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ABSTRACT

The Smoluchowski's equation as a partial differential equation models the diffusion and binary
coagulation of a large collection of tiny particies. The mass parameter, indexed either by positive integers, or
positive reals, corresponds to the discrete or continuous form of the equations. In this article, we try to use
the Adomian's decomposition method (ADM) to approximate the solution of the homogeneous
Smolochowski's equation. Some test problems have been included to show the accuracy of the method

compared with their exact solutions.
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1. INTRODUCTION

It is a common practice in statistical mechanics to
formulate a microscopic model with simple dynamical
rules in order to study a phenomenon of interest. In a
colloid, a population of comparatively massive particles is
agitated by the bombardment of much smaller particles in
the ambient environment; the motion of the colloidal
particles may then be modeled by Brownian motion [1].
Smoluchowski's equation provides a macroscopic
description for the evolution of the cluster densities in a
colloid whose particles are prone to binary coagulation.
Smoluchowski's equation comes in two flavors: discrete
and continuous. In the discrete version, the cluster mass
may take values-in the set of positive integers, whereas, in

the continuous version, the cluster mass take values in R ™.
Writing £_(x,¢) for the density of clusters (or particles) of

size n, this density evolves according to

@fngtx,t).:d(n)zyn (o) (f ) (x 1) =07 (F ) (%) x €R

where

Q1 )=], Blm.m=n)ff, ,dm,

Q1 (r)=2], B(m.n)f 1 dm. a.n
In WhiCh d(n)Afn (X,t) and Qf(f)(x,t)—Qf(f)(x,t)

are respectively diffusion and coagulation parts in the case
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of the continuous Smoluchowski's equation and B(m,n) is
considered as a function of the parameters a(m, n)(the
microscopic coagulation rate), d(m) and d(n)- In the

discrete. case, the integrations given in (1.1) are replaced
with summations. In [1] and [2], the discrete
Smoluchowski's equation is derived as a microscopic
model of coagulating Brownian particles. In this paper we
consider the continuous homogenous Smoluchowski's
equation. The main purpose of this study is to approximate
the solution of continuous homogenous Smoluchowski's
equation in which the main technical tool is the Adomian's
decomposition method. To our knowledge the problem, so
far, has not been considered via ADM and other methods
have been performed for only constant kernels [3].
However, the issue of more complicated kernels, which so
far have been remained unsolved, will be investigated in
our future studies. Let us consider the homogenous
Smoluchowski's equation without diffusion part:

Zf (e) =N, () (w0 =N, () (0,

where

N ()= [ k(e =y)f (e =yua)f (n.0)dy,

and

No(7)= [k Geoy)f (0)f (vt

(.2)

(13)
(14)

Amirkabir University of Technology, Tehran, Iran

(e- mail:y8113925(@aut.ac.ir.) The program code in the MATLAB language may be obtained from Email.
il H. Adibi, Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran (e- mail:adibih@aut.ac.ir.)

Corresponding other.

iif) S. Ketabchi, Department of Science, the University of Guilan, Rasht, Iran (e-mail:sketabchi@guilan ac.ir.)

.67

Amirkabir/ Vol. 20/ No. 70-E/ ( Basic Science and Applied Engineering)/ Spring ~Summer 2009 @@




where N (1) and (1) are nonlinear parts in view of

ADM. In the next section, we show how ADM works well.

2. THE DECOMPOSITION METHOD [4]
Eq. (1.1) may be written in the operator form:
Lf =N, U)"Nz )
S (x:0)=f (%),
and the differential operator  is

2_5;. (2.2)

. -1 . N .
The inverse operator L™ is an integral operator given

by
(2.3)

-t 1
L ()= [, (.
Applying L' upon both sides of (2.1) and using the
initial condition, we find

f(x,z):f(x,(?)JrL"(—;N,(f)~N2(f)). (24)

According to the Adomian's decomposition method the
unknown function 7 (x ,t) can be written as

f )= ()

> (2.5)

Substituting (2.5) into the functional equation (2.4) yields

AT (x)+L"’(é—iAnw§BnJ, (2.6)

n=h n=0
where f,.f,,...f, are Adomian's polynomials and the

(2.1)

components 4, B, 's will be determined recurrently as:

] dﬂ a0 N
A =N A ,
" n!dﬁ.”[ ’(% f’ﬂw I

Jd"{,(* , \}
B o= _IN 200 n=0,1,2,.... 2.7
n Yl’dﬂ,nl_ 2\; f}J o ( )

It is well known that these polynomials can be constructed
for all classes of nonlinearity in view of the algorithms set
by Adomian [4] and recently developed by different
alternative  approaches  [5,6]. Thus, we have

i (x,t):f (x,O),

fo(a)=L" (é..An _B")’ n=0,1,2,.. (2.8)

Note that the first few components of f, (x,¢) follow

immediately upon setting [7]:

folxst)=1 (x),
fi(x.)=L" [é-A,, ~B0),

L (—;—AI - B, )
: (2.9)

It is, in principle, possible to calculate more
components in the decomposition series to enhance the

i

fz(xJ)

approximation and recursively determine more terms of the
series E /. (x g ); hence the solution £ (x ,;) is readily
n=

obtained in a series form as:

¢n (XJ):ifk (X,[), nz0.

k=l

(2.11)

where 3@@ =f (x.t) {8, 9]

Moreover, the decomposition method series (2.11)
solutions generally converge very rapidly in real physical
problems [9]. The convergence of decomposition series
have investigated by several authors [8, 10, and 11], in
which they have obtained some results about the speed of
convergence of ADM applicable in linear and nonlinear
functional equations.

3. APPLICATIONS

In this section the method is applied to some numerical
examples with known exact solutions [12].

Example.l: Let us examine the homogenous
Smoluchowski's equation (1.2) subject to the’ initial
condition [12]

(3.1 )

f(x.0)=¢".
We compare the numerical solution with the exact
available sotution of (1.2) [11]. For an arbitrary given

N, >0, the explicit solution of (1.1) is
e . 28
x,1)=8(t) ) with R(r)=—"0— (3.2
()= e ()50 (22)

for (x,t)e]Ri, where N(r) and R(r) defined below

are respectively the total number and the total volume of
particles .

R(t)= 1 (x.0)dx,
R(e)= [ xf (x.0)ax. (3.3)

It is easy to check that N(¢) is a non-increasing
function of time and ¢ (1) might not remain constant
throughout time evolution for some coagulation coefficient
k(x,y ) [12, 13].

Now, consider the equation (1.2)-(1.4) subject to initial
condition (3.1) with & (x,y )=1 and f (x ) =exp(-x )

[7]. In Figures 1-7, we demonstrate the approximate
solutions with different ranges of x and £ .

Applying the inverse operator L™ on both sides of
(1.1) and using the decomposition series (2.4), (2.5) and
(2.6), one gets
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xt)=e B, = we"*e‘ydy, 3.6
(x.1) )

1o = ) 1d o ! :
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- A" .4 A (vt} idy. 3.4 ! ,
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Proceeding as before, the Adomian's decomposition

method [4, 14, 15, and 16] gives the recurrence relations: ] 47 e Ji ,1(1
folxt)=e, BZz?!d)ff e +ﬂ[ xet—e” tj+/1 ——(——x

(x—4)e™ —-g—xe“x +§—e"*]tzj

/
Y+ A Vt—et |+ A7 | =
filxt)= é—}(ix (x" +20 ~10x)e"x ~é-x2e“ »%e" +xe"')t3, (e * (2 re ¢ )+ [4 Y
e )
FRER) :L{;}(—,%x (~120+90x +x° ~18x% )e™ —;{%xﬂe" —%xe" (x 4)6 ~——g‘xe + ; e x l“?]dy

: Now in view of (3.5), the solution in series form is
where 4 ,B, 's are Adomian's polynomials that represent

n2 X 1 -X ~X 1 1 -x 1 -x 3 ~X |2
the nonlinear terms, given by S 1)=e +—2~xe t-e t+'2' 77 (x~4)e 5 +3e !

+i ——]——x (x2 +20-10x )e’x —ixze"‘ —-'ie"‘ +xe™* Jf
3\16 8 2

I
h joe e’dy (7)
. 3.7
] d il X— X
== ( ke +/1( (x=y)e et ’VID
1 dA In Figures 1-4, we demonstrate the approximate solutions

I Ji with different ranges of x and ¢ where the error values at
Le"y +/1(“ye—yt "e—nyaﬁ’, some specific points are presented in Tablel.

