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ABSTRACT: K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies in 
neurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this pattern 
are of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysis 
of this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocation approaches. 
This method is able to decompose signals into their time-varying oscillatory ingredients. In addition, it 
provides a time-frequency representation with less blurring compared  to wavelet transform. In this paper, 
firstly, the ability of SST is investigated by applying the ANOVA test, which is approved by proper p-values. 
This paper proposes SST for K-complex detection. The proposed method is based on a so-called “detection 
of K-complexes and sleep spindles” (DETOKS) framework. DETOKS is based on spares optimization 
and decomposes signals into four components, namely transient, low frequency, oscillatory, and a residual. 
Applying the Teager-Kaiser energy operator and setting a threshold on the low-frequency component result 
in K-complex detection. We modify DETOKS using SST. The proposed method is applied to DREAMS 
dataset. The dataset provides two visual scorings accompanied by an automatic one. As the visual labels were 
extremely different, the automatic detection is considered as the third expert’s scoring and data is re-labeled 
by a voting approach among three experts. For DETOKS, DETOKS modified by CWT, and the proposed 
method, MCC measure is 0.62, 0.71, and 0.76, respectively. It shows superiority of the proposed method. 
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1- Introduction
K-complexes that were introduced more than 70 years ago 
are one of the most important micro-events in the sleep 
EEG. They have a crucial role in the sleep stage scoring 
besides their important role in studying the functional role 
of sleep and sleep disorder diagnosis. K-complex is the 
largest grapho-element of the EEG signal. K-complex and 
sleep spindles characterize the second stage of the non-rapid 
eye movement (NREM) sleep. According to the American 
Academy of Sleep Medicine (AASM), K-complex is a “well-
delineated negative sharp wave immediately followed by a 
positive component standing out from the background EEG, 
with total duration≥0.5 s, usually maximal in amplitude over 
the frontal regions”. Duration of K-complex is between 0.5s 
to 1.5 s in the most of existing references. However, the 
maximum duration of 1-3 s is imposed for this pattern [1].  
Since studying K-complexes is very important in children 
and adults sleep studies as well as neurophysiologic and 
cognitive disorders diagnosis, reliable methods for analysis 
and detection of this pattern is of great importance, from both 
research and clinical aspects [2-4].   
Visual annotation of K-complex is time-consuming, due to 
the fact that there are typically 1-3 K-complexes in stage 2 
of young adults [1]. Moreover, it is highly prone to error. 
The great number of experts’ disagreement annotations 
confirm this [2, 5]. K-complexes may vary in morphologic 
appearance and be affected by artifacts. Some artifacts may 

be recognized as K-complexes [6, 7].
Based on the aforementioned points, many approaches 
are proposed for the automatic detection and analysis of 
the K-complex pattern. These methods include analysis 
of period-amplitude, spectral analysis methods, e. g. 
Fourier transform, wavelet transform, matching pursuit, 
autoregressive modeling, and state-space modeling [8]. The 
authors of [9] considered K-complex and sleep spindles as 
anomalies and tried anomaly detection methods. The papers 
[10, 11]  utilized optimization approaches. 
Empirical mode decomposition (EMD) is an approach which 
decomposes a signal into its building block functions. EMD 
represents the signal in the form of a superposition of a number 
of components, each of which can be considered locally 
harmonic with slowly varying amplitudes and frequencies. 
EMD components are separated in the time-frequency 
plane [12]. Applying EMD to the sleep EEG signal showed 
desirable results in the sleep spindle detection [13].
SST is a time-frequency EMD-like tool for the purpose of 
signal analysis. It can be expressed as the combination of 
wavelet transform and reallocation approaches. It is able 
to decompose signals into their time-varying oscillatory 
ingredients in addition to providing an accurate estimation of 
the instantaneous amplitude and frequency modulation [14]. 
SST tackles the problem of blurring in the wavelet time-
frequency representation [15]. SST decompositions are much 
sharper compared  to wavelet decompositions. Moreover, 
they are able to identify specific frequency components of 
a signal with a reasonable accuracy, even in the presence of 
high level of noise [16]. Furthermore, SST is more powerful 
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in delineating the harmonic components compared  to 
Fourier spectrum. It not only benefits from the advantages 
of EMD method but also is more robust in the case of 
noise embedded signals and provides much more easily 
interpretable results [16].
SST has been successfully applied to the biomedical signals, 
including respiratory and ECG signals which contain 
oscillation [17, 18]. In the recent years, it has been also 
adopted for the sleep spindle detection [16]. 
The main contribution of this paper is the proposing of a 
novel methodology for K-complex detection based on the 
SST combined with DETOKS.  
This paper is organized as follows. Material and methods are 
discussed in section 2. Our proposed method is explained in 
section 3. Results are presented  in section 4. The last section 
is dedicated to conclusion and discussion.     

