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ABSTRACT

Differentiating of isotropic mean Berwald curvature along a geodesic gives us a special non-Riemannian
quantity. We call it generalized isotropic mean Berwald curvature. In this paper, we classify the scalar flag
curvature isotropic mean Landsberg Finsler metric with generalized isotropic mean Berwald curvature. As an
application of this classification, we find the Gauss curvature of isotropic mean Landsberg Randers surface

with isotropic mean Berwald curvature.
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1. INTRODUCTION

Finsler metrics arise naturally from many areas of
mathematics as well as natural science. For example, the
navigation problem in a Riemannian space gives rise to
lots of interesting Finsler metrics with special geometric
properties [13] [14]. In Finsler geometry, we study not
only the shape of a space, but also the “color” of the space
on an infinitesimal scale. The Riemannian quantity (such
as the flag curvature) describes the shape of a space,
while non-Riemannian quantities describe the “color” of
the space.

For a Finsler manifold (M,F), the flag curvature

K=K(P,y) is a
P=span{y,vicT, M and directions y e P\ {0}.
This quantity tells us how curved the space is at a point. If
F is Riemannian, K =K(P) is independent of
y € PN\ {0}, K being called the sectional curvature in

function of tangent planes

Riemannian geometry. A Finsler metric F is said to be
of scalar curvature if the flag curvature K =K(x,y) isa

scalar function on the slit tangent bundle TA/ 0 Clearly, a
Riemannian metric is of scalar curvature if and only if
K=K(x) is a scalar function on M (which is a

constant in dimension » > 2 by the Schur lemma). There
are lots of non-Riemannian Finsler metrics of scalar
curvature. One of the important problems in Finsler

geometry is to study and characterize Finsler metrics of
scalar curvature. This problem has not been solved yet,
even for Finsler metrics of constant flag curvature.

In Finsler geometry, there are several important non-
Riemannian quantities: the Cartan tensor C, the Berwald
curvature B, the mean Landsberg Berald curvature E, the
S-curvature and H-curvature [8], etc. They all vanish for
Riemannian metrics, hence they are said to be non-
Riemannian. See Section 2 for more details about their
definitions and geometric meanings.

The Berwald metrics are important special Finsler
spaces. Finsler metrics with £ =0 can be viewed as
weakly Berwaldian metrics. The relationship between E-
curvature and Berwald curvature is similar to Ricci
curvature and the Riemannian curvature.

In [1], Arkar-Zadeh considered a non-Riemannian
quantity H which is obtained from the mean Berwald
curvature by the covariant horizontal differentiation along
geodesics. This is a positively homogeneous scalar
function of degree zero on the slit tangent bundle. Akbar-
Zadeh proved that for a Finsler metric of scalar flag
curvature, the flag curvature is a scalar function on the
manifold if and only if /# = 0. Thus the quantity deserves
further investigation. Recently in paper [8], Najafi, Shen
and the first author introduce a new non-Riemannian

curvature g _ (n+ D e(x)Fn and extent the Akbar-
2

Zadeh's theorem for this quantity. Here, we call it
generalized isotropic mean Berwald curvarure. In this
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paper. we are going to classify Finsler metrics of scalar
flag curvature flag curvature with generalized isotropic
mean Berwald curvature (see Theorem 1),

Then as an application of this classification, we find
the Gauss curvature of isotropic mean Landsberg Randers
surface with isotropic mean Berwald curvature (see
Theorem 2) One of the reasons why we would like to
study Randers metrics for the above problem is because
that Randers metrics are computable.

Throughout this paper, we make use of Einstein
convention. One is referred to {4] and [15] for some of
these connections. Throughout this paper, we set the
Chern connection on Finsler manifolds. The h- and v-
covariant derivatives of a Finsler tensor field are denoted
by “I" and “, " respectively.

2. PRELIMINARIES

In this section, we are going to give a brief description
on several geometric quantities in Finsler geometry.

A Finsler structure on a manifold M is a function
F:TM —[0,00) with the following properties:
() F is C* on TM, =TM/{0}.
(it F' is positively 1-homogeneous on the fibers of

tangent bundie 7Af :
VA>0 Fix,Ay)y=AF{x )

(i) The Hessian of F° with elements
g, (x,y)=4[F z(x,y)]y,y, is positively defined on
™.

