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Abstract

Reservoiriinflow prediction is critical for effective water management. By accurately forecasting these
inflows, reservoir operators can make well-informed choices regarding water releases, which can influence
both the availability of water downstream and the potential for flooding. This research introduces a novel
predictive model called the Clockwork Recurrent Neural Network (CWRNN)-M5T, specifically designed
to forecast monthly reserveir inflow. By synthesizing these two models, this study proposes a
groundbreaking method that significantly improves prediction accuracy and provides critical insights for
effective water resource management. The CWRNN=M5T model can predict inflow for one, two, and three
months ahead. This study showcases the model's effectiveness, contributing to advancements in engineering
informatics for water resource management and optimal’dam operations. It also explores how the model's
performance changes with longer prediction horizons,emphasizing its limitations and potential real-world
applications. The models utilized the lagged reservoir inflow values as inputs. For one-month predictions,
the CWRNN model yielded the best results. However, the" CWRNN-MS5T model surpassed all others,
achieving a Nash Sutcliffe efficiency (NSE) of 0.98, compared to.0.94 for the CWRNN model.
Additionally, the CWRNN-M5T model recorded the lowest mean absolute error(MAE) at 0.123, while the
CWRNN model had an MAE of 0.210. For two-month predictions, the CWRNN-M5T model achieved the
lowest root mean square error (RMSE) of 0.254. Overall, the CWRNN-M5T model‘has proven to be a

highly effective tool for predicting reservoir inflow.

Keywords: Deep learning models, Water resource management, hydrological prediction, hybrid model



1. Introduction

Reservoir inflow prediction is important for effective reservoir management and operation [1].
Inflow predictions also aid in assessing and managing drought conditions. By analyzing long-term
inflow patterns, water managers can identify drought-prone periods and develop strategies for
water-protection, demand management, and alternative water sources. Accurately predicting
reservoir inflow_.can aid in planning water distribution, hydroelectric power generation, flood
control, and drought management [2]. It can also aid in decision-making related to irrigation,
municipal water supply, and environmental protection [3]. Reservoir inflow is a key factor that
affects reservoir water level and storage capacity. In addition, inflow prediction can also reduce
the risk of floods and other related disasters. Reservoir inflow prediction can be complex because
it relies on different factors such as*weather conditions, precipitation patterns, land use changes,
and hydrological characteristics of the watershed [1]. Additionally, inflow is often affected by
upstream activities such as dam releases or diversions, which can further complicate the prediction
process [4]. Therefore, modeling and predicting reservoir inflow requires advanced techniques and
a comprehensive understanding of the factors that affect inflow [5]. Machine learning models are
useful for predicting reservoir inflow because they cancapture complex non-linear relationships
between various input variables, such as precipitation, temperature, and water level [6]. These
models are able to learn from historical data patterns and produce highly accurate predictions that
enable reservoir managers to make informed water allocation [7]. Additionally, machine learning
models can process large amounts of data quickly, which is essential for real-time decision-making
related to reservoir inflow prediction [8]. The M5Tree model is a machine, learning model
developed based on the M5 model tree algorithm [9]. It is designed for regression problems and
can predict continuous numerical values. The M5Tree model is a type of decision tree algorithm
that combines the benefits of decision trees and regression models [10]. The M5Tree model has

2



been effectively used in multiple fields including ecology, hydrology, and meteorology. It can
predict various variables such as streamflow, rainfall, and air quality. Esmaeilzadeh et al [11]
conducted-a study at the Sattarkhan reservoir in Iran to assess the accuracy of different machine
learning models for predicting next-day discharge. The study evaluated the performance of several
models including artificial neural network (ANN), support vector regression (SVR), wavelet
neural networks{(WANN), and M5 model tree. The study concluded that wavelet transformation
played a significant role indmproving the accuracy of the different models. The WANN model,
which used temperature, precipitation, and previous discharge as inputs, had the highest accuracy
with an RMSE value of 0.31 m®/s.#¥in et al [12] developed accurate and reliable river flow
forecasting models using data=driven techniques. The study suggested that the M5Tree method
could be used for short-term river flow forecasting in semiarid mountainous regions. Rouzegari et
al [13] used the flow duration curve shifting method to estimate the environmental water demand
of the Mahabad River in Iran. They used simulated‘annealing (SA), the M5 tree model, and non-
linear programming (NLP) methods to develop.an“optimal operating model for a reservoir. The
M5 tree model was used to determine the optimal values of released water based on optimal water
storage values, reservoir inflows, and monthly demands. The SA-M5 _tree model extracted the
operation rules accurately. These rules were represented as linear 4f-then statements, which might
be useful for future applications. Although the M5 model is robust,.it‘has someulimitations. The
M5 model tree may not be suitable for all prediction tasks. For example, it may not be effective
for predicting complex nonlinear relationships or dealing with high-dimensional datasets. [14]. In
addition, M5 can be prone to overfitting when the model is too complex or the data set.is too small,
resulting in poor generalization performance. Finally, the interpretability of M5 models can‘be

