! 4 )
() = —— = P —
o Jz) ilzg (z - z)

With n poles at &; € D, i = [ .., n This has
the charactristic - noon oD,

For the new required function m difined by
m= jf(z)ﬁl
we have the homogeneous boundary-value

problem;
(5.2) i+ (8C)
ac g=)

Re ((Pgjm) = 0 on éD of zero characteristic,
Here the new coefficient B = I—"—(?:—J—B has bounded
singularities at the p()fgc.:" z;, like the
corresponding coefficients in (4.7) and we
conclude, as in section 4, that (5.2) has in D a
Holder-continuous, non-vanishing solution

:”;lh = ,{e}hh(,{ % ()
miz,z) = Ag(z)emh(z L 3)

is 4 solution of the homogencous boundary-value
problem(5.7) of positive chdaractristic n with
poles z;& D. Then:

Theorem 5.1 The homogeneous boundary-value
problem (5.1) of positive characteristic n has a
solution of the form

m(z, Z)=A [] = 1 — )&M)
i=1 (8 — &

with arbitrarily assignable poles
cebDi=1 . n
Then; Each of the non-trivial solutions of
homogencous boundary-value problem with
intcgral characteristics n so fur discussed has no
zeros on the boundary aD, m = 0. Since the
vectors 72 and P oare perpendicular on D, m has
the same characteristic as P. So with cach
solution m of the differential ecquation (5.7),
which has no zeros on D, we can always
associdate a homogencous boundary-value
problem of integral characteristic. Hence:
Theorem 5.2 The characteristic
n o= L I 4 (arg m) ds
2T g ds

on oD, (5.3), of a solution m of the homogenous
differential equation (5.1) which has neither zeros
nor poles on 4D is equal 1o the difference between
the numbers of its poles and zeros in D

n = [(number of poles) — (number of zeros)]
where multiple zeros or poles are (o be counted
according to their mulnipliciry.

Every such solurion m can be expressed in terms of
a meromorphic function of = only, in D:

mic, E) = Af(z)dMmE . 2

and the poles and zeros of () coincide with those

of m.
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S, S = 0oy

This construction can be carried out for every
integer A = 7. .., n. Henee we have:

Thearem 4.1 Theorem 1:

For n distnet points 5 €D | =1,.., n, and for
2n+1 lincarly independent continuous solutions m,,
vo= 00100 2n of (4.1) 1 iy always possible to
choose 2n + [ continuons sohuions m, as linear
combinations of the m

y With real coefficients 4,

such that the my, satisfy the equations:

mo(;, &) =0
Ma(E, i) = M
(45) I}ng_](;/ , ‘:j) = 1(5//\

ar n prescribed poinis ; € D.

Theorem (4.1) implies that there are at most
2n+1linecarly independent continuous solutions
of (4.1) (JI.N[,p.250). That is to say, if mis a
continuous sofution of (4.1), then m can be

cxpressed as

2n
m=3 Am,

=0

where the cofficients A, are uniquely determined.
To sce this we form m(z; , ?]) j =1, .., n and
obtain from (4.5)

/13} = Rel’)l(ﬁj ' :’j)

/13];1 = 1}71171‘(5}‘ s “’j)
The function

2n

m =y Am,

y=1
is then 4 solution of (4.1) and it vanishes atz;,

J=1, ..., n(45). Therefore, by corollary 1 from
Theorem (3.3) there is a unique, real constant 4,

Amirkabir / Vol. 8/ No. 31

such that

2n

vt
mo=y Am, = lyn,

y=i

n [) then

mo= 3 A,

We now ask whether there are exactly 2n + ]
lincarly independent solutions of (4.1). The
answer suplicd by:

Theorem 4.2 For n distinct chosen poinis Z;, ... 2, €
Ditis possible to determine 2n + 1 non-irivial
CONUNIUONS Solutions my ... s, of (411 such that
the equations:

Mmy(s;, Z;) = 0

I‘?l}}\._(G,‘ s ;:7) = r)”,\_

(45) 1713,\_1(;”.‘[ ot
kj = 1,..n

hold at these points. These 2n + 1 functions from
abasisof the 2n + I dimensional funciion space
of the solutions of the boundarv-valie problem
(4.1) (proof in [W.I]).

