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ABSTRACT: In this paper, a homogenous multi-sensor fusion method is used to estimate the true 
angular rate and acceleration with a combination of four low cost (< 10$) MEMS Inertial Measurement 
Units (IMU). An information form of steady state Kalman filter is designed to fuse the output of four low 
accuracy sensors to reduce the noise effect by the square root of the number of sensors. A hardware is 
implemented to test the method with three  types of experiments: static test, constant rate, and oscillating 
test. Results of static test for z-axis show that ARW coefficient reduces to 0.0022°/√s and VRW error is 
decreased by %50. Also, dynamic test results show the reduction of the standard deviation of combined 
rate signal up to six  times compared with a single sensor. A comparison between the proposed filter and 
the simple averaging method is made in which the results indicate that the Kalman filter is more accurate 
compared to the averaging method.  
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1- Introduction
Inertial Measurement Unit (IMU) is  one of the important 
components in inertial navigation systems. Since Micro-
Electro-Mechanical-Systems (MEMS) inertial sensors 
are constructed with a low cost, small size, low power 
consumption, it is quite easy to implement a few of them in 
a small electronic circuit board. But the main disadvantage 
of these types of sensors is the low accuracy of their output 
signals. Therefore, it is essential to study about the model 
and types of MEMS inertial sensor errors in detail. The 
inertial sensor errors consist of deterministic and stochastic 
error types. The deterministic errors include constant bias, 
scale factor, and misalignment, which are removed from 
raw measurements by calibration procedures. The stochastic 
errors contain random errors (noises) such as angle (velocity) 
random walk (ARW), bias instability, and rate random walk 
(RRW), which cannot be removed from the measurements 
and should be modeled as a stochastic process. Hence, many 
research studies have been performed to reduce stochastic 
errors and improve the accuracy by applying multiple IMUs 
and combining their output signals. 
In [1], D. S. Bayard et al.  initially introduced a virtual 
gyroscope and designed an optimal Kalman filter to combine 
output signals of multiple gyros. They showed that noise 
correlation between the individual sensors improves the 
accuracy of the virtual gyroscope about 170 times. Chang 
et al. [2-5] implemented a hardware with six gyroscopes 
and applied the D. S. Bayard’s optimal Kalman filter as a 
simulation and experimental method to estimate angular rate.  
Dynamic performance of the Kalman filter with two different 
stochastic models is shown in the above studies.  

In [6], some cheap gyroscopes and accelerometers are used to 
design a low-cost IMU array, however, stochastic modelling 
for this system was not considered, and the static test is simply 
carried out on the assembled hardware. M. Tanenhaus et al. in 
[7] implemented a hardware containing two DSP processors 
and 100 MEMS inertial sensors for a UAV aimed to fly in 
the GPS-denied environment. In this work, the measurements 
of the sensors are fused by a Sigma-point Kalman filter. 
The performance of the hardware is nearly equal to a fiber 
optic inertial sensor. Skog  et al. [8] implemented a Multi-
IMU platform with 18 cheap IMUs for pedestrian navigation 
while a simple averaging method is used to reduce stochastic 
errors. In [9], a multi-IMU hardware was implemented with 
four sensors by recursive Kalman filter. The performance of 
the hardware is investigated using static experiment. In [10], 
the performance of two Kalman filter schemes based on the 
direct and differencing estimated model and the differencing 
estimated model of a virtual gyroscope for input rate signal 
is also analyzed. Results show that the performance of the 
direct estimated model is more satisfactory than the one of 
the differencing estimated model with a constant input rate 
signal. In [11], another low-cost multi-IMU hardware was 
implemented with 32 inertial sensors. Maximum likelihood 
estimator was employed to estimate the angular rate and 
acceleration with fusion of the sensors’ output.
In this paper, a stochastic model for the inertial sensor is 
considered by adding a white noise to the dynamic equation in 
state-space model. Also, the true rate and acceleration signals 
were modeled by a random process which is called random 
walk. Two most contributor errors, angle random walk 
(ARW) and velocity random walk (VRW) are investigated 
for gyroscope and accelerometer, respectively. The stochastic 
error coefficients are estimated by Allan variance method. 
To reduce error by more than the square root of the number 
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of sensors, the correlation between sensors are investigated. 
The implemented hardware is described, and, finally, the 
results of two dynamic experiments, namely constant rate and 
oscillating test, are presented. 
The rest of this paper proceeds as follows. In section 2, 
the theoretical operation of the Multi-IMU is introduced, 
and noise coefficients are obtained experimentally by the 
assembled hardware. In section 3, the implemented hardware 
is described in more detail. The results of static and dynamic 
experiments are presented in Section 4 to show and verify the 
aim of this research. 

