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ABSTRACT: Instantaneous Frequency Measurement (IFM) devices are the essential parts of any 
ESM, ELINT, and RWR receiver. Analog IFMs have been used for several decades. However, these 
devices are bulky, complex and expensive. Nowadays, there is a great interest in developing a wide 
band, high dynamic range, and accurate Digital IFMs. One Digital IFM that has suitably reached all 
these requirements is mono-bit zero-crossing IFM, made by some different producers at present. In 
this paper, the performance of mono-bit digital Instantaneous Frequency Measurement (IFM) device 
is analyzed. This analysis includes quantization error, thermal noise, clock jitter, comparator bias and 
also “Pulse-on-Pulse” occurrence. The error limits due to all these factors are computed and analyzed, 
and a unified approach to the system design is presented.
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1- Introduction
Instantaneous Frequency Measurement (IFM) unit is an 
essential part in any ESM device. Nowadays, even very 
simple Radar Warning Receivers (RWR) includes an IFM. 
The wideband instantaneous frequency measurement (IFM) 
receiver offers a high probability of intercept over wide 
instantaneous RF bandwidth, high dynamic range, good 
sensitivity and high-frequency measurement accuracy [1]. 
The development of analog IFM receivers dates back to 
several decades ago. The analog IFM is basically a crystal 
video receiver along with a frequency sensing method. A 
usual frequency sensing method  divides the signal into two 
paths with a short delay inserted in one path. If the amount 
of delay is equal to T, then the phase difference between the 
two signals will be equal to Df=2pfT. Thus, if the phase 
difference between these two signals is compared via a phase 
comparator, the result will be proportional to the signal 
frequency (see Figure 1).

It is known that the phase is only unambiguous within 2p  
radians. It means that with a fixed  delay line of T seconds, the 
unambiguous frequency range of IFM is equal to 1/T. Naturally, 