$ - Solutions of Boundary-value problems of
positive characteristic with poles
We shall try to represent the solutions of the
homogencous boundary-value problem of
positive charactristic:
am

(5.1) — = Am + Bm

o

Re (ﬁm) = 0on aD;

17 d =
— (arg P) ds
27 | (o ds
[P] = 0.
In a simple way, similar 1o that of for negative
characteristics. To this end we consider the
complex function of = only:
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Y2 2n
mo = AW, =3 LN, i)

y=) y=l

(4.2)

shall have zeros at the chosen points my(Z,2;)
= (), i = [.....n. Thisyiclds 2n lincar cquations

for the 2 + 7 real coctficients A,m):

e

. h~ =

E A;'{ ”)/ (*'i ' "i) =0
y=1

pa (())\, _

> AN, g, ) =0
y=1

i = 1, ... n. They have at least one solution A;,("”

in which not all the X),”” vanish. Hencee by
re-numbering the functions m., if necessary, we
can alwavs ensure that the condition ,{0(”);& 0
holds. The functions m,, #1;, .., Ay, arc then
lincarly independent, for otherwise, by (4.2), their
tincar dependence would imply that of miy, My ey
i15,. Choosing some fixd integer k. /shs=n, we
now try to choose two lincar combination of 1y,

cees B30 SAY:

2n k)~
ny = o A,
ye=1
(4.3)
Dk
o == z /1), - l?l),
y=1

With real coefficients A},(')k)‘ }..I,(:k"“ which will
have n - [ common zeros &; # S

There is certainly no non-trivial linear
combination with zeros at all the &;, ...,5, and
therefore also at oy, for if there were, then by
corollarv 1 from theorem (3.3), the ry, Ay
15, would be linearly dependent.

Although my, and piy.; cannot be zero at Iy,
we might at least seek to i)rcscribc particular
values for these functions at &y I we demand
that (5. 5z) = 1, then we have 2n linear
cquations:

2n

K g F =
21’17'( Mz, Z;) = oy

(4.4)

e R
Z)L/ ) Yy (5, ) .27,) = ()

7=l

{or the 2 real, unknown coefficients 4.5,
To investigate the determinant of coctlicients
of this lincar system, we consider the lincar

independence of my, my, ., ny,. The equation

2k

> XN, = Xging
y=1

immediately inplies that all the y, vanish.
Consequently there arc no real numbers . such
that
2k
o) >0
y=1

and such that the relation

2t

S, = (5,3) =0

y=1

j = I .. could hold. Therefore the determinant

of coefficients of the system (4.4) dose not
vanish. T .

Accordingly, the linear system(4.4) has
precisely one solution A;,(Zk) with which the
function m oy, given by (4.3) and (4.4) has the
property that

Map(Zj, ) = O

and satisfies (4.1),j = 1, ..,n. In the same way we
can determine the real linear factors A.{,’“”‘"“ as
the solution of

(211

YO2k-1) o e
2 /L,,‘ ) U.,, (uj,grj) = ()
y=1

n
(2k-1) % g T o=
EI '{}’ s («., y 4/) = (sjk

and hence obtain the solution miy; of (4.1) with
the property
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X - -
V= s (pUiy - qvy) = Xvg
P+
Where, in D
leH + VZH =0
and the real constant X can be chosen arbitrarily

By principal theorem (3.1), there is in D a
Holder-continuous, non-vanishing solution of the
boundary-value problem and therefore also of
(3.3), provided that the discontinuities of the
coefficients of (3.3) are bounded. We denote this
homogeneous solution of (3.3) by s, . The
function my,=f(z)m, obtained in this way satisfies
the differential equation (3.1) everywhere in D,
since my is continuous. We collect these results
together the:

Theorem 3.3: The homogeneous boundary-value
problem of negative characreristic n < 0 has the
Jamily of solurion.:

my, = Af(z)e™® D

where A is an arbitrary real constant and f(z) is an
entire rational function of = only, having n
arbitrarily assignable zeros,

o, =x, + iy,

The solution therefore contains (2n + 1) arbitrarily
real constant A, Xp,y1,.-oXyy

From this theorem we can deduce directly the
following two important corollaries:

1) If two continuous solutions m; and m- of the
same homogeneous boundary-value problem of
characteristic n<0 have the same zeros Zh el
then there are two real numbers ¥;, X» such that
X1y = yomy holds throughout D.

2) A continous solution m of the homogeneous
boundary-value problem of characteristicn < 0
which has n + 7 distinct zeros in 5, Wilh_n of
them lving in D, must vanish identically in D. To
solve the inhomogencous boundary-value
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problem with ¢ # 0, we again introduce a new
required function m by means of (3.2). m now has
to be a solution of the differential equation 33
with the inhomogeneous boundary-condition of
characteristic zero Re(ﬁ?zp) = ¢(s) on & D, which,
we can reduce to the corresponding
inhomogeneous boundary-value problem: Using
the function m, introduced above for f(z) and the
homogeneous problem, we now obtain, as the
general solution m of the new problem, the
representation

m = f(z)[Ad™E 2 4 m,f

which likewise, has 2n + 7 arbitrary real
constants A, xy, vy, ..., x,, ¥, and has the same

Zer0s 4as f(z).

