month ahead and f: testing results at three-month ahead, g: U95 training 

and testing results at three-month ahead 

a 

Model RMSE NSE MAE PBIAS 

CWRNN-M5T 0.245 0.98 0.123 5 

CWRNN 0.350 0.94 0.210 7 

MLP 0.560 0.92 0.450 9 

RBFNN 0.654 0.90 0.555 12 

M5T 0.671 0.89 0.567 15 

b 

Model RMSE NSE MAE PBIAS 

CWRNN-M5T 0.248 0.97 0.224 6 

CWRNN 0.371 0.92 0.312 8 

MLP 0.587 0.90 0.471 12 

RBFNN 0.654 0.89 0.567 14 

M5T 0.671 0.87 0.612 15 

c 

Model RMSE NSE MAE PBIAS 

CWRNN-M5T 0.251 0.96 0.226 8 
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CWRNN 0.372 0.91 0.314 9 

MLP 0.591 0.89 0.472 15 

RBFNN 0.666 0.87 0.578 16 

M5T 0.679 0.86 0.615 17 

d 

Model RMSE NSE MAE PBIAS 

CWRNN-M5T 0.254 0.95 0.236 9 

CWRNN 0.377 0.90 0.319 10 

MLP 0.592 0.88 0.487 15 

RBFNN 0.667 0.86 0.589 17 

M5T 0.682 0.82 0.625 18 

e 

Model RMSE NSE MAE PBIAS 

CWRNN-M5T 0.259 0.94 0.245 10 

CWRNN 0.381 0.89 0.321 11 

MLP 0.594 0.87 0.490 17 

RBFNN 0.669 0.84 0.591 18 

M5T 0.691 0.82 0.627 19 

f 

Model RMSE NSE MAE PBIAS 

CWRNN-M5T 0.262 0.92 0.241 11 

CWRNN 0.394 0.88 0.320 14 

MLP 0.599 0.85 0.498 18 

RBFNN 0.673 0.82 0.599 19 

M5T 0.694 0.80 0.632 22 

g 

Model U95-training U95-testing 

CWRNN-M5T 5 4 

CWRNN 10 10 
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MLP 15 14 

RBFNN 22 20 

M5T 25 22 

 

Based on the provided information, it appears that the accuracy of the CWRNN-M5T model 

decreases as the prediction lead time increases. Specifically, the training RMSE values for one-

month ahead, two-month ahead, and three-month ahead predictions were 0.245, 0.251, and 0.259, 

respectively. Based on the provided RMSE values, it can be observed that the accuracy of 

CWRNN-M5T decreases as the prediction lead time increases. The RMSE values for one-month 

ahead, two-months ahead, and three-months ahead were 0.248, 0.254, and 0.262, respectively.  

Here it should be emphasis on reason of the RMSE decreasing by longer lead times. The decline 

in prediction accuracy from 0.245 to 0.262, is something which often see in hydrological modeling. 

There are a few reasons for this producer. One major factor is error accumulation—small mistakes 

that happen early on can build up over time, making predictions less reliable as we look further 

into the future. Additionally, hydrological systems are influenced by many complex and 

sometimes chaotic factors, such as changes in rainfall, temperature, and upstream flows. These 

elements introduce a lot of unpredictability and non-linearity, which makes accurate long-term 

forecasting particularly challenging. 

The testing NSE value decreased from 0.97 for a one-month ahead prediction to 0.92 for a three-

month ahead prediction. As the prediction lead time increases, it becomes harder to accurately 

predict the target variable. In the short term, the CWRNN-M5T model may be able to capture 

patterns and relationships between the input variables and the target variable and make accurate 

predictions based on those patterns. As time goes on, unexpected changes or variability in the input 

data can accumulate and produce inaccurate predictions. For example, weather patterns can 
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change, and external factors such as economic or political conditions can affect the target variable.  

Predictions can be inaccurate if these factors are not accurately captured and incorporated into the 

model. Therefore, as the prediction lead time increases, the model may not be able to capture all 

the relevant factors that affect the target variable. As the lead time increases, the input data 

becomes more uncertain and variable.  

The Clockwork Recurrent Neural Network (CW-RNN)-M5T was developed to model the temporal 

dependencies, making it a suitable model for hydrological forecasting. One reason why it may 

outperform other models is that it can capture complex patterns of the time-series data that other 

models may miss. This model includes multiple time scales in its architecture. This mechanism 

allows it to capture both short-term and long-term temporal relationships in the input data, resulting 

in more precise predictions. While the M5Tree model can identify certain patterns and 

relationships within the data, it struggles to capture more complex temporal dynamics that are 

crucial for accurate predictions. In contrast, the CWRNN-M5T model is a hybrid approach that 

effectively captures these temporal patterns and dependencies in the input data. By combining the 

strengths of both models, the CW-RNN-M5T can deliver more precise predictions than the 

M5Tree model. 