2- Material and methods
This section is dedicated to description of the dataset used 
in our study and two approaches which are combined in 
our work. 

A. Database Description 
Database used in this study is prepared and available online, 
via the so-called DREAMS project run by University of 
MONS- TCTS Laboratory (Stéphanie Devuyst, Thierry 
Dutoit) and Université Libre de Bruxelles - CHU de Charleroi 
Sleep Laboratory (Myriam Kerkhofs). This project is under 
the terms of the Attribution-NonCommercial-NoDerivs 
3.0 Unported (CC BY-NC-ND 3.0) License [5]. Data were 
acquired using a digital 32-channel polygraph, in a sleep 
laboratory of a Belgium hospital. This database contains ten 
excerpts of 30 minutes of EEG from ten  healthy subjects. 
Three EEG channels, including CZ-A1 or C3-A1, FP1-A1, 
and O1-A1, two EOG channels, including P8-A1 and 
P18-A1, and also one sub-mental EMG channel are recorded. 
Signals are extracted from the whole night polysomnography 
(PSG) recordings. For each subject, signals are accompanied 
by two experts’ annotations, which contain sleep stages, 
unknown stages, movements, and the K-complex patterns. 
Data are recorded at 200 Hz sampling rate. The two experts 
were independently asked to put labels on the data. Their 
annotation is done based on the following points.
A pattern  considered as a K-complex must be a biphasic wave 
which is composed of a first negative sharp wave immediately 
followed by a slower positive one. Its duration should be at 
least 500 ms and should not exceed 1500 ms.  Its amplitude 
should be at least twice as high as the background EEG. The 
amplitude of the negative component should be at least 50% of 
the positive amplitude component. Successive K-complexes 
in slow wave sleep should have the minimum interval of 2000 
ms. K-complexes may occur in an isolated way or by the pair. 
They can be associated with spindles before, after, or even 
on them [5]. Table 1 contains complementary information. 
As this table represents, the second expert’s scoring is just 
available for the first five excerpts. Due to this fact, [11] and 
[19] only used the first five excerpts. For the same reason, 
we will use these excerpts as well. Having two experts with 
very different scorings is a crucial challenge in the validation 
process. To tackle this issue, the automatic results obtained 
in [19] are considered as another expert’s annotation. It is 
referred to as the third expert in Table 1. 

Preprocessing was made by removing main power system 
noise with an appropriate notch filter. Signals are bandpass 
filtered with a filter with cut off frequencies of 0.5 and 75 Hz.

B. Synchrosqueezing Wavelet Transform 
Synchrosqueezing is considered as a special case of 
reallocation methods. Reallocation methods, in general, are 
proposed for the purpose of sharpening the time-frequency 
representation R(t,ω). These methods allocate the values of 
the time-frequency plane to other corresponding points on the 
plane. Actually, the new point (t`,ω`) is determined by the 
local behavior of R(t,ω) around (t,ω) [12].  
Signals containing constituent components with time-varying 
oscillatory characteristics can be shown as s(t)=∑k

k=1sk(t), 
where sk(t) is a mono-component asymptotic AM_FM signal, 
and we have sk(t)=Ak(t)cos(ϕk(t)). In other words, sk(t) is a 
Fourier like oscillatory component. Ak(t) and ϕk(t) are the 
instantaneous amplitude and phase, respectively. Thus, the 
instantaneous frequency will be finst(t)=(dϕk(t))/dt.	
We can summarize the SST algorithm in the following three 
steps:

1- calculating the complex continuous wavelet transform 
(CWT). For a given signal s(t), it holds that

For any given ξ, the mother wavelet ψ should satisfy the 

condition                      . If for ξ<0,               it is said to be 

analytic. ψ(t) can be defined by ψ(t)=g(t)exp(jω0t), where g(t) 
is the window function and ω0 is the central angular frequency 
of the wavelet. Wavelet ridge is shown as the following set:

(ar,b) represents the ridge point at b and |Ws(ai,b)| denotes the 
wavelet coefficient modulus. In real applications, the analytic 
form of the signal is not usually available. The instantaneous 
frequency of the signal can be obtained from the extracted 
ridge as

Similarly, the instantaneous amplitude is

where ĝ(0) is the Fourier transform of g(t) at ω=0.
SST is proposed to tackle the problem of blurring of the time-
frequency plane. Considering finst(t)=f and Ainst(t)=A, we will 
have

Since        is concentrated around ξ=f0, Ws(a,b) should be 
concentrated around a=ω0/ω. However, Ws(a,b) often spreads 
out over a region around a=f0/f. Ws(a,b) has an oscillatory 
behavior in b points with the original frequency f, regardless 
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of the a values. Hence, we have the second step as follows.
2- Initial estimation of the phase transform for each (a,b) 
(for which Ws(a,b)≠0):

This will cancel out the wavelet influence on Ws.
3- Squeezing Ws(a,b) via reassignment leads to the SST 
representation that is given by

where                                   . ε̃ and α are the threshold 
and accuracy, respectively. Furthermore, h is the smoothing 
function. In computation, a and b as the scaling variables 
and f as the frequency variable, are discrete. Consequently, 
Ws(a,b) is just computed at discrete values. The map 
(b,a)⟶(b,finst(a,b)) transfers information from the time 
domain to the time- frequency plane. Based on this 
mapping procedure, the Synchrosqueezing Transform S(f,b) 
is just performed at the centers fl of the successive bins

    Thus, we will have the 
Synchrosqueezing Transform as [12, 16]

It is proved that SST has the perfect reconstruction property 
with the equation

C. DETOKS
In [11], a nonlinear method is proposed for the detection of 
sleep spindles and K-complexes (DETOKS). It models the 

EEG signal as the sum of the following components.
In [11], a nonlinear method is proposed for the detection of 
sleep spindles and K-complexes (DETOKS). It models the 
EEG signal as the sum of the following components.

1- A transient component: it is comprised of spikes on a 
baseline of zero. This component is modeled as a sparse 
signal which has a sparse first order derivative. 
2- A low-frequency component: this gives the low-
frequency component of the EEG.
3- An Oscillatory component: This represents oscillations 
in the EEG with a sparse representation in the time-
frequency domain. 

DETOKS uses an optimization problem with a convex 
objective function for the purpose of estimation of the above 
components [11].

D. Teager-Kaiser Energy Operator
Nonlinear energy operators are used for the automatic 
detection of K-complexes. Teager-Kaiser energy operator 
(TKEO) is one of these methods which has been used. It 
is useful for the purpose of extracting the sharp rising and 
falling edges. However, the performance of TKEO is highly 
affected by the presence of transients [11, 20].

3- K-complex detection  
In this section, we describe the proposed detection algorithm, 
which is a combination of SST and DETOKS approaches and 
finalized by using TKEO and a proper threshold. 
An EEG signal, say x, is modeled as

where l is the low-frequency component. In the above, 
y  represents the sparse component with sparse first order 
derivative. s is sparse as well and contains oscillations. The 
signal w represents the residual. For a given signal x with the 
length N, Φ: CM×K⟶CN can be defined by

while ΦH: CN⟶CM×K is given by

ΦH is the Hermitian transpose of Φ and satisfies ΦH Φ=I.