4 - The solution set for the homogeneous
problem of negative characteristic

If m;, m, are distinct solutions of the
homogeneous problem of negative characteristic
n
(4.1) I — A + Bt

aZ

Re(ym) = 0 on 4D|y |> 0 then any linear
combination of them m = Aym; + A with real
A7, Az is also a solution of (4.1). The general
solution of (4.1) contains, according to the
Theorem(3.3), 2n + 1 arbitrary real constants. It
may therefore be conjectured that there are 2n +
1 linearly independent solutions of (4.1).

Suppose, first, that we already know 2n + 7
linearly independent solutions s, P1a, Of
(4.1), no pair of these solutions can have the
same zeros, since, if the zeros are prescribed,
only one constant is available. But we might try
to obtain at least some coincidence of the zeros
by 4 linear combination of the m,. To do this, we
first choose n distinct points z; € D which will
then be kept fixed throughout discussion. We
then demand that the lincar combination:
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also hold at points of r; N D.

Therefore f(z) is, in D, a regular, analytic
function of & only. As we know, it can have only

a linite number of zeros in D. Hence, it follows
by (1.4) that the solution m of the system (1.4)
can have only isolated zeros in D.

3- Boundary - Value Problem of Negative
Characteristic
We now investigate the general solution m of
the problem
g — _
(3.1) —(ig = Am + Bm

ac

Re(ym) = ¢fs)

on ¢D. With 4 boundary vector-fumily
vo=als)+ipis), vl # 0 of negative characteristic:

27 | _, ds f(s)
We deal first with the homogeneous problem
¢=0, since, the function of a single variable &:

i A
n =L J 4 (arctan“(‘s)) ds

o n
f©) =16 =)

SED. has the characteristic + n on JdD.
We now introduce a new required function
m(z. Z) by putting

(3.2) m(zz) = f(z)miz, 2)

and thus find that m must satisty the boundary
condition

Re(ym) = R(?(I_Df;z) =
on aD. that P = 7/ which has the characteristic
7eT0,

We already have met the new boundary -
condition for m on substituting (3.2) in to the
differential cquation (3.1) we obtain, siﬂncc(—fi_é~ =
. and so the differential cquation for m is:

/(s
= ?m + (: B) "
’ J1z)

~ )
Pt

(3.3

| l

il
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Thus /n is to be the solution of a homogeneous
boundary - value problem of characteristic zero
for the differential equation (3.3). However, in
(3.3) the coefficient
5=

S~

B therefore has bounded discontinuities at the n
zeros of f
By Principal theorems:

Theorem 3.1 [f the cocfficients a' b',a* b7 are C- 4.
functions and cc.ee, are ¢ funciions and f, f

are C7Ta

Junctions in the closure D of a bounded,
simply connected, and sufficiently small domain D
inthe (x,y)- planc having a boundary 3D with

holder- continuous curvarure, then the system:

Il

alu, + a“)uy + bl + b = cu + v + f

alu, + @uy + by, +bv =cu+ev+ f
If it is elliptic in D, has always a solution-pair u, v
such that the non-trivial solutions uy, vy, of the
problem for the homogeneous differential equarions
(f = f=0wihu
2
us, + v‘,,;t 0 in D.
If wy, vy is one non-trivial solurion of the
h h

= 0 on aD sansfy the condition

homogenous problem, then yu,,, XV where y is
constant, form rhe whole class of solutions. further,
the inhomogeneous problem with u = ¢(s) on 0D
and f; [0 abvays has a family of solutions, which
can be made unique by any choice of a boundary
norm or suitable surface norm.