the output of the IFM discriminator is also proportional 
to the signal amplitude. Hence, in order to eliminate this 
undesirable effect, a limiting amplifier should precede the 
discriminator. In such a system, noise limited sensitivity 
is achieved. However, a separate crystal video amplitude 
channel is required to operate as a threshold detector, which 
determines the times at which there is sufficient signal level 
to consider the discriminator output valid. With a limiter, an 
accurate frequency measurement over a dynamic range of 70 
dB or more is practical [2]. However, as any other receiver, 
including a limiting amplifier, this incorporates capture effect, 
which means that whenever the IFM input consists of more 
than one signal, the system only responds to the strongest 
one and the other signals would not have any considerable 
effect on the output of the system [3]. Accordingly, the main 
drawback of a conventional IFM receiver is its incapability to 
handle “Pulse-on-Pulse” situations.
Weiss and Friedlander in [4] analyzed this problem in IFM 
receivers. In [5], the situation in which “Pulse-on-Pulse” 
occurrence can produce an error in frequency measurement 
of even the stronger signal was analyzed 
In [6], Hedge et al. proposed an IFM system with two 
correlators in order to handle “Pulse-on-Pulse” situation. 
Gruchalla and Czyzewski analyzed the performance of IFM 
receiver in a dense electromagnetic environment [7]. In the 
paper [8], the same authors in collaboration with Slowik 
suggested some solutions to resolve the “Pulse-on-Pulse” 
problem in common analog IFM receivers.
Also, some other authors tried to improve the other aspects of 
generic IFM scheme. For example, in [9] Thornton proposed 
some solutions to extend the bandwidth of IFM receivers. 
Furthermore, Chandra et al. in [10] worked on the zero-
crossing points of the signal to find an optimal estimation of 
the frequency of the signal.
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Fig. 1. Basic block diagram of an IFM receiver
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In order to achieve an accurate estimate of frequency, analog 
IFM receivers need several delay lines (usually four  or five) 
and the lengthiest of them should have a delay of the tenth or 
even hundreds of nano-seconds. This fact makes IFM receiver 
bulky, especially when it is designed to work on higher 
microwave frequency bands in which low loss waveguides 
should be used to produce the delay line. In addition, the 
temperature of these delay lines should be maintained 
constant in order to have a constant delay time. This fact 
necessitates an oven for the IFM receiver. All of the above-
mentioned facts make the generic IFM receivers unattractive 
if some alternative solutions exist. This fact is emboldened if 
we consider that despite all solutions suggested for “Pulse-
on-Pulse” problem, the performance of analog IFM receiver 
is not usually acceptable.
The problems incorporated in analog IFMs have attracted 
some authors to search for other schemes for the wide band 
frequency measurement. For example in [11] and [12] Xihua 
et al. developed some frequency measurement schemes based 
on optical methods. However, the most attractive alternative 
solution for analog IFMs is their digital counterpart. The 
basic idea of digital IFM is simply sampling the signal 
with a high sampling rate and, then, taking the fast Fourier 
transform (FFT) of the signal. However, this basic solution 
is not very  attractive because it requires a sampling rate in 
the order of several giga-samples per second for a wide-band 
operation. These high sampling rates in combination with 
sufficient resolution bits providing reasonable dynamic range 
have not been achieved yet. Moreover, calculating the FFT 
of the signal which is sampled at such a high sampling rate 
needs a tremendous logic, making the system bulky, complex 
and expensive. Despite all these problems, some authors have 
proposed a simplified version of this generic digital IFM with 
a limited bandwidth. In [13], Helton et al. developed such an 
idea to construct a digital IFM with 1.2GHz bandwidth. In [14], 
Tsui presented 1 and 2 bit FFT method to eliminate the need 
to high complex computation for digital IFM. However, he 
showed that the instantaneous dynamic range of such a system 
is limited to only 5dB. Some other authors presented a mixed 
combination of digital and analog IFMs to achieve the benefits 
of the both of them (i.e. digital and analog method) [15].
However, the most attractive applied digital method for 
frequency measurement is the zero-crossing scheme which is 
currently used by ELISRA corporation [16] and INPHI-TECH 
[17] in their IFM products. In this method, the signal is sampled 
using a single bit. It means that only the signal of signals are 
samples. These samples are then used to count the number of 
zero-crossing points in a pre-determined time interval (e.g. 
100ns). Now, if the signal contains only one sinusoid, then 
the number of zero-crossing points has enough information to 
estimate the frequency of the signal with sufficient accuracy.
Some recent works on IFM are as follows. In [18] Ivanov et 
al. used frequency-to-amplitude conversion in fiber optics as 
a method for Instantaneous Frequency Measurement. In [19] 
the authors used Bragg grating structure to implement IFM 
on a silicon chip. In [20], a multi-band stop filter structure is 
used for IFM.
In this paper, the zero-crossing method is discussed. In 
Section 2, the basic scheme is described and analyzed in 
order to find the cause of frequency measurement errors. 
Based on these calculations, in Section 3, it is described how 
a little change to this basic scheme can improve the frequency 

measurement accuracy considerably. Section 4 illustrates  
how the “Pulse-on-Pulse” occurrence can be detected and 
how in some special cases the frequency of both signals can 
be estimated.  In sections 5, 6 and 7, the effects of thermal 
noise, clock jitter, and comparator bias on the performance 
of the system are analyzed. In section 8, it is demonstrated 
that how the above-mentioned effects can restrict the 
suitable frequency coverage range of the system. In section 
9, all the considerations of previous sections are reviewed, 
a general and unified algorithm for the system is provided, 
and the results of different derived approximate equations are 
compared with simulations. Finally, the conclusion part of 
this paper is presented in section 10.