challenging, as the resulting decision trees can become very large and difficult to understand,



especially for non-experts [15]. Thus, it is essential to address the limitations of the M5 models.
In recent years, deep learning models have been increasingly used to overcome the limitations of
classical*machine learning models [16]. They have been used to overcome the limitations of
classical machine learning models in various fields, including reservoir inflow prediction, weather
forecasting, and public health. Deep learning methods can handle larger datasets more efficiently
and capture complex non-linear relationships, making them a suitable solution to overcome these
limitations [16]. The hybrid deep learning- M5 model is a technique to overcome limitations of
the M5 model.

The hybrid deep learning-M5 model.can address some of the disadvantages of the M5 model. A
hybrid model that combines deep learning techniques with the M5 model can take advantage of
both approaches and mitigate the weaknesses of the M5 model. Deep learning algorithms can
improve prediction accuracy by capturing Subtle patterns and handling complex nonlinear
relationships [16-17]. This hybrid model can alsosaddress the limitations of the M5 model by
reducing sensitivity to noisy data, handling missing data, and improving the scalability and
generalization ability of the model. Additionally, the hybrid.model can be used to overcome some
of the limitations of the M5 model, such as the requirement for pre-processing and feature
engineering, and can handle a variety of data types and formats./Additionally, the hybrid model
can use techniques such as dropout and regularization to prevent overfitting by reducing the model
complexity. A clockwork recurrent neural network (CW-RNN) is one of the most.popular deep
learning models.

A clockwork recurrent neural network (CW-RNN) is a type of recurrent neural*network (RNN)
that consists of multiple recurrent layers with different time scales [18]. The architecture of CW-

RNN includes multiple modules that process input data at different time scales [19]. Each module



has a specific responsibility to process the input data. Each module has its own clock rate, and the
output.of one module is used as the input to the next module [18]. The CW-RNN model uses
different-clock rates for different modules to capture different levels of temporal dependencies
[20]. Thus, the CW-RNN is a robust deep learning model for handling complex problems. The
CW-RNN‘madel has a high potential to address the shortcomings of the M5 model.

The hybrid CWRNN-MS5 model can improve the performance of the M5 model by combining the
advantages of both models.In addition, the CW-RNN model can avoid overfitting by effectively
learning the relevantfeatures of the time-series data and ignoring the noise and irrelevant features.
By combining these two models, theshybrid model can capture both the structured and temporal
information in the data, resulting in improved accuracy and better prediction performance. In this
study, we use the CWRNN-M5 model to predict monthly reservoir inflow. Thus, the main
innovation of the current paper is to develop anew model for predicting reservoir inflow. The new
CWRNN-M5 model can significantly contribute to.water resource management by providing more
accurate and reliable predictions of reservoir inflow. This information can be used to improve
water allocation and distribution strategies, optimize hydropower generation, and support effective
flood management planning. By accurately predicting reservoir inflows at various lead times, the
CWRNN-M5T model supports hydrological simulations. This information is crucial for

simulating and modeling water flow, storage, and distribution within.ahydrological system.

2. Materials and Methods

2.1 Structure of the M5 model

The M5 model is a decision tree-based algorithm suitable for regression and classification‘tasks
[9]. It operates by recursively dividing the input space into smaller regions and fitting.simple

models to each region [21]. The model starts with a root node representing the entire input Space.



It selects the best attribute for data division based on the highest variance reduction (Kisi et al.,
2022).This is calculated to determine how much the variance of the target variable decreases when
data isssplit. by a specific attribute. It is computed as the difference between the original variance
and the weighted average of the variances in each subset [14].

The attribute'with the highest variance reduction is chosen at each level. Internal nodes represent
decisions based.on the selected attribute, and the model continues splitting until it meets a stopping
criterion, such as a minimum,number of instances or maximum tree depth [22]. Each leaf node
represents a simple model prediCting the target variable for instances in that region, typically using
a linear regression model [14]. After constructing the tree, the M5 model prunes it to prevent
overfitting by removing unnecessary branches [23]. It evaluates the performance of internal nodes
against leaf nodes, replacing non-improving internal nodes with leaf nodes.

To predict new instances, the model compares attribute values with internal and leaf nodes and
uses stored coefficients to calculate the ‘predicted target variable. This structured approach
enhances the model's generalization capabilities while simplifying its complexity.