Theorem 3.2 The general, linear, homogeneous,
boundary-value problem with zero characteristic
has, in a bounded, simply-connected domain D
with a boundary 3D having continuous curvature, if
the coefficients a, b, a, bec!ti i D and if p, g€

! = 0) in D, a set of solurions

U = ———s (piiy = ¢vy) = Xuy
+ g
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is open and therefore measurable.
The system (2.2) corresponds to the normat

form (1.1) with « = b = & = b = 0. Therefore
the representation formula, ([W.W]):

uE,n) = JJ [—Sdy + ’:‘sdx, dG‘] —jL ud,,Gx

D
(2.3)

v (E,n) =~ H [?s-dx+(:‘s‘-dy,d(}”]+§>

D

Cun be applied, with:

L2
i

[Sexs

it

this gives:

oD

wdG" 4 — H o7 [dudh]
aD [T [dx, dy] A

- 2(a+«+ Hcosq)

= 2(~b+p + Hsing)

v(E,n) =2 [J (—a+a+Hcosq)Gj.—(—b +/f+Hsinq)Gy,‘,[dx,dy}

D

(2.3a) B %

ud,G"

v(E,n) =2 JJ (a + a + Hcos g) G}],I— (=h + 5 + Hsing) Gil[dx, dy]

D

+ {% ods]”!

Have been arbitrarily prescribed, (2.3.a.b) are
the solution formula for (2.2). We have still to
show that the function f, Holder—Continuous in
D, which is given by: f= me ™" is in D, a regular,
analytic function of z only , but, by construction,
{ alrcady satisfies the Cauchy-Riemann system of

differential equations:—gg— = ( at all points (£.2Z)E

D-t. Hence,by the theorem on removable
singularities ([4.R], p.315), it follows that falso
satisfies these differential equations at the
isolated zeros of m. At the remaining zeros
(Zy, S0} €1> - t; of m we find, by virtue of the
continuity of m and the system (1.4), and using
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% rods +
(2.3b) aD aD

rdG!
Aap

the mean-value theorem for functions of two real
variables,

lim fEg) —fgo — Zp) _ o—Miz0Zy) 17_1_

Zo%0
Fdag Z 5(} U ( )

So this limit exist at Z, and is independent of
the directio of approach to £,. Consequently we
have at (4, Zp)

fim (e 20 _ p o~ pim[E0 20 i

B0 O-0 16
or

., (’)/l
+if) = = =
(./x ’./)) I (



Then, new boundary—condition for /m is:

Re(m) =f{s).

2- The Behaviour of solution of a Elliptic system
at their Zeros

We assume that in D the coefficients A,B,C
are bounded and that, at most, they are
discontinuous only at a finite number of points
(¢;,%) € IS,j = 1,2,..,k. We shall denote the set
of these points by:

IC —
= U (e, 3
=1

At the zeros of m, the system (1.4) will be
reduced to the Cauchy- Rimann differential
equations at these points. We can therefore
expect the behaviour of the solution m to be
similar to that of a regular, analytic function in
some neighbourhood of the zero. The following
theorem holds:

Theorem 2.1 Let m(3,Z) be a solution of the (1.4)
which is continuously differentiable in D - t; and
Holder - continuous in D. Let the coefficients A, B,
C be Holder - continuous in D-1,. Let the boundary
aD have no double-points and have Holder
-continuous tangents. Then there exists,
corresponding to m, a funciion nmi(z, Z) Holder
-continuous in D and such that:

2.1) Nz) = m(z. I

Is a regular,analytic function in D of = only.
Moreover, the imaginary part or the real part of m
be prescribed aritrarily, so long as m is kept Holder
-continuous.
Proof.

We use the fact that f(z) is a regular, analytic
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function provided that the Cauchy-Riemann
differential equations:

(2.3) —(L/— =)

hold throughout D. In that case. we obtain for /i
from (1.4):

—")‘—._f~ = ¢™(4m + B +C—m 3@_1) = ()
dz oz

the diffcrential- equation system:

g g, C
a m m

throughout D - t;, when m = (.
We therefor fet

n=A{lz,z) € Dmiz,Z) =0}
denote the point-set of zeros of m, and put

f=f] Ufg
Writing:
B=H

B m _ a
H m
A=qa+ip
~—C—=a+i[)’
m

mo=1u + iy

And using (1.2}, we can write the above system as
the real system:

=
|
<
i

2(a + « + Hcos g)

(2.2 iy + ¥,

Il

2A=b + 3+ Hsing)

In D - t the right - hand members of (2.2) are
given Holder-continuous functions, in t we put
them equal to zero. They are integrable in D. and
they are bounded. measurable functions since D-t
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v has an important influence on the character of
the solutions of (1.1). We therefore define the
concept of the characteristic of a periodic vector
- family P on oD.

The vectors P (s) are anchored at the origin
of the complex plane. The end- point of P(s)
describes, for 0 < s £ 1, a curve in the complex
plane.