2- The proposed method
As mentioned earlier, in a mono-bit digital IFM, a signal is 
sampled at a rate equal to fs and any sample, say x(kTs), is 
converted to a bit, ak, according to the following eqaution:

Then, the number of zero-crossings is calculated using the 
following logical operation:

Here ⊕ stands for logical XOR and aks are digitized samples of 
a signal which are produced using the following comparison:

According to Figure 2, we have:

According to Figure 2, z is the number of zero-crossings of the 
analog signal and N denotes the number of digital samples of 
the signal. Actually, if the first and the last samples coincide 
with the first and the last zero-crossing, then the frequency 
estimate is out of error, but  it does not usually happen. In this 
equation, both t1 and t2 have a uniform distribution between 0 
and 0.5fc, thus  ∆t has a triangular distribution between 0 and 
1/fc. This equation can be rewritten as:

Here, u is a random variable, with a distribution similar to ∆t, 
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Fig. 2. Relationship between number of zero-crossings and 
frequency of signal
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but scaled by fc. Solving this equation for fc, we have:

The mean of the random variable u is equal to 0.5 and its 
standard deviation is 0.32; hence, the LMSE estimate of fc 

and the rms error associated with this estimation are equal to:

2- 1- Modification of the basic method
As was mentioned in the previous section, the main cause 
of error in frequency estimation is ∆t, i.e. the actual zero-
crossing points and the location of the first and the last digital 
sample. In order to reduce the effect of this error, it is possible 
to count all samples before the first and after the zero-crossing 
points. Doing so, there remain N1 samples and we have:

Here, t1 is the time difference between the first digital and 
first zero crossing. Also, t2 is the difference between the last 
zero-crossing and the last digital sample and N1 is the number 
of samples in between (refer to Figure 2). Here,    and    are 
uniformly distributed between 0 and 1/fs, and are independent 
of fc. Thus, we have:

In this equation      is between 0 and 2. Therefore, it is many 
times smaller than (N1-1). This fact can help us to approximate 
the above equation as:

This linear equation can be used to find the LMSE estimate of 
fc and the rms error of this estimation by:

Always fc is less than half of fs; thus, the rms error of the 
modified method is at most half that of the basic method. 
However, for smaller fc values, the difference between the 
accuracy of these two methods is significant. Furthermore, in 
the proposed method, there is no need to repeat the calculation 
with half, one quadrant and … of the original sampling rate in 
order to obtain a higher accuracy.
In Figure 3, equation (10) is compared with simulation 

results. As  shown, the mean value of the quantization error is 
the same as that of (10). However, the exact error is a function 
of input frequency. Actually, for input frequencies equal to 
fs/2n, the error is minor, while for some other frequencies, the 
error may be about 1.7 of that given by (10).

2- 2- Pulse on pulse detection
As mentioned earlier, one of the main drawbacks of analog 
IFM receivers is their incapability to handle “Pulse-on-
Pulse” situation. In a busy electromagnetic spectrum or 
when a continuous wave (CW) source exists, this inability 
can cause a great difficulty. Therefore, in any IFM scheme, 
the performance against “Pulse-on-Pulse” situation should be 
analyzed carefully. 
The method proposed in the previous sections is based on the 
zero-crossings of the signal. If the signal contains only a pure 
sinusoid, then all its zero-crossings should be separated by 
1/2fc. As  mentioned in [21], usually a uniform zero-crossing 
represents a pure sinusoid. There are very rare cases in which 
a combination of more than a single sinusoidal signal can 
produce a uniform zero-crossing pattern. Thus, any deviation 
from a uniform zero-crossing may represent a “Pulse-on-
Pulse” situation. However, as it will be explained in the next 
section, the existence of thermal noise can divide the distance 
between two consequent zero-crossing points to two sections, 
hence producing a non-uniform pattern. However, again as it 
will be explained later in the next section, such an occurrence 
is probably only once within the sampling window. Regarding 
this fact, the following algorithm can help us determine a 
“Pulse-on-Pulse” occurrence:

1- count the samples between all consequent zero-crossing 
points (kis).
2- delete the two smallest values of kis.
3- in remaining kis, determine the difference between the 
smallest and the greatest one (d).
4- if d is higher  than two samples, then a “Pulse-on-Pulse” 
situation  occurs; otherwise, the pulse is a pure sinusoid.