Then the pair {M, F') is called a Finsler manifold. I is
Riemannian if g[.f,(x,y) are independent of y # 0.
The Cartan tensor C =C, dx' Qdx’ Rdx* s

defined by
Coa :%{F Z]y"yff'
Clearly, CW( is symmetric with respect to i, j, k. Itis
well-known that the Finsler metric F is Riemannian if
C,=0.
Let & be a Finsler metric on an 7 -dimensional

manifold M . The geodesics of /' are characterized by
the following equations

&(O+2G (), ¢(1) =0,
where G = G'(x, ) are given by
T
G' = Xg i{{Fk]x&yryk ""[Fz]xi 3
(" (%)= (g, (0™
Riemannian, ie., g, (x,y)=g,(x) depend only on

where When K is

xeM. G'(xy)=1I", (x)y'y" are quadratic in

Vo=

%

'-C%ixe I M. There are many non-Riemannian

Finsler metrics with this property. Such Finsler metrics
are called Berwald metrics. By definition, F is called a

Berwald metric it G' =41, (x)y’ y* are quadratic in
vel M forany x e M . Every Berwald metric /' is

affinely equivalent to a Riemannian metric, namely, F
and 2 have the same spray [10].

The Landsberg tensor L =L dx' ® dx’ ®dx" is
defined by

1 ;
Ljid = _—Z_FFJ'E (G ]y’.vky‘”

A Finsler metric is called a Landsberg metric if Ly= 0.

One can easily see that every Berwald metric is
Landsbergian. A natural problem is whether or not every
Landsberg metric is Berwaldian.

Let
Jdcl(gij (x,¥)
r(x,y) = Inf ]
Vol(B” (1))
where

3

a=Vol{y' yeR™ | F(y' 1) <1y,

r=1(x,y) is a scalar function on IM,, which is
called the distortion [11].
Define mean Cartan torsion 1 := I (x, y)dx', where

jk ér
Lix,y)=g" (x,y)C 0 (x,y)=—(x,y)
i i oy

According to Deicke’s theorem, £, is Euclidean at
xeM if and only if I =0, or equivalently,
7 =7{(x)
at xe M {31

The horizontal covariant derivatives of 1 along
geodesics give rise to the mean Landsberg curvature
J, = J(x,y)dx’, where J, = J (x, y) are given by

; of. . oG” ol
J = ngLijk =yt — -2G" peat
ox oy oy
A Finsler metric F is said to be weakly Landsbergian if
J=0. J/1 is regarded as the relative rate of change of 1

along geodesics. The generalized Funk meftrics on the unit
ball B" c R" satisfy J+cFI=0 for some constant

¢ # 0 [12]. A Finsler metric F' is said to be isotropic
mean Landsberg metric if J-+cFI=0 is hold for some

scalar function ¢{x) on M { see [5] and [7]).
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The Riemann curvature

2 . . .
Ky = K;cdx ®5%}x T M =T, M is afamily of
linear maps on tangent spaces, defined by
. &G . &G 8G aG’

" +2G7 S -
ox'dy 'y o oy

Foraflag P =span{y,u} cT, M with flagpole y, the
flag curvature K = K(P, y) is defined by

gy (u, Kyr (u ))

2

gy O,¥)Ey @,u)-g) (¥,u)
g, =g,(x,)d@d/. When F s
Riemannian, K = K(P) is independent of y € P, which

K({P,y):=

where

is just the sectional curvature of P in Riemannian
geometry. We say that a Finsler metric F is of scalar
curvature if for any yeT M, the flag curvature

K =K{x,y} is a scalar function on the slit tangent
bundle TAf . If K =constant, then F is said to be of

constant flag curvature.
Let M be an n-dimensional manifold. Suppose

7'TM  denote the pull-back tangent bundle by
m:TM; —> M and (x,y,v) denote the elements of
n'TM ,where ye T M, and ve T.M . Let °'T"M
denote the horizontal cotangent bundle of TAf ,
consisting of 7”@, where & € T"M . There is a natural
duality between 7' TM 7z T°M. Let
{e, :=(x,,-5)} be a natural local frame for 7" TM .

