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[

VIV (x,»)=0 inQ, (25)

oV
—(%,»)=0 onoQ,, (26)
on

["“pepdn  onea, 27)
Vix.y) = /i (52)

_[: D(n)dn onogl,. 28)

Using  the strong maximum principle, ¥V (x,y) may not attain its maximum in the
o oV .
interior of Qor on the arc 0Q, whereyzo.Therefore the maximum values of V(x,y)on
7

Qmust lie in the range of the conditin (27) for 8 € Q. This assumption implies that the
range of V(x,y)must lie in the range of values V(x,y) defined by (28) for s, e 0Q, . The
continuity of f(s,)then demands that V(x, y) must attain its maximum on 0Q, , which may
only happen if V(x, Y)is constant. Since both of fi(s,)and  £,(s,)may not be constant
functions. Thus, we conclude that V(x,»)=0, and from (28) the function D(w) must be zero
for any w in the range of f;. This completes the proof of theorem.

3-Conclusions
If f; and £ are both strictly monotonic functions on their domains and continuous at the

endpoints (x,,,) and (%, »,) that implies that range,, f, = range,, f;, we find that there is at

most one solution for the inverse problem (1)-(5). The mapping K is a bounded positive
operator from the space of C'(8Q,)to C '(869,), in fact IK]. =1, where [|..]| denotes the

supremum operator norm.
To see this, note that for any g(s) continuous on 0Q,, K{g} represent the value of the

solution of Laplace equation on the segment of the boundary 6Q,, where %K =0. As in the
n

proof of theorem, the maximum principle shows that [1 9]

”K ” _ SUp,q, ! K[g(s)” <1 29)

> SUP 0, ’ g’ -

Equality follows from the fact that if g = g“ for some constant g© then K [g9]=g®.
This shows that if constant functions are admissible then 1 is in the spectrum of K, that is,
oG *

on
arguments of the kernel of the linear transformation (22), T will not in general be a symmetric

operatior.

, has a singularity of the order or [(x =€)’ +(y=1)"]". Due to the difference in the
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Thus, from (18) and the overspecified condition (17), we find

(39 aG* (s
19D d(yydn = [[,G* M dE dn = [0, G* fods; + Joo —a—n—-(Io’ o ”D(n)dn)dsl. (19)
Putting
\PZIIQG*Mdgdn—IaQQG*j;dS2’ (20

that is known and for function @(s,) defined on 8, define the mapping K :6Q, — 0Q, by

oG *

1 —_a—’:l—— l.s‘:.\‘z

Klp(s)]= I o(s,)ds,. 1)

We may characterize K as the linear operator from kind of a Hilbert transform operator with
oG *
the kernel

which maps the solution of Laplace equation in €2 with Dirichlet data ¢ on

8Q,and homogeneous Neumann data on 8Q, to its value on 02, . Therefore from (13), (19),
(20), and (21), we obtain

T, (f,()="F()+ KT, (/)] 22)

Now from invertibility f,and f;, we find

1@ =¥l @) [, -6 (1 @, ) (51 B)) - TP 23)
or
T, =Y +K[T1)]> (24)

where « = fi(s,)and = f,(s,). Torecover function T, from (22), 1t would be necessary o
make the assumption that £ and f; are strictly monotone functions on their domains. This
requirement is typical of such recovery problems for partial differential equations that contain
an unknown function of w, this implies that the existence of the coefficient D (w) and w 3, 8,
15, 16, 17]. The unicity solution (D(w),w)to the inverse problem (1)-(5) may be obtained
from the following theorem.

Theorem. For any given piecewise - continuous functions 4, f, fi> f»» and f, such that
fl(xo,yo)=ﬁ(xo,yo),ﬁ(xl,y])=f3(x,,yl),rangeaglf3 Crangeanzf»the functions frand
f,are strictly monotoning, and the inverse problem (1)-(5) has a continuous solution onQ,
the solution pair (D(w),w) of the problem (1)-(5) is unique.

Proof. From (12), clearly the continuous solution M(x,y)to the problem (6)-(7) 1s
unique. Now, if (D,,w,)and (D,,w,)to be two pairs of solution of the problem (8)-(11), then
by setting D=D,—D, and V =V, -V,, where V; =T, (w) and V, =T, (w,),in the problem
(14)-(17), we obtion
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where G is Green’ function for Laplace equation in Q subject to Dirichlet condition on 00,
that is

VG y:Em)=8(x-&y-n)  inQ,
G(x,y;¢,m) =0 on oQ,

where & is a Dirac delta function.
Now, using the transformation

T,(s)= [\j‘;) D(n)dn;s 2 s, 2 0; s, is a constant number,

which was used by Cannon [2], Shidfar [5], and Rundell [7].
The problem (8)-(11) reduces to one with the unknown coefficient in divergence form.