The above-mentioned algorithm can determine whether 
a “Pulse-on-Pulse” has occurred or not; this can help us to 
solve the problem to some extent. But usually, we want to 
determine the frequency of both sinusoids existing in the 
pulse. Assume that we have the following signal:
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Fig. 3. Quantization error (a comparison between equation 10 
and simulation result)
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Without any further assumption, it is not easy to determine 
the zero-crossing behavior of this signal in an understandable 
manner. Thus, we assume that A2 is much smaller than A1. At 
the end of this section, we will refer again to this assumption 
to analyze its validity requirements. We assume that A2<<A1. If 
A2 is equal to zero, then the number of zero-crossing points of 
the signal are equal to tk=k/2f1. With a non zero A2 , the zero-
crossings change by a little amount equal to Δtk. Thus  we have:

Therefore we have:

Hence  the zero-crossing is modulated with a sinusoid with a 
carrier frequency of f2. This signal is sampled at a rate equal 

to 2f1. Thus, if f2 is less than f1 and also f1 less than

(this is the necessary condition for changing the zero crossing at 
least by one sample) , then f2 can be calculated using different 
frequency estimation methods, e.g. the method explained in 
[22] and [23]. Otherwise, the existence of the second sinusoid 
cannot be detected or its true frequency cannot be estimated 
correctly.
In the beginning of this section, we assumed that the amplitude 
of the second sinusoid is much less than the first one. Now, we 
are to analyze the validity using the results of Figure 4. In this 
simulation, a pulse with 100ns length contains two sinusoids. 
The first one is a 1GHz signal with unit amplitude, the second 
has a frequency equal to 400MHz, and an amplitude less than 
or equal to the first one. This signal is sampled at a rate equal 
to 10GHz. The zero crossings are calculated using equation 
(2). Then, the changes in zero-crossing points around the mean 
value are derived and the FFT of this signal is calculated. The 
result is represented in Figure 4. It can be shown that, while 
f2 is less than f1, even with the same amplitudes it is possible 
to find the frequency of the second pulse with an acceptable 
accuracy. The result is valid at least within a 40dB dynamic 
range. However, when f2 is greater than f1, then the spectrum 
folds over f1 and the true f2 value becomes ambiguous. Although 
not represented in these figures, when f1 or f2 increases and 
approaches fs/2, the result will not become highly satisfying.

3- Effect of imperfections

3- 1- Effect of additive noise
The various effects of a thermal noise on the frequency 
measurement process are presented in Figure 5.

With referring to Figure 5, one can say that the additive 
noise may be effective only when it is so strong such that it 
can change the sign of a sample. In this case, even if the sign 
changing  the sample be next to a zero-crossing point within 
the sampling window, the noise has no effect on the estimated 
frequency. The only result of such an event can be a “Pulse-on-
Pulse” declaration. If the sign changing the sample is inside the 
sampling window but not near any zero-crossing point, then it 
adds 2 units to z. As a result, the estimated fc changes by

The probability of such an event is calculated by

Here, A is the amplitude of the input sinusoidal signal and σN 

is the standard deviation of the noise. The above equation can 
be solved only numerically. Our numerical analysis shows that 
the above equation can be approximated by the following one:

The above relation is easier to handle than the relation (15). 
On the other hand, if the additive noise changes the sign of 
the first or the last sample, then it can increase or decrease N1 
by 1, resulting in the following frequency estimation error:

The probability of such an error is calculated by:

Again, it can be numerically shown that (18) can be suitably 
approximated by the following one,
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Fig. 5. Various effects of a thermal noise on frequency 
measurement algorithm
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Now the mean and rms error in frequency measurement due 
to additive noise are  obtained from

Here, it is assumed that P1 is small enough so that only one 
change in the sign is probably within the sampling window. 
Using the above-mentioned inequalities, we have:

The above approximation is correct whenever A is many 
times greater than σN (i.e. high SNR values). For smaller SNR 
values the simulation can be used to find the error bounds. 
The comparison between the simulation and that of (21) is 
represented in Figure 6.
Referring to (21), the value of error depends on both SNR and 
the value of β. While the value of SNR is not in our hand, it 
is possible to change the value of β using a suitable sampling 
frequency. Our simulations show that (as an empirical result) 
a sampling frequency between 4 and 8 times of fc results in 
a good error performance and higher sampling rates do not 
usually reduce the error considerably. Since the value of fc is 
unknown at first, an iterative loop using different sampling 
frequencies can be used to achieve the best estimate for fc.