2- Methodology
In this section, measurement and state-space model of the 
inertial sensor will be  investigated for both gyroscope and 
accelerometer.

2- 1- Measurement and State-Space Model of Inertial sensors
The output of the inertial sensors is normally corrupted by 
some typical errors such as measurement noise, bias drift, 
misalignment, and scale factor. A widely accepted model for 
the gyroscope could be defined as [12]: 

in which y is the measured angular rate, ω denotes the true 
angular rate, b is the bias drift, Sg is the scale factor error, 
and nω represents the measurement white noise which causes 
angle random walk (ARW) error. The scale factor error will 
affect the output of MEMS gyroscope during a high rate 
experiment [6] and the bias drift term is also the dominant 
error when the sensor operates for a long time [13]. In this 
paper, scale factor error can be removed from (1) because 
of the low dynamic experiment and bias drift error can be 
ignored for short time application. Thus, the eqaution (1) can 
be simplified as:

Similarly, for accelerometer, the output signal can be 
described by:

where I is the measured acceleration, a is the true acceleration, 
and  na is the measurement white noise which causes velocity 
random walk (VRW). In order to design a complete state–
space model for Kalman filter, the true rate acceleration 
signals for gyroscope and accelerometer are also modeled 
by a random process which is called random walk process 
consisting of the integral of a white noise. The integral 
term creates non-stationary random process whose variance 
increases with the time. This provides a good model for 
inertial sensors drift [14]. On the other hand, as we intend  
to use the designed IMU array in any desirable system, the 
random process for a dynamic equation has been chosen as:

After applying (2) into (5), a state-space model is defined by:

where;
z is the measured angular rate by each sensor,
ω indicates the true angular rate signal,
w(t) represents the process noise, and	
v(t) is the measurement noise with the following specifications:

The discrete state-space model for a multi-gyro system with 
four sensors using the zero-order-hold approximation can be 
shown as follows: 

State-space parameters are described as follows.

where Ts is the sampling time.
Similarly, while the true acceleration is modeled by random 
walk process, discrete time state-space parameters for 
accelerometer can be shown as:

2- 2- Information Form of Steady-State Kalman Filter
In this research, an optimal steady-state Kalman filter is 
designed to estimate the true angular rate and acceleration 
by using state-space model and noisy measurement of four 
sensors. Since the Kalman filter algorithm combines data 
from different sensors to make the estimation, it is a natural 
choice for multi-sensor fusion problem. Also, the Kalman 
filter produces a minimum variance estimation for a linear 
state-space model [15]. There are many complex forms of 
implementing  Kalman filter in embedded systems in which 
memory and computational complexity should be considered 
carefully. If the underlying system is time-invariant and 
the covariance matrices of process and measurement noise 
signals are time-invariant, then, we can replace the time-
varying Kalman filter with steady-state Kalman filter [16]. 
Considering (6), a continuous time Kalman filter can be 
defined as [17]:

To find a steady-state Kalman gain, say K∞, Ricatti differential 
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equation in (20) should be solved. Since the observability 
matrix of the state-space model shown in (21) is full rank, 
the system is observable and the existence of a stabilizing 
solution for Ricatti differential equation is guaranteed [18], 
hence                and consequently (20) could be converted to 
an algebraic equation as shown in (22).