Subject Sex Age Annotated
channel

Nr. of K-complexes 
scored by expert1

Nr. of K-complexes 
scored by expert2

Nr. of K-complexes 
scored by expert3

1 man 20 CZ-A1 34 19 22
2 woman 23 CZ-A1 45 8 37
3 woman 47 CZ-A1 12 3 14
4 woman 24 CZ-A1 78 14 63
5 woman 23 CZ-A1 39 20 40
6 man 23 CZ-A1 28 - -
7 man 27 CZ-A1 11 - -
8 woman 46 CZ-A1 4 - -
9 man 27 CZ-A1 5 - -
10 woman 21 CZ-A1 16 - -

Table 1. Data information [5]
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Our goal is the estimation of components l, y and a in (10). 
Based on the above formulation, the component s can be 
modeled by

where c∈CM×K is the SST coefficient matrix. The high-pass 
filter H is defined based on the low-pass one, i.e. L, and is 
obtained by

With the assumption of being zero phase, or approximately 
zero phase for the low pass filter, the corresponding high pass 
filter that has a second order zero at z=1, for a signal of length 
N, H has the size (N-2d)×N. Applying the high pass filter H to 
the signal x given in (14) results in

DETOKS uses the following unconstrained optimization 
problem for the purpose of estimating the components y and 
c for a given signal x, as well as minimizing the energy of the 
residual w.

where the matrix D is defined as

Using this matrix, Dy yields the first-order difference of a 
discrete signal y with the lenght N. The matrix D is of the 
size (N-1)×N. Using l1 norm in the objective function (16) 
improves the sparsity of the signal y, its first derivative Dy, 
and the SST coefficient matrix c. λ0,λ1 and λ2 are regularization 
parameters. H is set to be a zero phase recursive discrete time 
filter, given by

where A and B are banded Toeplitz matrices. When a signal 
of length N is filtered by the second-order high-pass filter, A 
and B should be of the size (N-2d)×(N-2d) and (N-2d)×N, 
respectively. 
The convex objective function in (16) is solved by Douglas-
Rachford splitting approach. It leads to alternating direction 
method of multipliers (ADMM). Consequently, (16) can be 
written as

It is obvious that (19) is equivalent to (16). Minimizing (19) 
is carried out using the scaled augmented Lagrangian through 
the following iterative procedure.

μ>0. Y and c can be minimized independently, due to the 
separablity of minimization in (21). Consequently, (21) can 
be expressed as

Using the solution to the fused LASSO problem and the soft 
threshold function, solutions to (24) and (25) are

where soft(∙) represents the soft threshold function for λ>0, 
λ∈R, and is defined by

Making the following substitutions, we will have the solution 
to (23) as

where u,d,y̅∈R2N. According to the above substitutions, (20) 
can be rewritten as

As a result, the solution to (31) is

I2N is the identity matrix with the size 2N×2N. According to 
the equation (18) and the perfect reconstruction property of Φ 
(ΦH Φ=I), one can say that

The two above equations and the matrix inverse lemma 
results in:
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As A and B are banded matrices, the matrix μAAT+2BBT 
is banded, as well. The following solution for (20) is the 
consequence of the combining (35) and (32).

DETOKS algorithm is obtained by combining the above 
routines. After calculating y and c, the other two components, 
i.e. s and f, will be calculated as follows.

K-complex is embedded in the low-frequency component f. 
K-complex detection is accomplished by applying the TKEO, 
i.e. T(.), to the low frequency component f. T(.) for a discrete 
time signal x is defined by

A binary signal is defined based on a constant threshold:

Durations of the detected K-complexes are checked with the 
definition of the K-complex. Durations smaller than 500 ms 
are rejected.  