2.2 Structure of a clockwork recurrent neural network

The CW-RNN is a type of recurrent neural network that uses multiple elockwork recurrent layers.
This architecture allows the model to capture the hierarchical temporal structure of the data, which
is particularly useful for hydrological time-series, where the relationships between variables can
be complex and non-linear. The CW-RNN-M5T model includes lagged‘values of.the target
variable, which can improve the accuracy of the predictions by capturing the historical patterns
and relationships between the variables. The CWRNN-M5T model is trained separately for

different lead times, which allows it to learn the specific patterns and dependencies for each’lead



time. The CWRNN-M5T model uses an ensemble learning approach, where multiple models are

trained.and combined to improve the overall accuracy of the predictions.

A clockwork. recurrent neural network (CW-RNN) has a hierarchical structure that consists of
multiple modules,[18]. The structure of a Clockwork Recurrent Neural Network (CW-RNN) can
be explained level bylevel:

Level 1: Inputdayer

The input layer of the CW-RNN model receives input data and passes it to the next layer.

Level 2: Clockwork layer

The clockwork layer consists of multipleimodules that process input data over different time scales.
Each module has its own clock'speed and processes the input data at its designated time scale [24].
A clockwork layer is a specialized type of recurrent neural network layer that operates with varying
clock rates for different groups of neurons/ The modules that have a slower clock speed are
designed to manage long-term information, like seasonal trends or yearly cycles. In contrast, the
modules with a faster clock speed focus on processing econtinuous data, such as daily or hourly
variations [25]. A clockwork recurrent neural network {CW=RNN) module with a high clock speed
processes information over a longer period of time. For example; a module with a clock speed of
one week can capture weekly patterns, whereas a module with a clock speed.of one day can capture
daily patterns.

Level 3: Hidden layer

The hidden layer of the CW-RNN receives input from the clockwork layer and processes itiusing
activation functions [24].

Level 4: Output layer



The output layer of the CW-RNN receives input from the hidden layer and produces the final
output.

Level 5:Feedback connections

The network uses feedback connections to connect the output to the input or hidden layer.
Feedback<connections help the network improve its performance by learning from its own
predictions:

2.3 Structure of a hybrid CWRNN- M5Tree model

The CWRNN-M5Tree model combines a Clockwork Recurrent Neural Network (CW-RNN) with
an M5Tree model to improve reservoiriinflow prediction accuracy. At the first level, input data
(e.g. historical inflow data and weather forecasts) are preprocessed and fed into the CW-RNN
model. The CW-RNN employs multiple modules that operate at different clock speeds, allowing
it to separately manage long-term and continuous information, which sets it apart from traditional
recurrent neural networks. In the second stage,.the output from the CW-RNN is input into the
M5Tree model, which utilizes decision trees to forecast/reservair inflow. The M5Tree model is
adept at handling non-linear relationships between the input and output variables. Finally, the
output from the M5Tree model undergoes post-processing to yield the final prediction for reservoir
inflow. In summary, the CWRNN-M5Tree model combines deep learning and decision tree
techniques to effectively capture the intricate relationships between various input factors and
reservoir inflow. The Adam optimization algorithm is employed to fine-tune'the parameters of the
CW-RNN during training. The Adam algorithm includes momentum and regularization terms that
prevent overfitting and improve generalization performance [26]. The algorithm uses@ momentum
term that dampens oscillations in the optimization process, leading to faster convergences The

weights and biases of the CWRNN model are randomly initialized. Clockwork layers and feedback



connections are used to learn and predict patterns in the data. During each training iteration, the
optimizer computes the gradients of the loss function with respect to the model parameters [26].

The izer uses the gradients to update the parameters using a combination of the first and

second moments of the gradients. The updated parameters are then used to compute the next set

of predi The structure of the CWRNN-MS5T is presented in Fig.1.
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Figure 1. Structure of the CWRN
2.4 Benchmark models

A multilayer perceptron (MLP) is a type of artificial neural network (ANN) featuring one or more
hidden layers [27]. Each neuron in the MLP receives inputs, computes ight napplies an

activation function, and passes the result to the next layer [28]. The hidden layers en the

network to learn complex patterns through nonlinear transformations. MLPs are utili

like classification, regression, and time-series prediction [29]. Another type of ANN i

twc
basis function neural network (RBFNN), where the input layer sends values to a hiddenslaye



consisting of radial basis functions. These functions transform input data into a higher-dimensional
space based on their distance from center points. The output layer then produces the final results.
RBFNNs-learn weights and centers using optimization methods like gradient descent, evaluated

through metrics.such as mean square error or classification accuracy [30].

