| تعداد نشریات | 8 |
| تعداد شمارهها | 435 |
| تعداد مقالات | 5,639 |
| تعداد مشاهده مقاله | 7,464,772 |
| تعداد دریافت فایل اصل مقاله | 6,234,639 |
Construction of an iterative method for solving a class of complex symmetric generalized Lyapunov matrix equation and application to Helmholtz equation | ||
| AUT Journal of Mathematics and Computing | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 16 آذر 1404 | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22060/ajmc.2025.24112.1366 | ||
| نویسندگان | ||
| Akbar SHIRILORD1؛ Mehdi Dehghan* 2 | ||
| 1Department of Applied Mathematics, Amirkabir University of Technology | ||
| 2Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic) | ||
| چکیده | ||
| The Lyapunov matrix equations occur in many branches of control theory, such as stability analysis and optimal control. In this work, we introduce a novel iterative approach to address the generalized Lyapunov matrix equation within the framework of complex matrices. The procedure involves solving two conventional Lyapunov equations with real-valued coefficient matrices at each iteration. The scheme incorporates two positive parameters, for which we establish sufficient conditions to guarantee the convergence of the method under certain assumptions. Then we solve the Lyapunov equation arising from applying a finite difference procedure to the Helmholtz equation by the proposed method. | ||
| کلیدواژهها | ||
| Iterative schemes؛ Generalized Lyapunov equation؛ Control theory and systems control framework؛ Helmholtz equation؛ Convergence condition | ||
|
آمار تعداد مشاهده مقاله: 8 |
||