and

Then {@':=n'dx'} is the dual local coframe for
M. ©TM
Y:=(x,y,y)=y'e,, where y:y’-g%

canonical  section,

. The Chemn

has a

connection is a linear connection on 7" TM , which are
characterized by
do' =o' ro),
£ Pk
dg, = g,ka) +g,ge:o +2C{dy" +y' o)}
See [3][13].
Let
+k k J, .k
=dy' +y'e;.
We obtain a local coframe {@',®"™'} for T"(TM,).
Let
Q':=do"™ -0" ro!.
We can express ' in the following form

1 .
Q'= E—K,‘da)" re' - Lo* Ao

where K, + K}, =0 . Let
K, =Ky

We obtain the Riemann curvature K = K ;{ @

L=L,0' ®c' ®e,.

system (x', '), K are given by (2.1). Without much

difficulty, one can show that

N
Kklzg{Kk-!

k ®a)i and

In a standard local coordinate

*K;k}

and
=7, S=1,y", J,=1,y"

8Ly = Cijﬂmy "

i

Moreover, L,.jk =

Let (M,F) be a spray space. In a standard local

coordinate system (x',3') in TM, G is expressed in
the following form

Gzyi

ox
Let
6G’ i a'G’
‘rjk :-_ ]6 k (.V)

Ni(y) =2

N ; and [ ;.k are called the connection coefficient and the

Christoffel symbols of (7, respectively.

Set
Y 3G’
Bj = ()_ kal()_ aka;(}’)

This leads to an important quantity. For a tangent vector
yeT M,, define
B . TMOTMOTM ->TM

by
; 5]
B}’(u’v:w)::Bkl(y)u viw'! P e

and w=w 2|

— i -
where w=u 5;;1_‘, V*"‘g_;.-‘lx

B (u,v,w) is symmetric in #, v and w. Bis called the

Berwald curvature. The Finsler metric # is said to be
Berwald metric if B=0.

Recently, Chen and Shen introduce a new class of non-
Riemannian Finsler metrics which is called the isofropic

Berwald metrics [S]. I is said to be isotropic Berwald
metric if its Berwald curvature satisfies the following

Jk, —o(x){F §'+F 5'+F 5'+F1 . ,y}
where O is scalar function on M . It is obvious that F
is a Berwald metric if o/(x) =0.

Example 1. Let £ be a strongly convex domain
inR”". By definition, there is a Minkowski norm ¢ on
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R" and a point x, € Q such that 0Q —{x,} = ¢ ' (1).
Let F be the Funk metric on €. For
yeTQ=R", F=F(x,y) is determined by

any

y
X=X, +5)=1.
o(x - x, F)

Differentiating aboveequation yields a system of PDESs,

F,=FF,, i=l-n

The above system is proved in [9]. The Funk metric £
on the unit ball B” < R" is given by

A P Py P -<x,y >He <,y >
F= R
2
=] |

Funk metrics are of isotropic Berwald curvature [6].
Let

o

Ejk(y) = E_Bjkm(y)ﬁ
This set of local functions give rise to a tensor on 7M.
For a tangent vector y € T M, define

E,:TM®TM— R
by E (u,v):= Ejk(y)ujvk, where u:ui—a—i‘f}x and
v=v' gax,-. |,. £ is called the mean Berwald curvature.
The Finsler metric F is said to be weakly Berwald
metric if £ =0. We have

1 &°ND 1 2’G”

E. (y)=——-=LAy) = ——————i(})
Jk (y 2 8yk8y1 (y) 2 ayjﬁykay"' (y)
The E-curvature is closely related to the flag curvature.
For a two-dimensional plane P < TPM and a non-zero
vector yeT M, the flag E-curvature E(P,y) is
defined by
FY(NE, (u,u)

g, (g, wu)-g,(y,u)
where P = span(y,u). We say that F' has constant
ﬂag (P’ y) 4
E(P,y)=(n+1)c, that is equivalent to the following

system of equation,

E. =

i

E(P,y)=

E-curvature if for any flag

n+1

-1
cF ™ h,

where hi; = g, — F 2yy , is the angular metric.
The quantity H, =H, dx' ®@dx’ is defined as the

covariant derivative of
precisely,

E along geodesics. More

Hy = Ey, y".
Clearly, H have the following property H, y' = 0.
i iy

We can take further averaging on H as follows:
H:=g"H,.