4 2 Example.2: Consider the multiplicative coagulation
kernel g ( X,y ) = xy which has the exact solution [7],

2 2 1
20dA° J0 7 (th?J
(1(1 ) 1 vy S @r)=eT gl
+ A7 (E(Z(x—y)(xﬁv—él)e* ) HE(x~y)eﬁ( ) LT
3 subject to the initial condition f(x ’0) = e where
et x
+2e )t} I+t sl
( J 1207 otherwise.
Le_y +ﬂ(§ye'yt -e7t D and /, is the modified Bessel function of the first kind
, 1 ¢ , i
(11 ] \ 1, == | "exp(x cos(8))cos(8)d6.
A = = y(y—4)e” —=ye” Sl @, z k ' ‘
2\ 4 2 2 As before, ADM gives the recurrence relations:
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e 4. CONCLUSION

f ”(X > ): =
x In this paper, we presented a numerical scheme for
1 {x,;):.]_xe*; —e™, solving the continuous homogenous Smoluchowski's
2 equation with kemels involving at most two variables
f_,(x,i)c-i«:{%x“’{x -3)e™ ~%e-'(x _g)xw,-’__ (38) X and y . We have approximated f(x,t) by the
. !\ ; i g Adomian's polynomials. Numerical results show high
fj(x,t}:ﬁ—)(——x" (x:’+]2~8x)e"" ——x g™ (6 6% +x2))t", accuracy of the method, as compared with the exact
\3 . ® 12 solution. To our knowledge no numerical solution for this
! (x t):f_i_ ‘(_f_xa (~60+60x —15x~’+x")e" —-i—xje" problem seems available for comparison.
o b ) 720 ‘ 144

(«24 +36x —~12x% +x3)t‘,

Now in view of (3.8), the solution in series form is

f(x,t):%—+%xe"z ~e™

+—§-(é—x“’(x -3)e™ —:]?-e"‘ (x-2)x )13 (3.9)
INr ./, N . 2 |43

o X (x +12—8x)e —-—Xe (6 —fx+x ) t
348 / 12

+(L)(——{—x" (-6()+6()x ~15x° +x3)e“" -«i—~3c3f."‘r
1 )\720 144

(”24+36x ”12"'2“63)’6 Figure 1 i Ex.1) The exact emor function with 7=5 and
o N, =1

Figures 5-6, illustrate the approximate solutions with
different ranges of x and 7 and the error values at some
specific points are presented in Table2. Overall our
performed calculations indicate that results obtained via

ADM are satisfactory forx >0. But, as x — 0 the
computed solution deviates significantly fro the exact
solution. Acordingly comparing with {12}, for x >0 ADM
seems to be superior to FDM but as x —» 0 the ADM
approach is inferior to FDM.

g
04 0.2
Tablel (Ex.1) for n =3 g 08

x t Numerical Sol Exact Sol Error values
1 0.5 02872261849 0.2875705370  0.0003443521
2 05 0.1291676596 0.1292137715  0.0000461119
5 0.5 0.01171793029 0.01172200889 0.407860e-5
10 0.5 2.154723229e-4 2.146960819¢-4 -0.7762410e-7

Figure 2 :( Ex.1) The exact error function with n=[0 and
N, =1

Table2 (Ex2)forn =/, n=5 and n =10

x t Numerical Sol Exact Sol Error values
(n=1)

1 05 0.2835737358 0.2837598582 0.0001861224
2 0.5 0.05638970132 0.05961585954 0.00322615822
(n=5)

5 0.5 5.162511274e-4 5.21850764e-3  0.00005599637
“{(n=18)

10 0.5 6.155335225¢-4 6.189432790e-4 3.4097565e-5

Figure 3 :( Ex.1) The exact error function with #=15 and
N, =1
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Figure 4 :( Ex.1) The exact error function with #=20 and
N, =1

0.0002
-

£.0002 3 .:“::“:{‘:::" &

000044 :\\\?‘g;,, X5 g& 7
0.0008
-0.0008
-0.0011

~54 02

X

og O

Figure 5 :( Ex.2) The exact error function with 7=/ and N, =1I
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Figure 6 :( Ex.2) The exact error function with n=35 and
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Figure 7 :{ Ex.2) The exact error function with n=/0 and
N, =1
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