| تعداد نشریات | 8 |
| تعداد شمارهها | 439 |
| تعداد مقالات | 5,658 |
| تعداد مشاهده مقاله | 7,722,196 |
| تعداد دریافت فایل اصل مقاله | 6,358,298 |
Finiteness of fundamental groups in extended complete Einstein-type manifolds | ||
| AUT Journal of Mathematics and Computing | ||
| دوره 7، شماره 1، فروردین 2026، صفحه 69-75 اصل مقاله (395.79 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22060/ajmc.2025.23648.1278 | ||
| نویسندگان | ||
| Ayoub Mohammadalipour1؛ Behroz Bidabad* 1؛ Mohamad Yar Ahmadi2 | ||
| 1Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran | ||
| 2Department of Mathematics, Faculty of the Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
| چکیده | ||
| Here, an extension of the complete non-compact Einstein-type manifolds is studied and shows that it has a finite fundamental group. This paper generalizes Wylie's results to the setting of extended Einstein-type manifolds for certain parameters. Some direct corollaries of this result are also pointed out. For instance, the sphere bundle $SM$ has a finite fundamental group. These findings not only generalize previous results but also offer new insights into the applications of Einstein-type manifolds across mathematics and physics, particularly in the structure of associated bundles and the behavior of geometric flows. | ||
| کلیدواژهها | ||
| Fundamental group؛ Einstein-type manifold؛ Quasi-Einstein؛ De Rham cohomology | ||
| مراجع | ||
|
[1] M. Ahmad Mirshafeazadeh and B. Bidabad, On rigidity and scalar curvature of Einstein-type manifolds, Int. J. Geom. Methods Mod. Phys., 15 (2018), pp. 1850073, 16.
[2] C. An´e, S. Blach`ere, D. Chafa¨ı, P. Foug`eres, I. Gentil, F. Malrieu, C. Roberto, and G. Schef- fer, Sur les in´egalit´es de Sobolev logarithmiques, vol. 10 of Panoramas et Synth`eses [Panoramas and Syntheses], Soci´et´e Math´ematique de France, Paris, 2000. With a preface by Dominique Bakry and Michel Ledoux.
[3] D. Bakry and M. ´Emery, Diffusions hypercontractives, in S´eminaire de probabilit´es, XIX, 1983/84, vol. 1123 of Lecture Notes in Math., Springer, Berlin, 1985, pp. 177–206.
[4] B. Bidabad and M. Yar Ahmadi, Complete Ricci solitons on Finsler manifolds, Sci. China Math., 61 (2018), pp. 1825–1832.
[5] , On complete Yamabe solitons, Adv. Geom., 18 (2018), pp. 101–104.
[6] , On complete Finslerian Yamabe solitons, Differential Geom. Appl., 66 (2019), pp. 52–60.
[7] G. Catino, P. Mastrolia, D. D. Monticelli, and M. Rigoli, On the geometry of gradient Einstein-type manifolds, Pacific J. Math., 286 (2017), pp. 39–67.
[8] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46 (1997), pp. 406–480.
[9] , On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom., 54 (2000), pp. 13–35.
[10] , On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom., 54 (2000), pp. 37–74.
[11] A. Derdzinski, A Myers-type theorem and compact Ricci solitons, Proc. Amer. Math. Soc., 134 (2006), pp. 3645–3648.
[12] M. Fern´andez-L´opez and E. Garc´ıa-R´ıo, A remark on compact Ricci solitons, Math. Ann., 340 (2008), pp. 893–896.
[13] K. Fukaya and K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., 87 (1987), pp. 517–547.
[14] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, vol. 152 of Progress in Mathemat- ics, Birkh¨auser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates.
[15] J. Lott, Some geometric properties of the Bakry- ´Emery-Ricci tensor, Comment. Math. Helv., 78 (2003), pp. 865–883.
[16] J. Milnor, A note on curvature and fundamental group, J. Differential Geometry, 2 (1968), pp. 1–7.
[17] W. Wylie, Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc., 136 (2008), pp. 1803–1806.
[18] M. Yar Ahmadi, On the gradient Finsler Yamabe solitons, AUT J. Math. Com., 1 (2020), pp. 229–233.
[19] M. Yar Ahmadi and B. Bidabad, On compact Ricci solitons in Finsler geometry, C. R. Math. Acad. Sci. Paris, 353 (2015), pp. 1023–1027.
[20] M. Yar Ahmadi and S. Hedayatian, Finite topological type of complete Finsler gradient shrinking Ricci solitons, Turkish J. Math., 45 (2021), pp. 2419–2426.
[21] , Finite topological type of complete gradient shrinking GRF system solitons, J. Finsler Geom. Appl., 7 (2026), pp. 123–129. | ||
|
آمار تعداد مشاهده مقاله: 60 تعداد دریافت فایل اصل مقاله: 74 |
||