H is scalar functions on the slit tangent bundle 7/, .

The important of the quantity H=0 lies in the following:
Theorem A. ([2]) Let F' be a Finsler metric of scalar

flag curvature on an n-dimensional manifold (n23).

Then the flag curvature K =constant if and only if H=0.

A Finsler metric & is said to be generalized isotropic
mean Berwald metric if its mean Berwald curvature
satisfies the following:

H :(—’L;i}lc(x)F"‘h:

where ¢(x) is scalar function on M [8].

Recently, Shen, Najafi with first author, generalized
the above theorem and prove the following:

Theorem B. ([8]) Let /' be a Finsler metric of scalar
curvature on an 7 -dimensional manifold (1> 2) . Let 6

be an arbitrary 1-form on M . Then

H:(n;]) c(x)F " h 2.1

if and only if

k-2, @2
F

where o = o(x) isa C” scalar function on M .

3. CLASSIFICATION OF ISOTROPIC MEAN LANDSBERG
METRICS

In this section, we study the Finsler metrics of scalar
flag with generalized isotropic mean Berwald curvature.

Theorem C. ([S]) Let (M, F) be an 7 -dimensional
Finsler manifold of scalar curvature. Suppose that J/I is
isotropic, J+c(x)F1=0 where c=c(x) is a C”
scalar function on A . Then the flag curvature
K = K(x,y) and the distortion 7 = 7{x, y) satisfy
ERY!

m
Cym (x)y

n+1
e B

i +(K+c(x)2~
3 y

= 0.

T
Faw vk
Theorem 1. If (M,F) be an n-dimensional Finsler

manifold of scalar flag curvature. Suppose that the mean
Berwald curvature and the mean Landsberg curvature

satisfy

. n+1
Eyy' =

cx”,y'”F"h J+c(X)FI =0,

i
where ¢ = ¢(x) is a scalar function on M . Then the flag
curvature is given by

K =33y i
F(x,y)

) .

L 3ex) 2—i—d(x)+V (x )e

where o(x) and v(x) are scalar functions on M .

+0(x)
=21 (x ,y )/ {n+1)
s

(a) Suppose that F is not Riemannian on any open

subset in M . If ¢(x)=c is a constant, then K = —c?,
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o(x)=~c" and v(x)=0.
(b) If c(x) # constant, then the distortion is given by
2vF (3.2)

}(n+])/2
m 3 2 :
6c ,y" +3[c+c”]F

r=1[n{

Proof. By the above argument, K is given by (2.2)
and it satisfies (3.1). It follows from (2.2) that

a7 Lk o).
F{x,y) 3
Plugging it into (3.1) yields
Pk K i loayr , =0
30 ks AR yE o
We obtain

[(2K +3c(x)” + o*(x))azﬂe’]y, =0.

Thus there is a scalar function v(x) on M such that

K = ~3c(x)22+ a(x)+y(x)e_zf7<;_lu‘ (3.3)
Comparing (2.2) with (3.3), we obtain
¢ ()Y"  e(x)’ +0(x) LY s (B4
F(x,y) 2 3
Case (a). Suppose that ¢(X) = ¢ is a constant. We claim
that v(x)=0. If it false, then

U={xeM,v(x)=0}= . From (3.4), one can see
that 7= 7(x) is a scalar function on U, hence F is
Riemannian on U by Deicke’s theorem [3]. This
contradicts the assumption in (a). Now (2.4) is reduced to
that o(x)=c(x)’ and (3.3) is reduced to that
K=-¢".