Finally, P∞ is computed as (23):

where P∞ is the steady-state covariance and K∞ is given by 
inserting  (23) into (19):

Thus, the filter equation that estimates the true rate and 
acceleration is defined as:

Based on the zero-order-hold approximation, discrete-time 
filter can be derived as [19]:

As the filter should estimate both rate and acceleration signals 
for three axes by using an IMU array with  four sensors, the 
dimension of the measurement matrix is 24. Therefore the 
computational complexity for steady state filter will be highly 
increased. In this paper, in order to reduce the computational 
burden, the steady state filter is modified according to the 
information filter by using a minimum-mean-square error 
criterion data fusion  algorithm prior to filtering. In Fig.1, an 
illustration of fusion and filtering is given. In [20], it is proved 
that when the sensors are identical and matrix C is similar for 
all sensors, the performance of Kalman filter and information 
form of the Kalman filter are the same but information filter 
is much faster [21].

By using (28)-(30) information form of the steady state 
Kalman filter is designed.

By using information filter the state-space equations which 
are supposed to estimate the rate and acceleration for three 
axes are as follows:

With new state-space equations, six states will be estimated 
by fusing only six vectors measured by sensors. here the 
terms zTωx and zTax denote the equivalent measurement vector 
of x-axis of gyroscope and accelerometer obtained by (29). 
Similarly, for this state-space equations the system is fully 
observable and stability of the system is guaranteed. The 
covariance matrices of the measurement and process noises 
for the designed filter is computed as:

It is observed that the dimension of covariance matrices 
reduces to six, thus the computational complexity will be 
reduced significantly. 
As the Kalman filter can be considered as a system with input 
and output, it is possible to determine a transfer function for 
the designed filter. The transfer function is computed by taking 
Laplace transform from the equation of filter as in (25) [5]: 

From (34) , it is possible to define the frequency response 
and the bandwidth of the filter. In this study,  the bandwidth 
is defined by:

The equation (35)  shows that the bandwidth of the filter is 
dependent on the variance of process noise, thus it can be used 
to set a value for . As this system works with different input 
signal e.g. sinusoidal or periodic wave, it is important to set 
the bandwidth in order to reproduce the signal characteristics. 
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Fig.1. Illustration of the fused IMU array data.
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In comparison with the simple averaging method, the 
information form of steady-state Kalman filter has the 
advantage of setting desired bandwidth. Therefore, it shows 
more flexibility than the averaging method. Furthermore, for 
the former, it is not necessary to choose a high value for the 
process noise variance and the performance of the filter is not 
degraded. This increases the accuracy of the combined signal.

2- 3- Noise identification using Allan variance method
There are a few signal processing methods to identify noise 
coefficients for MEMS-based IMUs, such as power spectral 
density and Allan variance. The Allan variance is a time-
domain method which was developed in the mid-1960 for 
frequency stability of precision oscillators [22]. It is also 
applied to analyze various types of stochastic errors in original 
data set of inertial sensors. In order to obtain Allan variance 
for the collected data, assume the output of the inertial sensor 
is Ω(t) and the number of data in each cluster is n. The cluster 
average is defined as [13]:

The Allan variance of length τ  is defined by:

After calculating the Allan variance, the next step is to use 
the root Allan variance plot to identify the magnitude and the 
type of the noise that exists in the data. It is normally plotted 
as the square root of the Allan variance σA(τ) versus τ on a 
logarithmic scale. It is possible to identify the noise term in 
the signal using this curve by investigating different slope 
lines. A pure white noise model, which is a wideband noise 
model and is detected in a short time, appears in a root Allan 
variance curve as a line with the slope -1/2. It causes ARW 
and VRW errors in the inertial sensor. Thus, to compute ARW 
coefficient for each sensor, a line with the slope -1/2 is fitted 
to the curve. The value of σA(τ) is computed at τ=1 by:

The value of ARW coefficient is computed based on (38).  
In this research, a 24-hour static data with the sampling 
frequency 100 Hz are collected by the proposed hardware. 
Then the root Allan variance plot is obtained for three axes 
of gyroscopes and z-axes of the accelerometer. It should be 
noticed that when the sensors are stationary, the collected 
data represent just the white measurement noise. In Table 
1 root Allan variance values for three axes of gyroscopes 
and z-axis of accelerometers are shown. The measurement 
noise covariance matrix, R, which is used in the information 
form of steady-state Kalman filter, is computed as a diagonal 
matrix with the square of ARW and VRW coefficients from 
Table 1. Considering these values, it is found that four sensors  
are nearly identical.