The Backpropagationsalgorithm is commonly used for training ANNSs. It computes the gradient of
the loss function relative to the network's weights, adjusting them to minimize prediction errors.
During training, input data is processed to generate output, errors are calculated, and these errors

are propagated back through«the network to update the weights, thus reducing loss.
3. Case Study

The Aidoghmoush Dam is a largevarch dam located in the northwest of Iran, near the city of
Maragheh. The Aidoghmoush climate is generally characterized as a semi-arid climate with hot
summers and cool winters. The region is situated insthe northwest of Iran, and it is characterized
by its proximity to the Caspian Sea, the Elburz meuntain‘range, and the Mediterranean climate
zone. The annual precipitation is approximately 500-700 mm. ‘The summer months are hot and
dry, with temperatures reaching up to 40 °C. The climate of the region is an important factor that
affects water resources management. The Aidoghmoush dam is<used for hydroelectric power
generation and water supply. The Aidoghmoush dam is one of the largest damssin Iran and is an
important source of power and water for the region. The average annual discharge and rainfall are
190 *10° m® and 378 mm, respectively. Accurate inflow prediction can help optimize water
release, plan for droughts and floods, manage water for irrigation and generate hydropower.
Additionally, inflow prediction can be useful in maintaining the ecological health of downstream
river systems and ecosystems. The dam crest has a length of 297 m and a width of 12 m. Its height

is 1,350 m above sea level. In this study, researchers used past reservoir inflow values with
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different time lags to predict reservoir inflow for periods of one, two, and three months ahead.
Using lagged inflow values as inputs reduces the number of variables required for the predictive
model,=making it simpler and more efficient. This is especially important for real-world
applications where the number of input variables may be limited due to data availability or
computational constraints. Lagged inflow values are directly related to current reservoir inflow,
whereas climate‘parameters may have indirect or complex relationships with reservoir inflow.
Lagged inflow values provide.a more accurate representation of historical inflow patterns, which
can improve the accuracy of the model. Figure 2 shows the location of the case study. Figures 3a,
3b, and 3c show time-series data forsone, two, and three months ahead. The monthly data were

collected from 2005-2015.
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4. Discussion and Results

4.1 Selection of input parameters

Lagged reservoir inflow refers to the historical inflow values of the reservoir in previous periods.
Lagged reservoir inflow can affect current reservoir inflow because the inflow to a reservoir at any
given time is influenced by various factors, including precipitation,€vapotranspiration, and runoff
from upstream areas. By analyzing previous inflow values, it is possible to identify patterns and
trends over time. Lagged reservoir inflow values can provide insights.into the historical trend of
water inflow into the reservoir, improving the accuracy of predicting the current reservoir inflow.
By adding lagged inflow values as predictors to a prediction model, the model can account for the
historical water inflow pattern, which can enhance prediction accuracy for the current period.
Table 1 shows correlation values between target variables and lagged inflow values./Predictor
variables with a correlation coefficient greater than 0.90 with the target variable are selecteds"A

correlation coefficient greater than 0.90 indicates a strong positive linear relationship between the
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predictor variable and the target variable. By selecting predictor variables with high correlation,
the maodel can better capture the underlying patterns and relationships, resulting in more accurate

predictions;

Table 1, Correlation values between inputs and outputs (bold values=selected inputs)

tP W 2 t3  t4 t5 6 7 t8 t9 10 11  t12
Target s & g &= 3 . =3O N 2 2 .2 So
variable 8 85 5 E £€ & 28 8% =5 =% ©®¢g 22 £°9
= 5% &S\ 2 £ 2 £% 53 3% 3% 85 B5 £
g &= E 33 £ =z 2F S E <8 = 8§
o m — » = = & © o >
Mo 098 096 084 090 087 085 085 084 080 078 077 070 068
MFes 097 094 092 0% 085 084 082 080 078 077 076 068 067
M 097 094 090 089 086 085 084 080 078 076 075 070 068

4.2 Evaluation of the accuracy of the models

Table 2a shows training results for one-month ahead. The performance of five different models
for reservoir inflow prediction can be compared. The CWRNN-M5T model outperformed the other
models with an RMSE of 0.245, while the CWRNN model‘had the second-best performance with
an RMSE of 0.35. The MLP model had the highest RMSE of 0.56, follewed by the RBFNN model
with an RMSE of 0.654, and the M5T model with an RMSE of 0.671. The.CWRNN-M5T model
again outperformed the other models with an NSE of 0.98, followed by the CWRNN model with
an NSE of 0.94. The MLP, RBFNN, and M5T models had NSE values.of0.92;0.90;,and 0.89.
The CWRNN-M5T model had the lowest MAE value of 0.123, followed by the CWRNNsmodel
with an MAE of 0.210. The MLP model had the highest MAE of 0.45, followed by the RBFNN
model with an MAE of 0.555, and the M5T model with an MAE of 0.567. The CWRNN-=M5T

model had the lowest PBIAS value of 5, followed by CWRNN with a PBIAS of 7. The MLP model
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had the highest PBIAS of 9, followed by RBFNN with a PBIAS of 12, and M5T with a PBIAS of
15. The M5T model had the highest RMSE and MAE values among all models.