Note that 7), (s)=D(s)= D, >0, so that T, (s)is invertible. For any solution w(x,y)of the
inverse problem (8)-(11), if w(Xy,Y,) s a given non-negative constant, then we define

Vx, ) =T,(wx,p)) = [ D(n)dn. (13)

w(x0,y0)

By this transformation V' (x, y) satisfies [2]

VV(x,p)=M(xy) inQ, (14)
oV
5, M) =1f(s,)  ondQ,, (15)
. [’ Dedn  on 0@, (16)
Nyy=y oo

[ Dimdn  on o0, . (17)

Now, we will assume that the Dirichlet boundary data on Q) are compatible at the points
(%o, ¥p) and (x,,y,), that is, Si(%65¥0) = f3(%5,¥,) and SGasy) = fi(x.3), f and /; are
strictly monotone functions on the boundary 0Q, and 0Q,, respectively, rangey, f, <
range; w, and range,, , J3< range; w, where the ranges are not a single point, then it will

be shown that the problem (14)-( 17) leads to the existence and uniqueness of the coefficient
D(w) and function w(x,y). These ranges conditions may be guaranted by invoking the

maximum principle and suitably restricting the functions M, £, f,,and f,. We also assume
that the function f,is continuous on 6, and without loss of generality we may assume that
the data have been normalized with f|(x,, Yo) = f1(x5,%,) =0.

Now, by substituting expression (12) in the problem (14)-(16), and using Green' second
formula, we obtain

: OG* [ .., ‘
V06 2) =[0G M dS dn = o, G * sy + [, (1 Dy s, (18)

where G * (£,7;x,y)is the Green function for Laplace equation in Q subject to Dirichlet
conditions on 62, and Neumann on 0Q, [4, 12, 13].
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where n denotes the unit outwords normal to the boundary 6Q, . f, f, . f,.and fiare given
continuous functions on their domains, and D(w) is a Lipschitz continuous function satisfying
D(w)> D, >0,for some constant D,, w, and D(w) are unknown functions which remain to

be determined.

If D(w) is given, then the problem (1)-(4) would be a well-posed problem for the function
w(x,y). For an unknown function D(w), we must therefore provide additional information.,
namely (5) to provide a unique solution pair (D(w),w) to the inverse problem (1)-(5).

If we determine a unique solution to the inverse problem (1)-(5), then we have obvious
physical meaning, which asserts that a thin plastic plate lies on the plastic support under a
load q, D(w), the bending rigidity, and w, deflection are given for any given boundary data
£ fi.fss /s, and load q [9 and 11].

In many cases, the problem (1)-(5) may occur in theory of thin plate and fluid flow problems.
For example, if D(w) is a constant function, and f = f = f, =0, then w(x,y) in the problem
(1)-(4) will be the bending of a simply supported thin plate under a load q [9, 11. 14, 20, 21}.
In the next section, we consider the inverse problem (1)-(5), and discribe some existence
and uniqueness of results for the solution pair (D(w),w) satisfying (1)-(5). The coefficient
D(w) will be determined in terms of q,f,f,/f,, and f;. Some conclusions are given in

section 3.

2-Existence and Uniqueness

By demonstrating the following result, we will identify the function D(w), when (D(w).w)
is a solution to the inverse problem (1)-(5). For this purpose, we consider some methods
introduced by Cannon [2], Matsuzawa [1], DuChateau [18]. Shidfar [5,10], and Rundell [6.7].
Now, let us suppose M(x,y) = div (D(w)grad w), then equivalently, we have to couple
systems of problems

VzM(X»Y) = ([(xay) inQa (6)
M (x,y)= f(x,y) ono, (7)
and
div[ D(w(x, y))grad w(x,y)]=M(x,y) inf, 8)
(ke y) = [ fieyy i (xy)e 20, 9)
DT sy o (e eqy,

(10)

DO Cr ) TG0 = filxy)  on 02, (1)
n

The solution of the problem (6)-(7), following the argument [12] and using Green's second
formula yields

oG
M(x.y) = [[ G mx.»)q(& n)dédn+ d /1 %;ds
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1-Introduction

In this paper, we consider the problem of determining the unknown coefficient D(w) which
depends only on the function w(x,y) in the following elliptic inverse nonlinear fourth order
partial differential equation

V2 [div(D(w)grad wl=q(x,y) in€, (H)

where Qis a bounded domain of R*with a sufficiently smooth boundary 6Q consisting of the
union of the two arcs 0@, and 9Q,with the common endpoints  (x,,,) and

(s.ynvi-2" 3 isa Laplace operator, and q is given piecewise-continuous function in
BRI A - 2 2
Ox dy

Q. Let s;and s,be the arclengths along 6, and 0Q, measured from the point (x,,y,),
respectively. OndQ , we assume that w(x, y) satisfies the condition

div(D(w)grad w) = f(x,y), (2)
on 0Q,
wx,y) = fi(s)) (3)

while on the 8Q,

w(x,y)= f(s,), “
D(w(x, }’))%(«’C’}’) = f2(s3), )
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