There are several reasons the M5T model may not perform as well as the MLP and RBFNN 

models. One such reason is its difficulty in capturing non-linear relationships effectively. 

Additionally, since the M5T model is based on a decision tree structure, it may lack the flexibility 

of the neural network architectures found in MLP and RBFNN models. The M5T model is also 

sensitive to outliers or noisy data, which can adversely impact its performance. In contrast, the 

CWRNN model excels in managing long-term dependencies, which may contribute to its superior 

performance compared to the MLP, RBFNN, and M5T models. 
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CWRNN uses multiple modules with different clock speeds to process information at different 

time scales. CWRNN model can handle larger datasets more efficiently, which can be especially 

beneficial for predicting reservoir inflow. The results provide insights into water resource 

management by providing information on the accuracy of different predictive models used for 

predicting reservoir inflow. Accurate inflow predictions are essential for effective water resource 

management, as they help decision-makers plan and allocate water resources, such as drinking 

water and irrigation water, more effectively. Accurate inflow predictions can help water managers 

better understand how much water will be available for various uses such as irrigation, public 

utilities, and hydropower generation. By comparing the accuracy of different models, water 

managers can choose the best model for inflow prediction and use it to optimize reservoir 

operations. Accurate prediction of reservoir inflow can help water managers make informed 

decisions about water allocation, drought management, flood control, and hydropower generation. 

By comparing the performance of different models, the study provides insights into which models 

are most accurate for predicting different lead times. Overall, the study provides a foundation for 

developing advanced engineering informatics that can improve water resource management in the 

future. The CWRNN-M5T model can help optimize the operation of dam reservoirs by providing 

accurate predictions of reservoir inflow. Additionally, the predictions can be used to develop early 

warning systems for potential floods, which can help reduce the risk of damage to property and 

infrastructure. Figure 4a shows boxplots of models for one-month ahead. The median value of 

observed data, the CWRNN-M5T, CWRNN, MLP, RBFNN, and M5T was 50.5 MCM, 51 MCM, 

52.1 MCM, 52.1 MCM, 53.5 MCM, and 54.1 MCM, respectively. Figure 4b shows boxplots of 

models for two-month ahead. The median value of observed data, the CWRNN-M5T, CWRNN, 

MLP, RBFNN, and M5T was 50.625 MCM, 51.1 MCM, 52.3 MCM, 52.9 MCM, 53.75 MCM, 
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and 54.4 MCM, respectively. Figure 4c shows boxplots of models for three-month ahead. The 

median value of observed data, the CWRNN-M5T, CWRNN, MLP, RBFNN, and M5T was 50.69 

MCM, 51.175 MCM, 52.325 MCM, 52.92 MCM, 53.95 MCM, and 54.4 MCM, respectively. The 

maximum value of the observed data, CWRNN-M5T model, CWRNN model, MLP model, 

RBFNN model, and M5T model was 95 MCM, 95 MCM, 96.50 MCM, 97.25 MCM, 97.55 MCM, 

and 99.00 MCM, respectively.  

The Taylor diagram is a graphical method for comparing and visualizing the similarities and 

differences between the spatial patterns of different datasets. It is a type of scatter plot that 

compares multiple datasets by showing their correlation coefficients, root mean square errors 

(RMSEs), and standard deviations relative to a reference dataset. The reference dataset is typically 

plotted at the origin of the graph, while the other datasets are represented by points on the graph. 

The correlation coefficient is represented by the distance from the origin, while the RMSE is 

represented by the radial distance from the reference dataset. A perfect model or dataset will fall 

on the reference point, while a poor model or dataset will be located far away from the reference 

point.  
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Figure 4. Boxplots of models for a: one-month ahead b: two-month ahead, and c: three months ahead 

 

The CRMSE of the CWRNN-M5T, CWRNN, MLP, RBFNN, and M5T models was 0.066, 0.14, 

0.23, 0.33, and 0.39, respectively. The correlation coefficients of the CWRNN-M5T, CWRNN, 

MLP, RBFNN, and M5T models were 0.99, 0.98, 0.97, 0.94, and 0.92, respectively. Figure 5a 

shows a Taylor diagram for one-month ahead prediction. Figure 5b shows a Taylor diagram for a 

two-month ahead prediction. The CRMSE of the CWRNN-M5T, CWRNN, MLP, RBFNN, and 

M5T model was 0.11, 0.19, 0.30, 0.41, and 0.51, respectively. Figure 5c shows a Taylor diagram 

for three-month ahead prediction. Thus, the CWRNN had the best performance among the other 

models. The CRMSE of the CWRNN-M5T, CWRNN, MLP, RBFNN, and M5T model was 0.20, 

0.29, 0.45, 0.54, and 0.72, respectively.  