Table 2brshows testing results for the one-month ahead. Based on the performance metrics of NSE,
PBIAS, MAE, and RMSE, the CWRNN-M5T model outperforms the other models, including
CWRNNyMLP, RBFNN, and M5T. The CWRNN-M5T model had the highest NSE value of 0.97,
indicating ‘a high accuracy level. It also had the lowest PBIAS value of 6, indicating a low bias
level. The CWRNN-M5T_madel had the lowest MAE and RMSE values of 0.224 and 0.248,
respectively, indicating a high.precision level.

Table 2c shows training‘results for twe-month ahead. The CWRNN-M5T model had the lowest
RMSE (0.251), followed by the CWRNN model (0.372), the MLP model (0.591), the RBFNN
model (0.666), and the M5T model (0.679). The CWRNN-M5T model had the highest NSE (0.96),
followed by the CWRNN model (0.91), the MLP model (0.89), the RBFNN model (0.87), and the
M5T model (0.86). The CWRNN-M5T model had the lowest MAE (0.226), followed by the
CWRNN model (0.314), the MLP model (0.472),the RBENN model (0.578), and the M5T (0.615)
model. The CWRNN-M5T model had the lowest PBIAS (8)yfollowed by the CWRNN model (9),
the RBFNN model (16), the M5T model (17), and the MLP model«(15).

Table 2d shows testing results for predicting two-month ahead inflow. Based on the given table,
the CWRNN-M5T model had the lowest RMSE value (0.254) compared to other models. The
MLP and RBFNN models had the highest RMSE values (0.592 and 0.667, respectively). The
CWRNN-M5T model had the highest NSE value (0.95), indicating a better agreement between
observed and predicted values. The CWRNN-M5T model had the lowest MAE value (0.236),

while the RBFNN model had the highest MAE value (0.625). The CWRNN-M5T model had.the
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highest PBIAS value (9), followed by the CWRNN model (10). The M5T model had the lowest
PBIAS value (18), indicating a better fit than the other models.

Table 2e'shows training results for the next three months. The CWRNN-MS5T model outperformed
the other models with a PBIAS of 10. The CWRNN model had the second-best PBIAS value of
11, followed by the MLP model with a PBIAS of 17, the RBFNN model with a PBIAS of 18, and
the M5T model.with a PBIAS of 19. Overall, the CWRNN-M5T and CWRNN models showed the
smallest PBIAS values. The'CWRNN-M5T model outperformed the other models with the lowest
RMSE of 0.259, followed by the CWRNN model with an RMSE of 0.381. The MLP and RBFNN
models had RMSE values of 0.594 and\0.669, respectively. Based on MAE values, the CWRNN-
M5T model had the lowest MAE (0.236), followed by the CWRNN model (0.319), the MLP model
(0.487), the RBFNN model (0.589), and the M5T (0.625) model. Based on NSE values, the
CWRNN-M5T model outperformed the other/models, followed by the CWRNN model.

Table 2f shows testing results for three-month ahead. Based on the NSE metric, CWRNN-M5T
had the highest value of 0.92, followed by CWRNN with a value of 0.88. The CWRNN-M5T
model had the lowest PBIAS value of 11, followed by CWRNN with a PBIAS of 14, MLP with a
PBIAS of 18, RBFNN with a PBIAS of 19, and M5T with a/PBIAS of.22. Based on the RMSE
values, the CWRNN-MS5T model had the lowest value of 0.2624indicating, the highest level of
accuracy. The next best performing model was CWRNN with annRMSE of 0.394, followed by

MLP with an RMSE of 0.599, RBFNN with an RMSE of 0.673, and M5T with an RMSE of 0.694.

The CWRNN-M5T model had the lowest MAE value of 0.241, followed by CWRNN with an
MAE of 0.320, RBFNN with an MAE of 0.599, MLP with an MAE of 0.498, and«M5T.with an

MAE of 0.632.
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Table 2g shows Uncertainty at 95% (U95) of training and testing results for three-month ahead.