4- RESULTS

A. Evaluating SST for K-complex Detection
In [15], we proposed the method SST for the purpose of 
K-complex analysis due to the fact that it makes a distinctive 
representation of this pattern in the time-frequency plane as 
Figure 1 indicates. 
First of all, we quantify the ability of SST in the detection 
of K-complex pattern. The analysis of variance (ANOVA) is 
used for this purpose.
As mentioned before, we use the first five signals of the 
database. For this part, the visual annotation made by the 
two experts is used. Actually, we have two sets. The first one 
consists of K-complexes that are scored by both experts.
To generate the second set, we extracted the segments of 
the signals which are labeled as K-complex by either of the 
experts and just used the remaining parts of the signal.
SST is applied to the K-complex segments. It is also applied 
to the same number of randomly chosen segments the non 
K-complex set. These segments have the random length 

between 500-1500 ms. After applying SST, for each segment, 
the absolute value of the coefficients and the amountof 
instantaneous phase are calculated. Then, the mean value of 
the coefficients is obtained in the frequency band 0.5-2 Hz. 
The same is done for the instantaneous phases.
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Fig. 1. An EEG signal containing two K-complexes (based on 
the expert’s scoring) and corresponding SST of the signal [15]

Fig. 2. One way ANOVA test on K-complex and non K-complex 
segments. Top: mean absolute values of the coefficients, 

Bottom: mean instantaneous phase 

Fig. 3. The multi-compare analysis corresponding to the 
ANOVA tests of Figure 2
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ANOVA is used to investigate the ability of each of the 
aforementioned features. The result of the ANOVA test is 
represented in Figure 2, which indicates the two groups of 
K-complex and non K-complex are well-separated with 
both features.
However, as seen in Figure 2, the mean value of the absolute 
coefficients had a superior performance compared  to the 
mean value of the instantaneous phases.  P-values associated 
with the mean absolute coefficient and mean instantaneous 
phase are 0.00055 and 0.0198, respectively.
Figure 3 shows the result of the multi-compare test, which 
indicates two groups are well-separated using both features. 
According to the result of the above tests, the absolute 
values of the SST coefficients in the frequency band which 
correspond to the K-complex can be used for the detection 
of this pattern.

B. Detection results
As mentioned before, the database provided extremely 
different scorings by two experts. Thus, we considered the 
results of [19] as another expert’s scoring. We use a voting 
decision procedure. In other words, we use the majority 
for the purpose of re-scoring the data. Table 2 illustrates 
scorings in  detail. The results given in [19] are referred to 
as expert 3.

As  shown in Figure 4, experts 1, 2 and 3 have  scored 70, 
41 and 15 K-complexes, respectively, which are not scored 
by any other expert. For other annotations, there are at least 

two votes. Hence, based on the above decision procedure, the 
total number of K-complexes would be 145.
In the next step, DETOKS is applied to the signals. The 
following step is applying our proposed method, which was 
described in the previous section. Results are provided in 
Table 3. It contains results of applying DETOKS and also 
our proposed method by using CWT and SST. 
Table 3 consists of the number of true positive and true 
negative and the number of false positive and false negative, 
which denoted by TP, TN, FP and FN, respectively. TN is 
calculated based on the following formulation [19]:

This formulation is based on the fact that there are five signals 
with the duration 1800 s. If the mean duration of K-complexes 
is considered 1 s, we would have (45) [19].

C. Statistical Analysis
In order to evaluate the results, the factors recall (sensitivity), 
specificity, precision, and accuracy are calculated. These 

factors are defined as                                                       and

                               , respectively. 

Other than the above factors, the results can be evaluated 
based on some more powerful measures [11, 21]. F1 is a 
measure of the accuracy of the test which is the harmonic 
mean of precision and recall in its traditional form

Matthews Correlation Coefficient (MCC) is a performance 
measure. It is defined by

It contains all four confusion matrix instances. Furthermore, 
it is a balanced measure which is applicable even if classes 
are of unequal sizes. MCC returns a value between -1 and 1, 
where -1 indicates the worst result while 1 shows the best. 0 
is related to a result not better than random.  
The statistical analysis results, based on the above equations, 
are summarized in Table 4. These results  show CWT-DETOKS 
outperforms DETOKS and SST-DETOKS outperforms the 
both.
Due to the great number of TN, specificity and accuracy 
are not discriminative. Hence, we use F1-score and MCC 
to express the results. The first bars in Figure 5 are related 
to the F_1-score, which are 0.60, 0.70 and 0.74 and the 
second bars  correspond to MCC, which are 0.62, 0.71 and 
0.76 for DETOKS, CWT-DETOKS and SST-DETOKS, 
respectively. 