3- Hardware implementation
To verify the proposed algorithm a hardware implemented 
using four MPU9150 IMU sensors made by InvenSense Inc. 
[23]. These four sensors are located in a way that forms a 

planar IMU array as shown in Fig. 2. The LPC1768 ARM 
microcontroller [24] is selected as the main processor of 
this multi-IMU board. The I2C protocol is used as the 
communication method to collect the data of four IMU sensors. 
As I2C is a 2-wire serial interface, using an optimal firmware 
in C programming, the time difference between collecting 
data of each sensor is less than 0.2 ms which compared to 
the sampling frequency rate is negligible. Moreover, if only 
measurement from gyroscope or accelerometer is needed, 
this time will be less than 0.12 ms. In this hardware, General 
Purpose Input Output (GPIO) of the microcontroller is defined 
as I2C interface. Two GPIOs are used for SCL and SDA to 
collect measurement data. In this way, the limitation on the 
number of IMUs is defined by the number of available GPIOs 
on the microcontroller. Since in dynamic test the hardware 
rotates continuously, it is impossible to send data to the host 
computer via USB connection; therefore, a SD Card module 
is deployed to store the measured data. 

4- Experimental results
Based on the designed experimental setup, three sets of 
experiments are arranged to collect data in order to verify 
the real noise reduction capability of multi-IMU sensor 
configuration. The first set of experiments cover the static test 
in which the multi- sensory system is subjected to zero input. 
As for the second and third sets of experiments, the array of 
sensors are dynamic in two different modes, namely, turning 
with a fixed angular velocity and oscillating with a period.

4- 1- Static experiment
In this section, the results of a static experiment performed by 
the hardware are demonstrated. A 2-hour zero rate experiment 
was conducted with the sampling frequency fs=200Hz for both 
gyroscope and accelerometer. The purpose of this test is to 
combine sensor measurements when IMU array is motionless 
to obtain ARW and VRW values. First, the mean value of the 
measured data is subtracted from the entire sample data in 
order to remove static bias from the measurement values, then, 
unbiased data of the four sensors are combined and filtered by 
the information form of steady state Kalman filter. The root 
Allan variance plot of gyroscopes and accelerometers only for 
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z axis is shown in Fig.3 which indicates that ARW error for 
the combined gyroscope signal is around 0.0022 (°/√s ) that 
has reduced up to 2.45 times with respect to the single sensor. 
The results of ARW and VRW coefficients of 2-hour static 
data is shown in Table 2. In order to investigate the effect of 
the parameter Q on ARW and VRW reduction, the root Allan 
variance plot with different values of bandwidth is shown in 
Fig.5 that indicates by increasing Q and the filter’s bandwidth, 
reduction of random errors in MEMS inertial sensors is still 
%50 or two times less  compared to one sensor. 

The root Allan variance in Fig.6 illustrates the result before and 
after filtering. As both curves in a shorttime are the same, it is 
clear there is no reduction in ARW error. In fact, this result proves 
that for the reduction of stochastic error of an inertial sensor, the 
only possible solution is to increase the number of sensors.

4- 2- Dynamic experiment
In this study, the dynamic tests for gyroscopes was conducted 
by a 3-degree of freedom turntable as shown in Fig. 7. The 
table rotates 360 degrees around z-axis and only 70 degrees 
around x and y axes; thus, constant rate tests have been 
performed by z-measurement.