U95 quantifies the width of the 95% prediction interval around the model's forecasts. Here U95

U95=1.96(SD2—RMSE ?)"™
calculated by ( ( )

) which SD is standard deviation and RMSE is root
mean square-error. It should be mentioned in this table a lower U95 indicates that the model is

more confident in its'predictions, while a higher U95 suggests greater uncertainty

Table 2. Comparison of the accuracy of the models based on a: training results at one-month ahead, b:
testing results at one-month ahead,.c: training results at two-month ahead, d: testing results at two-month
ahead, e: training results at three-month ahead and f: testing results at three-month ahead, g: U95 training

and testing results at three-month ahead

a

Model RMSE NSE MAE PBIAS
CWRNN-M5T 0.245 0.98 0.123 5
CWRNN 0.350 0.94 0.210 7
MLP 0.560 0.92 0.450 9
RBFNN 0.654 0.90 0.555 12
MS5T 0.671 0.89 0.567 15

b
Model RMSE NSE MAE PBIAS
CWRNN-M5T 0.248 0.97 0.224 6
CWRNN 0.371 0.92 0.312 8
MLP 0.587 0.90 0.471 12
RBFNN 0.654 0.89 0.567 14
M5T 0.671 0.87 0.612 15

C
Model RMSE NSE MAE PBIAS
CWRNN-M5T 0.251 0.96 0.226 8
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CWRNN 0.372 0.91 0.314 9
0.591 0.89 0.472 15
RBFN 0.666 0.87 0.578 16
M5 0.679 0.86 0.615 17
d
RMSE NSE MAE PBIAS
0.254 0.95 0.236 9
0.377 0.90 0.319 10
0.592 0.88 0.487 15
667 0.86 0.589 17
M5T 0.682 0.82 0.625 18
€
Model E NSE MAE PBIAS
CWRNN-M5T 0.259 0.94 0.245 10
CWRNN 0.38 89 0.321 11
MLP 0.594 0.87 0.490 17
RBFNN 0.669 0.591 18
M5T 0.691 0.627 19
f
Model RMSE NSE
CWRNN-M5T 0.262 0.92
CWRNN 0.394 0.88
MLP 0.599 0.85
RBFNN 0.673 0.82
M5T 0.694 0.80
g
Model U95-training U95-testing
CWRNN-MS5T 5 4 /
CWRNN 10 10 A



MLP 15 14

RBFNN 22 20

M5T 25 22

Based on the provided information, it appears that the accuracy of the CWRNN-M5T model
decreases<@s the prediction lead time increases. Specifically, the training RMSE values for one-
month ahead, two-month ahead, and three-month ahead predictions were 0.245, 0.251, and 0.259,
respectively. Based on the provided RMSE values, it can be observed that the accuracy of
CWRNN-MS5T decreases as the prediction lead time increases. The RMSE values for one-month
ahead, two-months ahead, and three-months ahead were 0.248, 0.254, and 0.262, respectively.
Here it should be emphasis on‘reason of the RMSE decreasing by longer lead times. The decline
in prediction accuracy from 0.245t0 0.262, is something which often see in hydrological modeling.
There are a few reasons for this producer..One/major factor is error accumulation—small mistakes
that happen early on can build up over time;"making predictions less reliable as we look further
into the future. Additionally, hydrological systems are influenced by many complex and
sometimes chaotic factors, such as changes in rainfall, temperature, and upstream flows. These
elements introduce a lot of unpredictability and non-linearity, which makes accurate long-term
forecasting particularly challenging.

The testing NSE value decreased from 0.97 for a one-month ahead.prediction t0:0.92 for a three-
month ahead prediction. As the prediction lead time increases, it becames harder.to accurately
predict the target variable. In the short term, the CWRNN-M5T model may be able to capture
patterns and relationships between the input variables and the target variable and make accurate
predictions based on those patterns. As time goes on, unexpected changes or variability in the input

data can accumulate and produce inaccurate predictions. For example, weather patterns.can
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change, and external factors such as economic or political conditions can affect the target variable.
Predictions can be inaccurate if these factors are not accurately captured and incorporated into the
model-Therefore, as the prediction lead time increases, the model may not be able to capture all
the relevant factors that affect the target variable. As the lead time increases, the input data
becomes.more uncertain and variable.

The Clockwork Recurrent Neural Network (CW-RNN)-M5T was developed to model the temporal
dependencies, making it a.suitable model for hydrological forecasting. One reason why it may
outperform other madels is that it.can capture complex patterns of the time-series data that other
models may miss. This model includes multiple time scales in its architecture. This mechanism
allows it to capture both short-term and long-term temporal relationships in the input data, resulting
in more precise predictions. While the M5Tree model can identify certain patterns and
relationships within the data, it struggles'to capture more complex temporal dynamics that are
crucial for accurate predictions. In contrast, the CWRNN-M5T model is a hybrid approach that
effectively captures these temporal patterns and dependencies in the input data. By combining the
strengths of both models, the CW-RNN-M5T can deliver'more precise predictions than the
M5Tree model.