By addressing the challenge of predicting reservoir inflow, the CWRNN-M5T model plays a 

significant role in advancing engineering informatics. A key area of research in this field involves 

creating accurate and dependable predictive models for managing water resources. The CWRNN-

M5T model seeks to fill this void by leveraging the strengths of both the CW-RNN and M5Tree 

models to deliver more accurate predictions of reservoir inflow. 
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. 

               

 

Figure 5. Taylor diagram for a: one-month ahead, b: two-month ahead, and c: three-month ahead 

The CWRNN-M5T model can help optimize the operation of dam reservoirs and provide accurate 

predictions of reservoir inflow. These predictions can also be used to develop early warning 

systems for potential floods, which help reduce the risk of damage to property and infrastructure. 

The results show that this model has higher accuracy in predicting reservoir inflow compared to 

other models (CWRNN, MLP, RBFNN, and M5T). Taylor diagram is used as a graphical method 

to compare and visualize the similarities and differences in spatial patterns of different data and 
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can help in more accurate analysis of the performance of the models. Overall, the CWRNN-M5T 

model is an effective tool for water resources management and climate change-related risks by 

providing accurate predictions. 

The CWRNN-M5T model also contributes to advanced engineering informatics by improving 

understanding of complex hydrological processes and enabling more accurate simulations. By 

analyzing and interpreting large amounts of data, it provides valuable information for water 

resource planning, reservoir operation, and flood control. A CWRNN-M5T model also addresses 

the need for real-time monitoring and control in water systems. By incorporating the concept of 

clockwork layers and utilizing the M5Tree algorithm, the CWRNN-M5T model effectively 

captures temporal dependencies and nonlinear patterns in reservoir inflow data. Thus our study 

fills a gap in the field of advanced engineering informatics by providing a more robust and efficient 

method for reservoir inflow prediction, which is crucial for water resource management and the 

optimal operation of dams. The CWRNN-M5T model bridges the gap between advanced machine 

learning techniques and the specific needs of water resource management, contributing to the 

advancement of engineering informatics in this field.  

Recent developments in engineering informatics have led researchers to adopt hybrid approaches 

to address the challenges posed by traditional machine learning models [17]. By combining 

machine learning techniques with established frameworks, they can enhance the accuracy, 

efficiency, and scalability of their analyses. Predictive models also come with inherent 

uncertainties, which stem from various sources. One significant source of uncertainty is the input 

parameters, while model parameters contribute as well [16]. 

It is worth mentioning that, considering the impact of sources of uncertainty (input parameters and 

model parameters) on the results of models, efforts have been made to reduce the influence of 
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these sources of uncertainty as much as possible by integrating M5T models with the CWRNN 

model. 

Advanced soft computing models like the M5T and CWRNN provide numerous benefits, 

particularly their ability to manage uncertain and imprecise data, enhancing their usefulness across 

different fields. Additionally, they typically demand fewer computational resources than 

conventional models, making them more efficient. However, a notable downside is their potential 

lack of interpretability, which can impede comprehension and trust in the outcomes. Moreover, 

these models may be sensitive to the settings of their parameters, which can influence their 

effectiveness. Employing hybrid models and addressing uncertainties can help mitigate this 

limitation to some degree.  

5. Conclusion  

Reservoir inflow prediction is crucial for effective water resource management. Accurate inflow 

forecasts can help determine how much water to release from the reservoir for various purposes, 

including irrigation, drinking water, hydroelectric power generation, and flood control. In this 

study, we developed a hybrid model for predicting reservoir inflow. The CWRNN was integrated 

with the M5T model to enhance inflow predictions. From this investigation, the results are as 

follows: 

  The CWRNN-M5T model shows greater accuracy in predicting reservoir inflow than 

other models like MLP, RBFNN, and M5T. 

 Its design includes multiple modules with different clock speeds, which allows it to process 

short-term and long-term dependencies at the same time. 
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 The model can be adjusted for various lead times, making it suitable for short-term and 

long-term forecasts. 

 For one-month predictions, the CWRNN-M5T achieved a root mean square error (RMSE) 

of 0.245, outperforming the CWRNN model (0.35), MLP (0.56), RBFNN (0.654), and 

M5T (0.671). 

 In two-month predictions, it also performed exceptionally well, recording the lowest 

RMSE of 0.251, followed by the CWRNN model (0.372), MLP (0.591), RBFNN (0.666), 

and M5T (0.679). 

 This study offers important insights for water resource management, helping managers 

make better decisions regarding water release and retention using the most accurate 

predictive model available. 

 The research points out the advantages of employing the CWRNN model for predicting 

reservoir inflow and highlights the need to identify key input variables and their 

relationships. 

 By effectively capturing both short-term and long-term dependencies, the CWRNN-M5T 

model can uncover complex patterns that may be missed by traditional models, resulting 

in more precise predictions. 

 The findings stress the importance of carefully selecting input variables and being aware 

of how unexpected changes in input data can affect the accuracy of the model. 
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