The number n of complete revolutions made
by P(s) when 9D is traced out in the positive
direction is called characteristic of P= p + ig:

U run D ds
(1.2) n == L:o N (aruan(ﬁ—)) ds
If P rotates in the positive sense, then n > 0
otherwise, n < (. We make the further difinition:
The boundary-value problem for (1.1) has the
characteristic n if the boundary family 7 = €7
has the characteristic n.
We introduce complex - valued functions of
two ISOtropic parameters:
z=x+1
Z=x—1l
then for a perfect differential invariant under a
transformation of coordinates, of a function

plxy) = ¢z, ) we have:

dop = pdc + ¢pdZ = pdx + pdv = (¢, + ¢s) dx
+i (¢: - (7)':')61,\"

And hence the relation:

by = ¢ + P:
(1.3)
(/)y = (¢: - ¢:)

Substituting these into the system of
differential cquations (1,1), we obtain;

Hy +u, — i(v. —vs) = au + bv + ¢
(. — ) + v, +1v:=a + bv + ¢

And hence we obtaing
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20uz + iv)) = (@ + id)u + (b + ib)v +(c+id)
in D
2, —iv,) = (a — iaq)u + (b ~ Ib)v +fc — ic)

Since u,v are real functions, it follows, using (1.3)
that the 2nd equation is the complex conjugate of
the Istequation. Introducing the complex-valued
function:

mE,T) =u + iv
— 1 ~ . ~
Alz,z) = —4—[{1 + b+ i(b-ajf
1 ~ o~
Bz, Z, =-4~[a = b+ ifa + b)]
o 1
C(u,~) ZT(C"}"IL)

We find, taking the difinitions (1.3) into account
the system (1.1} is equivalent to the single
complex equation:

(1.4) af’ = Am + Biil + C
C

since the complex conjugate of (1.4) is:
%’g = Am + Bm + C

If on the other hand, £ and & are regarded as
independent variables, then the system (1.1)
corresponds to the two cquations (1.4),(1.5).
Let m is to be a solution of (1.4), let the
boundary vector-family be:

P(s) = p(s) + ig(s)

and itscontinuatin on to D be P(z,z2) = R(z, Z)
¢’z 2 with |P|= R#0 in D.
The boundary condition reads:
Re(,gm) = pu + qv = f{s). Writing:
m(z,Z) = P(z,Z)m(s,Z), we obtain for /7 from
(1.4) the equation:

(15) -‘%’- = A + B+ C
{

50 that:
’ ’ s P
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Abstract

A linear system of partial differential equations containig two unknowns, and, generalised

analytic functions with linear boundary condition is considered. existence and the properties of

solution of the boundary value problem relative to characteristic number is studied.

1-Introduction

It is well—known that many problems of
mathematical physics may be described by the
systems of partial differential equations of first
order. One of the basic problems is the Hilbert
problem. We investigate on linear partial
differential equations that obtain from Hilbert
problem (in the [M. A] discussion is about
nonlinear form).

In this paper we will consider only systems in
the Hilbert normal form:

-{u,\,——vv=0u+hr+c=3‘ .

(1.1) N . in D
Uy = vy =au+ b +¢ =73

To begin with; let the coefficients a,b, ¢, 3, b,
¢ be continuously differentiable’in D, Where D is
open, bounded, simply—connected set in the
complex plane, with piecewise continuous
rectifiable boundary D, where D = ¢DUD.

General form of the Boundary-value
Problems: Suppose a solution of system (1,1) is
required to satisfy the following B. C.:

a(sju(s) + Bis)v(s) = f(s)

on the gD.
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We shall assume thata® + B%=0, and
therefore we may noramalize so that:
o + B% = 1. If we regard a solution of (ILl)asa
vector (u,v), then the boundary-condition
au+pv= 0on dD implies that the vector (u,v)
shall be perpendicular to the vector (« , ) in the
complex plane , and so we may also write:

{m =u+ iv = me?

y=a+iff =e?
au + fv = Re (ym) = Re(e "m) = f(s)

The linear boundary condition can now be
interpreted as follows: ‘

1) Re (ym)= 0 means m on.dD shall be
perpendicular to y.

2) Re (ym)= f(s) means that on oD the
projection of m on to y is prescribed.

If we consider, as a particular case of the
system (1.1), the Cauchy-Rieman differential
equations (@ = b =c =& =b = ¢ = 0), then
the boundary condition: Re (ym)= 0 for a
polynomial m =IT",.; (c — £;) with zeros z; €D
shows that y on 4D must execute as many
revolution as the number of the zeros z;, lying in
D. when y is prescribed, therefore, the rotation of

Amirkabir / Vol. 8 / Ne. 31




