Tabl (1) b=10 Tabl (2)

K Re (M) Ln M) K Re (M) In (M)
1 -7.6657 -.3449 1 6451129 -.3834173
2 -5.9176 -3742 2 3.9999783 -.0208327
11 6.0832 -.6913 3 9.001364 0142399
12 82193 -.6795 4 16.40828 0083355
16 18.8019 -.6564 5 25.0001322 052113
17 21.9494 -.6534 6 36.0002513 0035827
18 25.296 -.6510 7 49.0004138 0026129
19 28.8415 -.6490 8 64.0006487 0020030
20 32.5855 -.6474 ’ 9 81.0010011 0016164
10 100.0014241 0013056
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3 - The numerical results

The numerical values of A are obtained
using the procedure of section 2. The re-
sults are checked to satisfy the equation (7).
To express equation (7) in terms of solu-
tions of (1) and (2a, b) let

y=CAi(x-A)+DBi(x-A\) (14)

C and D are constants. Eauation (14) must
satisfy (2a, b), it follows that

AM=Bi-M)[iVb Ai¢-A-b)+Ali(-1-b)]-
Ai(-M)[iVbBi(-A-b)+Bi(-A-b)]=0
(15)

Where Ai and Bi are the Airy functions.

When I\l is large and Ib + A | is large us-
ing the asymptotic relations of Ai and Bi
for complex arguments equation (15) is re-
duced to

tan[;(k+b)%»lkg]=_i 1+b  argi<2n
3 3 A 3

(16)

Equation (16) gives the eigenvalues of (1)
and (2a, b) when Ir | is large.

In order to check the numerical results
equation (15) is used with the numerical
values of Ai and Bi, for complex argument
of any size , are evaluated from [4].

Tabel (1) b=10

4 - Concluding remarks

The numerical investigation of the self-
adjoint boundary value problem has been
dealt with extensiely in the past. Since the
eigenvalues are mostly real, hence they can
be ordered easily, the computation of them
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becomes straightforward using the prufer
transformation and a root finder. But the

~non-self-adjoint problems are not so. One

way of numbering the complex eigenvalues
is to correspond them to the eigenvalues of
a self-adjoint boundary value problem
which can be continued to the non-self-
adjoint problem. Of course there may exist
other methods of ordering them.

One should remark that the prufer like
transformation mentioned in section 2 cans
be used without the continuation method
for certain other non-self-adjoint boundary
value problems. problems with self adjoint
boundary conditions, such a,

y" - (2qCos2x -A) y =0
y0=0,y@=0

where q is a ccomplex constant. The ei-
genvalues of this problem will be the char-
acteristic values of the Mathieue equation
associated with odd periodic solutions. An
approimation to the eigenvalues of this
problem is given in [5] Here A= k* and the
problem is self- adjoint when q is real.

Now take for example g= (1 + i) / then
M, k=1, 2, ..., 10 are computed by the
method of section2 without the continua-
tion. The results are shown below in a good
agreement with those in [5].
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b
(M»hm)J Ymyndx=0 (6)
0

Now to prove that Im(A,)< 0 let A denotes
the complex conjugate of A. Since q (x) is
real valued function,y (X, A )= y (x,A)
andy' (x,% ) = y'x, A) , rewriting equations
(3), (4) and (6) with 3, in place of A, and
taking into consideration the complex con-
jagate of the boundary conditions we ob-
tain

Im(x,,)=-1/t?|y,,(b)|2/j:|y,.(x) P?dx <0

2. A numerical method

To find the numerical values of the ei-
genvalues of (1), (2a, b) a combination of
prufer-like transformation and a pseudo ar-
clength continuation method [1] is used, the
results then checked using the eigenrelation

AN =0 (7
let YA tan 8 (x ,A) then

Yy &M
0 = cos20 + (x + ) sin* O ®)
dx
8(0)=0 &)

6 (b ,A) = Arctan (=)
TS

=kn+1 Lo (bt 1y2 10
4 Yoo1 (19)

A continuation parameter f is introduced in
the following way. Equation (2b) is written
as

sinBy' (b)= i\/gy (b) cosp am

Amirkabir/Vol. 11/ No. 43

when B = 0 the boundary value problem (1),
(2a) and {1) is self-adjoint and its eigen-
values are M< L< M < ... all real and can
be computed using any one of the known
packages such as the nag routine D02 KDF
[6]. When B=% the problem (1), (2a) and

4
(11) is non-self-adjoint.

Starting with A as a function of g, Euler’s
method is used as a predictor and Newton’s
method as a corrector. To improve the effi-
ciency of the method one can use a higher
order method for a predictor . Integrating
the system

dA = _iCos?8/Vb zCos®
" i Cos z Cos”“ B (12)

A0 =Ao
_ 90

Where ’= oh and A,can be any one of A‘s
of the self-adjoint problem. z and 6 at (b, 8)
are obtained from the integration of the sys-
tem

4 = Cos®0 + (x +A) Sin’ 8
dx

& = (x+A-1)Sin26 + Sin> 6
dx

8 (0)=0,z (0)=0.

After each integration step of the system
(12) » is corrected using the system

tan0 + i tan $//b =0

2 -2 +BoB-Po)-5=0 (13)

where dot denotes differentiation with re-

_spect to s, and s is the pseudo arclength pa-

rameter.
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Abstract

i1 A numerical method is suggested for the computation of eigenvalues of some-}
| non-self-adjoint boundary value problem using the prufer transformation,
:shooting method and a pseudo arclength continuation method. The method is
| tested on the Mathieue equation the results are in good agreement with the exist-
! ing ones. Then the method is applied for a non-self-adjoint equation with un-
I known eigenvalues.

1 - Introduction
The following non-self-adjoint boundary f " Ven Y dx = 0
value problems is considered, ’
and that the imaginary part of A,, Denoted

y'+(@®+A)y=0 on [0, b] ) as Im (1), is less than or equal to zero for
all n.

y(©0)=0 (2a) To prove the above statements we write
the differential equations satisfied by y, and

y' () =iVb By (b) (2b) V. and multiplying them by y, and y, re-

spectively then

where q (x) = a (x) is a real and smooth Ymlyn+(@+An)ynl=0 3)
function of x, y is a complex valued func-
tion of X, o and B are positive constants. Yalym+(@+Am)yml=0 4)
Without loss of generality let a =1 then it
can be seen easily that g = 1. subtracting (4) from (3) gives

Let y,, (x), ¥, (x) be eigenfunctions of (1)
satisfying (2a, b), A, and A, are the corre- Ym¥n-YnY¥m+RPn-Am) Ymyn=0 %)
sponding eigenvalues then one can prove
that, if A, = A, the eigenfunctions are or- Rewriting the first two terms of (5) as a per-
thogonal, ie fect derivative, integrating from O to b and

using the boundary conditions (2a, b) gives
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