There are several reasons the M5T model may not perform as.well as the MLP and RBFNN
models. One such reason is its difficulty in capturing non-linear relationships effectively.
Additionally, since the M5T model is based on a decision tree structure,.it may lack.the flexibility
of the neural network architectures found in MLP and RBFNN models. The' M5T model is also
sensitive to outliers or noisy data, which can adversely impact its performance: In contrast, the
CWRNN model excels in managing long-term dependencies, which may contribute to its superior

performance compared to the MLP, RBFNN, and M5T models.
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CWRNN uses multiple modules with different clock speeds to process information at different
time scales. CWRNN model can handle larger datasets more efficiently, which can be especially
beneficial~for predicting reservoir inflow. The results provide insights into water resource
management by.providing information on the accuracy of different predictive models used for
predicting‘reservoir inflow. Accurate inflow predictions are essential for effective water resource
management, as‘they help decision-makers plan and allocate water resources, such as drinking
water and irrigation water, more effectively. Accurate inflow predictions can help water managers
better understand hew much _water will be available for various uses such as irrigation, public
utilities, and hydropower generation. By comparing the accuracy of different models, water
managers can choose the best model for inflow prediction and use it to optimize reservoir
operations. Accurate prediction of reservoir inflow can help water managers make informed
decisions about water allocation, droughtimanagement, flood control, and hydropower generation.
By comparing the performance of different/models,the study provides insights into which models
are most accurate for predicting different lead times: Overall, the study provides a foundation for
developing advanced engineering informatics that can improve water resource management in the
future. The CWRNN-M5T model can help optimize the operation.of dam reservoirs by providing
accurate predictions of reservoir inflow. Additionally, the predictions can be used to develop early
warning systems for potential floods, which can help reduce the risk-of damage:to property and
infrastructure. Figure 4a shows boxplots of models for one-month ahead. The median value of
observed data, the CWRNN-M5T, CWRNN, MLP, RBFNN, and M5T was 50.5 MCM, 51 MCM,
52.1 MCM, 52.1 MCM, 53.5 MCM, and 54.1 MCM, respectively. Figure 4b showsboxplots of
models for two-month ahead. The median value of observed data, the CWRNN-M5T,.CWRNN,

MLP, RBFNN, and M5T was 50.625 MCM, 51.1 MCM, 52.3 MCM, 52.9 MCM, 53.75 MCM,
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and 54.4 MCM, respectively. Figure 4c shows boxplots of models for three-month ahead. The
median value of observed data, the CWRNN-M5T, CWRNN, MLP, RBFNN, and M5T was 50.69
MCM;y51:175 MCM, 52.325 MCM, 52.92 MCM, 53.95 MCM, and 54.4 MCM, respectively. The
maximum value of the observed data, CWRNN-M5T model, CWRNN model, MLP model,
RBFNN model, and M5T model was 95 MCM, 95 MCM, 96.50 MCM, 97.25 MCM, 97.55 MCM,
and 99.00 MCM; respectively.

The Taylor diagram is a graphical method for comparing and visualizing the similarities and
differences betweensthe spatial patterns of different datasets. It is a type of scatter plot that
compares multiple datasets by showing their correlation coefficients, root mean square errors
(RMSEs), and standard deviations relative to a reference dataset. The reference dataset is typically
plotted at the origin of the graph, while the other datasets are represented by points on the graph.
The correlation coefficient is represented by the distance from the origin, while the RMSE is
represented by the radial distance from the‘reference dataset. A perfect model or dataset will fall
on the reference point, while a poor model or dataset will/be located far away from the reference

point.
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Figure 4. Boxplots of models for a: one-month ahead b: two-month ahead, and c: three months ahead

The CRMSE of the CWRNN-M5T,.€WRNN, MLP, RBFNN, and M5T models was 0.066, 0.14,
0.23, 0.33, and 0.39, respectively. The correlation coefficients of the CWRNN-M5T, CWRNN,
MLP, RBFNN, and M5T models were 0.99,.0.98, 0.97, 0.94, and 0.92, respectively. Figure 5a
shows a Taylor diagram for one-month ahead prediction. Figure 5b shows a Taylor diagram for a
two-month ahead prediction. The CRMSE of the CWRNN-M5T, CWRNN, MLP, RBFNN, and
M5T model was 0.11, 0.19, 0.30, 0.41, and 0.51, respectively. Figure 5¢ shows a Taylor diagram
for three-month ahead prediction. Thus, the CWRNN had the best.performance among the other
models. The CRMSE of the CWRNN-M5T, CWRNN, MLP, RBENN, and M5T. model was 0.20,
0.29, 0.45, 0.54, and 0.72, respectively.
By addressing the challenge of predicting reservoir inflow, the CWRNN-M5T model plays a
significant role in advancing engineering informatics. A key area of research in‘this field’involves
creating accurate and dependable predictive models for managing water resources. The CWRNN-=
M5T model seeks to fill this void by leveraging the strengths of both the CW-RNN and«M5Tree
models to deliver more accurate predictions of reservoir inflow.
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Figure 5. Taylor diagram for a: one-month ahead, b: two-month ahead, and c: three-month ahead
The CWRNN-M5T model can help optimize the operation of dam reservoirs.and provide accurate
predictions of reservoir inflow. These predictions can also be used to develop early warning
systems for potential floods, which help reduce the risk of damage to property and infrastructure.
The results show that this model has higher accuracy in predicting reservoir inflow compared to
other models (CWRNN, MLP, RBFNN, and M5T). Taylor diagram is used as a graphical‘method