Sensor ARW
(°/√s) Sensor ARW

(°/√s) Sensor ARW
(°/√s) Sensor VRW

(m/s2/√s)
Gx1 0.0108 Gy1 0.0107 Gz1 0.0126 Az1 0.0048
Gx2 0.0095 Gy2 0.0094 Gz2 0.0087 Az2 0.0048
Gx3 0.0106 Gy3 0.0111 Gz3 0.0100 Az3 0.0046
Gx4 0.0103 Gy4 0.0103 Gz4 0.0108 Az4 0.0048

Table 1. ARW and VRW coefficients of 24-hours static test

Fig. 3. Root Allan vaiance plot of z-axis of gyroscope Fig. 5. Root Allan variance plot of fused data by different 
bandwidths

Fig. 6. Root Allan variance plot of a single sensor before and 
after filteringFig. 4. Root Allan vaiance plot of z-axis of accelerometer
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The hardware which contains IMU array is attached to the 
table tightly. The sampling frequency is  200Hz like the static 
test. The measurement data range for all gyroscopes is set 
to 2000°/s. The first part of the dynamic test is a constant 
rate test in which IMU array rotates with six different values 
of angular velocities, namely ω=150, 90, 60, 42, 24 and 
12°/s, continously. The duration of each test is set to 10 min. 
Standard deviation (1σ) is used to evaluate and compare 
the results of the fused data with different bandwidths. As 
measured, 1σ for all sensors are not identical, for comparison 
the average of 1σs of all sensors, σm, is used to investigate 
improvement of the fused data defined as:

where Ns is the number of sensors.
A comparison is also made by the sensor with the highest 
standard deviation. Table 3 summarizes the obtained σm and 
1σ of all gyroscopes in z-axis with different rates. Table 4 
summerizes the results for ω=150°/s. The results presented 
in this table indicate that the performance of the designed 
filter is degraded by increasing the bandwidth. For the 
constant rate test, a comparison between Kalman filter, 
with mimimum/maximum value of bandwidth, and a simple 
averaging method is made. To see its result refer to Fig. 8. 
Computed by averaging method, 1σ of the combined data  
is 0.2273°/s, when ω=150°/s that is higher than the value 
obtained by Kalman filtering even for the large bandwidth. 
for the practical purposes,  the bandwidth of 60Hz is too 
much. Therefore, it is reasonable to tune the filter by smaller 

value of bandwidth the accuracy of the fused data by higher 
than 2 times compared to the simple averaging method. Table 
5 summerizes the results for the constant rate test with 90, 60, 
42, 24 and 12 °/s up to 20Hz.

4- 3- Oscillating test 
The second dynamic test for IMU array is the oscillating 
test in which a periodic signal is applied to the turntable, 
including IMU array. Contrary to the constant rate test which 
had a low dynamic characteristics, driven by an oscillating 
input signal, the turntable oscillates in a periodic manner. In 
this case, the bandwidth of the Kalman filter is an important 
issue because it should be able to reproduce the signal 
without amplitude attenuation. Here, a 120-second oscillating 
test by a periodic signal with the period 4 sec, the amplitude 
45°/s, and the sampling frequency 200 Hz is performed.  Note 
that this signal does not have a sinusoidal form, but it has 
the frequency 0.25 Hz. The same as the constant rate test, 
measurement range for gyroscopes was set to 2000°/s. In Fig. 

Sensor ARW
(°/√s) Sensor ARW

(°/√s) Sensor ARW
(°/√s) Sensor VRW

(m/s2/√s)
Gx1 0.0042 Gy1 0.0048 Gz1 0.0054 Az1 0.0041
Gx2 0.0043 Gy2 0.0040 Gz2 0.0040 Az2 0.0038
Gx3 0.0041 Gy3 0.0044 Gz3 0.0041 Az3 0.0035
Gx4 0.0045 Gy4 0.0050 Gz4 0.0047 Az4 0.0037
KF 0.0021 KF 0.0023 KF 0.0022 KF 0.0020

Table 2. ARW and VRW coefficients for 2-hour static test experiment

Fig. 7. 3 degree of freedom turn table was used to analyze  the 
performance of the IMU array in constant and oscillating rate 

experiment.