Devyst et. Al [19]
Expert 1 209
Expert 2 64
Expert 3 176

Just expert 1 70
Just expert 2 15
Just expert 3 41

Only experts 1 &2 10
Only experts 1 & 3 96
Only experts 2 & 3 6

All experts 33

DETOKS CWT-DETOKS SST-DETOKS
TP 118 127 135
TN 8729 8764 8772
FP 126 91 83
FN 27 18 10

Table 2. Summarization of K-complex detection on the first five 
excerpts of dreams database

Table 3. Confusion matrix

Fig. 4. Scoring based on a voting procedure among experts

5 1800= − − −TN * FP TP FN (45)

(46)

(47)

, ,
+ + +

TP TN TP
TP FN FP TN TP FP+

+ + +
TP TN

TP TN FP FN

1
2 21 1

×
= =

++

recall percisionF
recall percision

recall percision

( )( )( )( )
. .−

=
+ + + +

TP TN FP FNMCC
TP FP TP FN TN FP TN FN



Z. Ghanbari and M. H. Moradi, AUT J. Elec. Eng., 49(2)(2017)215-222, DOI: 10.22060/eej.2017.12577.5096

221

5- Conclusion and Discussion
In this paper, we proposed a new approach for K-complex 
detection. In our previous work, SST was proposed for the 
analysis of the K-complex pattern. In this study, SST was 
assessed for the detection of the K-complex. Two features, 
including the mean absolute value of the coefficients and 
mean instantaneous phase in the frequency band, which  
correspond to this pattern, were studied. The analytic ANOVA 
test and the multi-compare post-test illustrate that these 
features are able to make a proper distinction between two 
groups of K-complex and non K-complex. This will support 
the idea of the efficiency of these features in classification-
based approaches.
As mentioned earlier, disagreement among experts’ annotations 
is a crucial challenge in validation of K-complex detection 
methods. DREAMS dataset, which is used in this study, 
contains visual scorings made by two experts and also scorings 
made by an automatic method. We considered the automatic 
approach as the third expert and obtained the labels based on 
a voting approach among the three experts. Of course, asking 
a third expert to score the data is a better idea, if possible. It 
might lead to better detection results. 
Our main contribution was proposing a method for 
K-complex detection which is a modification of DETOKS 
by using SST. DETOKS is a detection method based on 
sparse optimization. Most of the current K-complex detection 
methods are based on classification, which requires a quite 
big training set. However, recent detection methods, based 
on optimization, do not need this training procedure. SST is 
used due to its properties as a time-frequency transform is 
modified by reallocation methods, in addition to the previous 
results of applying it to biomedical signals that contain 
oscillation. SST is a wavelet method in its nature.  Because 
of the semi-sinusoidal form of the oscillatory component, the 
wavelet transform needs a semi-sinusoidal kernel. Morlet is 
an appropriate choice. The morphologic appearance of the 
Morlet, in addition to its ability to provide a time-frequency 

plane with a higher resolution than other wavelets, makes 
it proper for our purpose. Morlet is also used for the CWT-
DETOKS.
It is noteworthy to mention that although [11] and [19] used 
the same database, based on the aforementioned re-scoring, it 
was not possible to compare results with [19]. Additionally, 
due to the different approaches of calculating and reporting 
the results in [11], it was not possible to compare our results 
with those. Thus, we applied DETOKS on the data. Then, as 
the first contribution, the effect of using CWT in junction with 
DETOKS is studied. As reported in the previous section, it 
can modify the results compared  to DETOKS. Our proposed 
method, however, leads to the better detection results based 
on the results reported in the previous section. As expressed, 
CWT-DETOKS results in the higher number of TP and 
decreases the number of FN. SST-DETOKS improves these 
amounts compared to CWT-DETOKS. Statistical measures, 
especially F1-score and MCC, express the better performance 
of SST-DETOKS. Our goal was evaluating the proposed 
method. However, using some denoising preprocessings will 
improve the results.  
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