Case (b). If ¢ #contani , then by (2.4) we have
v # 0. In this case, we can solve (3.4) for 7 and obtain
32). O

Corollary 1. If (M,F) be an n-dimensional isotropic
mean Landsberg Finsler manifold (J +c(x)FI =0) of
scalar flag curvature with isotropic mean Berwald
curvature (E, = ”T“c(x)F“lhy.) where ¢ =c(x) is a

scalar function on M . Then the flag curvature is given

by
K =35
Fx,y)
o 3c(x Y+o(x)
=S
where 0(X) and V(X) are scalar functions on M .

+v (X )e ~2r(x~,y)/(n+l),

(@) Suppose that F is not Riemannian on any open

subset inM . If ¢(x)=c is a constant, then K =—¢*,

o(x)=~c* and v(x)=0.
(b) If c(x) # constant, then the distortion is given by

2yv(x)F(x,y) }(nH)/Z'
6c_. (x)y" +3[o(x) + c(x)*1F (x, )

7 =1In{

Corollary 2. If (M,F) be an n-dimensional isotropic
mean Landsberg Finsler metric of scalar flag curvature.
If F is of isotropic mean Berwald curvature then the §-
curvature of F is given by
ﬁ_il_{l’_._,_ F{o* +26€'}~—2c"}
F v 2¢” + (o +c*}F

@ L) e m e m e m
where ¢ :qmym’ ¢ =(c )Imy ,V :V}m_y L, O = tmy .

S:

Proof. From Theorem 1, the distortion 7 satisfy in
3.2).
First, we simplify 7 :

v F )(n+1)/2
6c_.y" +3[o +c?F

7 = In(

which is equal to

T _ ”; Lin(2vF) - In(6c_.y" +3[o + c*1F))

Then we get

n+1

T =

Given horizontally differentiating of the above relation
along geodesic, we get the proof. [

Corollary 3. If (M,F) be an n-dimensional isotropic
Berwald Finsler manifold. Suppose that I is a isotropic
mean Landsberg Finsler metric of scalar flag curvature.

If I is of isotropic mean Berwald curvature then the flag
curvature is given by

K = 33.{1.(_).(:21"‘_..}. o—(x),
F(x,y)

where o(x) and v(x) are scalar functions on M .

4. RANDERS SURFACE OF ISOTROPIC MEAN BERWALD
CURVATURE

In this section, by using Theorem 1, we study the
Randers surface of isofropic mean Berwald curvature.

Theorem 2. If (M, F) be an isotropic mean Landsberg

Randers surface. Suppose that F is of isotropic mean

Berwald curvature. Then the Gauss curvature of F is

given by

K =3¢ ,(x)y" +0(x) (4.1)
3¢ +o(x)

= _..____._...2 +v (x )e ~27(x ¥ )/ (n+1)

where 0(x) and v(x) are scalar functions on M .

Moreover ¢(x) is satisfy in following equations:

de=Lererp=La-ipips P

(n2F +1nv —-In(6e_,y " +3[o +c?]F)).
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Proof. From Theorem 1, it is sufficient that we prove the
second part of Theorem 2. The distorsion function of F
satisfy in following equation:

7= Inf 2 E.

624307 + o)

(4.3)

Since ¢ # constant , then we have:
c, =%
x' ax'
On the other hand, for a Randser metric F =a+ /5’ the
distorsion function 7 is given by:

Y S —1 “49
a1 B1E)
From the relations (4.3) and (4.4) we have:
2u B F (4.5)
6 c*}f + 3(02 + O') a(l_ ” ﬁ “2) ‘
By (4.5) we get:
a3’ +o)-2u(- || BIEN =6y +v, (16
where
v=3(c?+0)b,y" and b, = f(Z).
Let
$(x) =3¢ +o)—2u- | BIP), @7
and
n,(x) =32, +(c* +o)b ] (4.8)

By using of (4.7) and (4.8), relation (4.6) is written in
following form:

Sa=nx)y, (4.9)
or
§(x)a,(x)y'y’ =an(x)y, (4.10)

where o = J a; {x} 'y’ . By relation (4.10),we conclude:

¢(xa; =0,n,(x)=0. (4.11)
o is positive then:
S{x)=0. (4.12)
Therefore, we have:
3(c* +a) =2u(~1 BIL), (4.13)
and
2¢, =—(c’ +o)b, (4.14)

which proves relation (4.2). 0O
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