Table 3. Standard deviation for z-axis of gyroscopes with 
different rates

Table 4. Results of constant rate test for ω=150 °/s with 
different bandwidths

1

1
=

= ∑
sN

m i
isN

σ σ (39)

Rate
(°/s)

Gz1
(°/s)

Gz2
(°/s)

Gz3
(°/s)

Gz4
(°/s)

σm

(°/s)
ω=12 0.1152 0.0929 0.0936 0.0924 0.0985
ω= 24 0.1243 0.0884 0.0883 0.0874 0.0971
ω= 42 0.3516 0.1352 0.1160 0.1151 0.1794
ω= 60 0.3745 0.1263 0.1314 0.1391 0.1928
ω= 90 0.5602 0.1587 0.1654 0.7089 0.3476
ω= 150 0.6389 0.1923 0.1850 0.1885 0.3011

BW 
(Hz) σKF σm/σKF σgz1/σKF

0.0259 5 0.0983 3
0.1037 10 0.1276 2.3597 5.007
0.2332 15 0.1426 2.2225 4.4803
0.4146 20 0.1524 1.9757 4.1922
0.6479 25 0.1597 1.8854 4
0.9330 30 0.1654 1.8204 3.8627
1.2699 35 0.1701 1.7701 3.7560
1.6586 40 0.1741 1.7294 3.6697
2.5915 50 0.1805 1.6681 3.5396
3.7318 60 0.1852 1.6258 3.4497

2 3( )°Q s
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10, a measurement of all sensors during 60 s is shown. As it 
is clear, the amplitude has increased to 64.53 °/s and most of 
the measured values are higher than 45°/s. Fig.11 illustrates the 
combined rate signal by Kalman filtering with BW=1 Hz 
while the maximum amplitude has reached to 41.83°/s. This 
means that the Kalman filter cannot accurately reproduce the 
dynamic characteristics of the input rate signal. To obviate 
this problem, the input rate signal is filtered by Kalman 
filter with BW=2Hz which is eight times higher than the 
frequency of the input signal. Fig. 12 shows that the fusion 
of the measurements with BW=2Hz can reproduce dynamic 
characteristics of the input signal. The maximum amplitude 
is 44.96°/s that is very close to the amplitude of the input 
signal. In order to show the advantage of the proposed 
Kalman filter, its results are compared with the averaging 
method. As illustrated in Fig.12, by applying averaging 
method, the 1σ error of the combined rate signal is higher 
than Kalman filtering. 

5- Conclusion
In this paper an IMU array with four low-cost low-accuracy 
sensors are implemented to fuse their measurements in order 
to increase the accuracy of the sensory system compared to 
one sensor. By lowering the time difference between sensors 
to 0.2 ms for both gyroscope and accelerometer data, it is 
feasible to cover a lot of actual input signals. By collecting 

 Fig. 8. Results of measurement fusion by simple averaging 
method and Kalman filter with BW=5Hz, 60 Hz

Table 5. Results of constant rate test with the rates
ω=90,60,42,24,12°/s

Fig. 9. Plot of periodic signal measured by four sensors Fig. 10. Plot of combined rate signal obtained by Kalman 
filter with BW =1Hz
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data for 24 hours and using Allan variance method, real 
information about random errors of the inertial sensors was 
collected. An information form of steady state Kalman filter 
was designed to combine data from both gyroscope and 
accelerometer. In this setup, measured data are combined 
by a minimum-mean-square error algorithm that reduces 
the dimension of the data for steady state Kalman filter and 
decreases the computational complexity. To evaluate the 
performance of the multi-IMU, a 2-hour static experiment 
was performed, whose results  show that the ARW and VRW 
errors for z-axis are reduced up to two times compared to 
the same errors from one sensor. Also, the results of constant 
and oscillating rate tests, conducted by 3-DOF turntable, 
show that the 1σ error decreases by a factor of 3.37 compared 
to σm. Choosing appropriate bandwidth multi-sensor fusion 
algorithm enables us to reproduce dynamic characteristics of 
input rate signal.
In this paper, the results of multi-sensor fusion problem were 
addressed with four sensors that may not be an optimal choice 
for all applications. The optimum number of sensors that 
reduce the measurement error effectively could be an aspect 
of the future work for this study. Another important issue 
that could be addressed in the future is the synchronized data 
collection of all sensors. In this research, we tried to reduce 
the time difference between sensors down to 0.2 ms, but it is 
more reasonable to minimize this time, especially when the 
number of sensors is  increased or with high dynamic input 
rate signal.
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