to compare and visualize the similarities and differences in spatial patterns of different data and
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can help in more accurate analysis of the performance of the models. Overall, the CWRNN-M5T
modeliis an effective tool for water resources management and climate change-related risks by

providing-accurate predictions.

The CWRNN-M5T model also contributes to advanced engineering informatics by improving
understanding of complex hydrological processes and enabling more accurate simulations. By
analyzing and“interpreting large amounts of data, it provides valuable information for water
resource planning, reservoir operation, and flood control. A CWRNN-M5T model also addresses
the need for real-time monitoring and control in water systems. By incorporating the concept of
clockwork layers and utilizing the M5Tree algorithm, the CWRNN-M5T model effectively
captures temporal dependencies and nonlinear patterns in reservoir inflow data. Thus our study
fills a gap in the field of advanced engineering informatics by providing a more robust and efficient
method for reservoir inflow prediction,«which is crucial for water resource management and the
optimal operation of dams. The CWRNN-M5T model bridges the gap between advanced machine
learning techniques and the specific needs of waterresource management, contributing to the

advancement of engineering informatics in this field.

Recent developments in engineering informatics have led researchers'to adopt hybrid approaches
to address the challenges posed by traditional machine learning models [17]. By combining
machine learning techniques with established frameworks, they can enhance the accuracy,
efficiency, and scalability of their analyses. Predictive models also come with .inherent
uncertainties, which stem from various sources. One significant source of uncertainty is.the input

parameters, while model parameters contribute as well [16].

It is worth mentioning that, considering the impact of sources of uncertainty (input parameters.and

model parameters) on the results of models, efforts have been made to reduce the influence of
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these sources of uncertainty as much as possible by integrating M5T models with the CWRNN

model.

Advanced seft computing models like the M5T and CWRNN provide numerous benefits,
particularly theirability to manage uncertain and imprecise data, enhancing their usefulness across
different fields. Additionally, they typically demand fewer computational resources than
conventional_models, making them more efficient. However, a notable downside is their potential
lack of interpretability, which can impede comprehension and trust in the outcomes. Moreover,
these models may be sensitive toithe settings of their parameters, which can influence their
effectiveness. Employing.hybrid imodels and addressing uncertainties can help mitigate this

limitation to some degree.

5. Conclusion

Reservoir inflow prediction is crucial for effective water resource management. Accurate inflow
forecasts can help determine how much water to release from the reservoir for various purposes,
including irrigation, drinking water, hydroelectric power generation, and flood control. In this
study, we developed a hybrid model for predicting reservoir inflowsThe CWRNN was integrated
with the M5T model to enhance inflow predictions. From this investigation, the results are as

follows:

e The CWRNN-M5T model shows greater accuracy in predicting=reservoir inflow than

other models like MLP, RBFNN, and M5T.

e Itsdesign includes multiple modules with different clock speeds, which allows it to‘process

short-term and long-term dependencies at the same time.
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e The model can be adjusted for various lead times, making it suitable for short-term and

long-term forecasts.

o ~“Forene-month predictions, the CWRNN-M5T achieved a root mean square error (RMSE)
of 0.245; outperforming the CWRNN model (0.35), MLP (0.56), RBFNN (0.654), and

M5T (0.671).

e In two<month predictions, it also performed exceptionally well, recording the lowest
RMSE of 0.251, followed by the CWRNN model (0.372), MLP (0.591), RBFNN (0.666),

and M5T (0.679).

e This study offers important insights for water resource management, helping managers
make better decisions regarding water release and retention using the most accurate

predictive model available.

e The research points out the advantages of employing the CWRNN model for predicting
reservoir inflow and highlights the need to identify key input variables and their
relationships.

o By effectively capturing both short-term and long-term dependencies, the CWRNN-M5T
model can uncover complex patterns that may be missed by.traditional models, resulting
in more precise predictions.

e The findings stress the importance of carefully selecting input.variables and being aware

of how unexpected changes in input data can affect the accuracy of the‘model.
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