As displayed in Figure 6, for SNR values below 15dB, the 
approximations made in driving the equations could not be 
applied. Moreover, it seems that the true value of the rms error 
is approximately two times greater than what is suggested by 
the equation. This difference should be analyzed in a further 
research.

3- 2- Effect of clock jitter
Clock jitter caused by phase noise of the clock oscillator results 
in sampling points different from the ideal ones. If no clock 

jitter existed, the samples would be taken at points tk=kTs, but 
clock jitter shifts the sampling points to tk=kTs+∆tk. Here ∆tks 

are random variables, usually modeled as a Gaussian process 
with a standard deviation of σJ. Whenever the sampling 
rate is sufficiently greater than fc, none of the  clock jitters 
inside the sampling window has  the effect on the number of 
zero-crossings and estimated fc as well. The case of higher fc 

values will be discussed later. For now, we will assume that 
fs is sufficiently (at least 4 times) greater than fc. In this case, 
just if the clock jitters at the first and last samples cause the 
addition or subtraction of a sample to N1, then the result will 
be an error in frequency measurement. It is straightforward to 
show that the probability of one sample being added to N1 as 
a result of clock jitter at the first sample is equal to:

When σJ<<Ts, which is usually the case, the above equation 
can be simplified as:

The effect of one unit error in N1 value on the estimated 
frequency, can be calculated by taking the derivative of
with respect to N1. Regarding that N1>>1, we have:

Now, with this probability, the mean and rms of frequency 
measurement error caused by clock jitter are equal to:

In the above equation, it is noticed that Pe is very smaller 
than 1. Your comment is ok  the above equations mf is always 
much smaller than the quantization error (i.e. N1 is always a 
digit) therefore only the rms error may be considerable. This 
rms error can further be simplified as:

Figure 7 compares the result of simulation and the one 
calculated in (26). Referring to this figure if the input 
frequency is not in the vicinity of fs/2, then (26) estimates the 
effect of clock jitter suitably.

3- 3- Effect of comparator bias
Ideally, the sinusoid samples are compared to zero in order to 
be turned into bits which are used for frequency estimation. 
In reality, the comparator has a bias voltage equal to b and the 
samples are compared to this value. It is logical to assume that 
b is so less than signal amplitude (A); otherwise, the system 
performance will be awkward. Given this assunmption, the 
kth zero-crossing (threshold-crossing) point is shifted by Dtk  
seconds according to the following equation:
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Fig. 6. Comparison between simulated and analytic effect of 
additive noise
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This change that occurrs inside the sampling window cannot 
change the number of zero-crossings. But at the first and 
last samples, it can change the total number of samples, (N1) 
hence, changing the estimated frequency. The effect of this 
error is different when the number of zero-crossings is even 
or odd, also the result is different when  is smaller or greater 
than one sampling period (Ts). These different situations are 
shown in Figure 8. According to this figure, for both cases, 
namely 1 and 2, when ∆t<Ts, the probability of one sample 
error at the beginning and at the end is equal to P=∆t/Ts. 
Hence, the rms frequency error due to unwanted bias is equal 
to the follwoing:

When ∆t>Ts, for  case 1, the following error occurs due to 
bias voltage:

This value is a possible error due to comparator bias. For case 
2, the errors at the beginning and the end, compensate each 
other, and at most one unit change is introduced to N1 value. 
Thus, the error, in this case, is equal to:

4- Overview of proposed scheme
In the previous sections, the optimal frequency estimation 
algorithm in mono-bit IFM was described and different 
factors affecting the performance of the system was analyzed. 
Here again, we review all the above-mentioned topics in a 
unified structure, in order to have a better understanding of 
the proposed system and its performance.
First of all, the sampling frequency (fs) and the length of 
sampling window (T) should be determined. Ideally, the 
sampling frequency should be a little greater than the double 
of the maximum input frequency. In practice, maximum 
input frequency may be as high as 40GHz; thus,  fs should be 
80GHz or higher. However, with the current technology, such 
a sampling speed is impossible. Therefore, fs is determined 
by affordable technology, then the input signal is divided into 
sub-bands and is down-converted to frequency bands suitable 
to be sampled with fs rate. Regarding the recent technology, a 
sampling rate up to 10GHz is almost possible. With this rate, 
the collected data can also be analyzed in a real time.
The sampling period, sat T, is determined regarding 
quantization error. The highest input frequency is almost 
fs/2. Refer to Table 1. For this frequency, the quantization 
error is equal to 0.16fs/N1 which is around 0.16/T. Hence, 
if a frequency error up to ∆Fmax is acceptable, then the 
sampling period should be selected equal to or greater than 
0.16/∆Fmax.
After signal sampling, the processing algorithm should be 
performed. This algorithm is represented in Figure 9. In this 
figure, if the comparator bias is ignorable, then the section 
devoted to this part can be omitted. Also, if the system is 
not to work in a busy environment, then the part devoted to 
“Pulse-on-Pulse” processing could also be omitted, reducing 
the computational load considerably.
The causes of error in the system are listed in Table 1. The 
quantization error was discussed earlier. The other errors 
should be about quantization error or less. For thermal noise 
according to Figure 12, at an SNR equal to or higher than 
15dB, in the worst case, the error is about 0.25/T, less than two 
times that of the quantization error. Therefore, it seems that a 
15dB SNR is almost suitable in order to have an acceptable 
performance; however, a 20dB SNR is recommended for a 
guaranteed performance.
Referring to Table 1, the worst clock jitter effect occurs at 
highest input frequency (fs/2). For this input frequency, the 
error due to clock jitter is almost equal to                  . This 
value should be less than or equal to 0.16/T. Thus we should 
have sj<0.128 fs.
The worst comparator bias effect occurs at highest input 
frequency (fs/2). At this input frequency, the error is equal to 

Hence,             should be less than 0.16. This 
results in the inequality b<0.16Amin. The results of this 
section are given in Table 2.
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28 and simulation).
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Fig. 9. The algorithm of zero-crossing mono-bit IFM

Table 1. Different sources of error in mono-bit DIFM

Error Type Value Note

Quantization (Finite Sampling Rate)

Thermal (Additive)

Clock Jitter

Comparator Bias b is system bias

Pulse on Pulse
No Considerable effect 

on stronger signal if ∆P is 
greater than 6dB

Can be detected by 
variation in the distance 

of consequent zero-crossings

1

0.32 sf
N

( )( ) 0.92 2

1

sin 2
7.88 1.96

−γ pβ γ β
+s

Qf
N

,β = γ =
s

c

s N

f A 
f

1

0.798sc
J s

f f
N

1

1
p

s cbf f
N A



Y. Norouzi et al., AUT J. Elec. Eng., 49(2)(2017)131-140, DOI: 110.22060/eej.2017.12155.5050

138

5- CONCLUSION
In this paper, the performance of mono-bit digital IFM device 
was analyzed. It was shown that how the performance of the 
original system can be modified using a minor change in 
the algorithm. Then, different causes of error in this system 
were analyzed, and some closed form approximate equations 
describing each error were derived. The effect of the pulse-
on-pulse occurrence and the effect of input frequencies near 
the Nyquist rate were discussed. Finally, we presented a 
flowchart describing the whole algorithm for the system as 
well as the considerations necessary for the system design.
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