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ABSTRACT 

Delamination is one of the most common failure modes in composite structures. In particular, when the 

laminated composites are subjected to compressive loads, delamination becomes a constraint in the design 

process. In this study, the system is modeled as a plate supported by an elastic foundation. The elastic 

adhesive layer between the buckled sublaminates is represented by some parallel springs. The plate on a 

discontinuous foundation is treated as a continuous foundation but with added transverse forces at a number 

of discrete points in the delamination regions to make the net transverse force at each of these points to 

vanish. The delaminated plates which are analyzed in this study contain one or two through-the-width 

delaminations. Also, an extensive finite element analysis is performed by using ANSYS5.4 general purpose 

commercial software, and the results are compared with those obtained by the analytical model. The 

agreement between the results is very good. 
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1.  INTRODUCTION 

Fiber-reinforced composite materials have been 

increasingly used over the past few decades in a variety of 

applications in which a fairly high ratio of 

stiffness/strength to weight is required. However, these 

materials are prone to wide range of defects and damages 

that can cause significant reductions in stiffness and 

strength. In particular, when the laminated composites are 

subjected to compressive loads, delamination becomes a 

constraint in the design process. Various methods have 

been proposed for the analysis of a plate that contains 

through-the-width delaminations. Chai et al. [1] 

established an analytical one-dimensional model for the 

analysis of delamination buckling of beam-plate in 1981. 

Since then, the delamination buckling of one-dimensional 

beam-plate has been studied by several researchers. 

Bottega and Maewal analyzed the buckling behavior of 

circular plates with a circular delamination, which is 

located in the center of the plate, under the assumption of 

axisymmetric deformation [2].Shivakumar and Withcomb 

studied the buckling behavior of thin elliptical 

delamination using the Rayleigh-Ritz and finite element 

method [3]. Anastasiadis and Simitses analyzed the 

problem by simulating the contact of the delamination 

regions through the application of distributed springs of 

constant stiffness. Davidson used the Rayeigh-Ritz 

method to determine the load and strain at which 

delamination buckling occurred for a composite laminate 

containing a single elliptical shape delamination [5]. Piao 

used a consistent shear deformation theory to analyze the 

beam-plate delamination buckling [6]. 

Suemasu studied the buckling behavior of delaminated 

composite laminates by using classical laminate plate 

theory and first order shear deformation theory [7]-[8]. 

Adan and Sheinman solved the governing differential 

equation for beams with multiple through the width 

delaminations to find the buckling load [9]. Wang and 

Cheng used spring simulation technique to determine the 

local buckling load of delaminated beams and plates [10]. 

They have then used the developed spring simulated 

model to determine the strain energy release rate of 

delaminated composite plates [11]. Shahwan and Wass 

used the nonlinear spring distribution between a thin plate 

which is bonded laterally to a thick plate to analysis 

buckling load [12]. Sleight and Wang compared the 

results for the buckling loads of debonded sandwich panel 

under compression obtained by using spring distribution 

between face sheet and core with the corresponding 

results obtained by utilizing FEM and Rayleigh-Ritz 

methods separately [13]. The buckling behavior of the 

laminated composites with two centrally through-the-

width delaminations was analyzed by Shu [14]. In his 
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study, the classical laminate theory was employed and the 

effects of the constraint imposed by the sublaminates to 

each other and to the base laminate on the buckling 

behavior of the plate were investigated. Andrews et al. 

formulated a technique by utilizing the classical laminated 

plate theory to study the elastic interaction of the multiple 

through the width delaminations in laminated plates 

subject to static out of plane loading while deforming in 

cylindrical bending [15]. Ovesy et al used spring 

simulated model to find the buckling load of the laminates 

with multiple through-the-width delaminations [16]. In 

their study, the sublaminates were modeled as plates 

supported by an elastic foundation (i.e., base laminate) 

and the laminates contained multiple delaminations 

located through the thickness and length of the laminates 

were analyzed by solving the corresponding differential 

equations. Kharazi et al used spring simulation technique 

to analysis the buckling of the laminates including bend-

twist coupling effects with multiple embedded 

delaminations [17]. In this study, the minimization of the 

total potential energy of the system was used to obtain the 

buckling load. Kharazi and Ovesy investigated the 

compressive behavior of composite laminates with 

through the width delaminations analytically [18]. In their 

study, the analytical method is based on the CLPT theory 

and its formulation is developed on the basis of the 

Rayleigh-Ritz approximation technique to analyze the 

bucking and post-buckling behavior of a delaminated 

laminates. This method can handle both local buckling of 

the delaminated sublaminate and global buckling of the 

whole plate. 

In the current paper, a continuous method of analysis 

based on the CLPT theory is developed for determining 

the buckling loads of plates containing multiple through-

the-width delaminations located at different positions 

across the thickness. In this method, the springs of 

constant stiffness are distributed between the delaminated 

layers. Some interesting results are obtained and 

compared with those achieved by the application of the 

finite element method analysis. The agreement between 

the results is very good. For the reader’s information, a lot 

of parameters affect the buckling load of the delaminated 

composite laminates such as geometrical parameters of 

the laminate and the delamination area, material 

properties and lay-up sequences of the whole laminate 

and delaminated sublaminate, number of delaminations, 

their shapes and positions in the plane and through the 

thickness. In this paper, through-the-width�delaminations 

have been considered, and the effects of the number of the 

delaminations and their positions in the plane and through 

the thickness on the buckling load have been investigated. 

Finally, the authors strongly believe that it is the first time 

in the literature that the developed spring simulation 

technique is implemented to analyze the buckling problem 

of laminates containing multiple through-the-width 

delaminations located at different positions across the 

thickness. 

2.  MODELING TECHNIQUE 

As mentioned earlier in the study, Wang and Chang 

have developed a buckling analysis method by using 

spring simulation technique for plates which contain 

through-the-width delaminations [10]. Since the plates are 

assumed to be free along their longitudinal edges, they are 

categorized as beam-plates which encounter cylindrical 

bending. In their study, the system is modeled as a beam 

supported on a continuous elastic foundation by using 

parallel spring distribution (Fig. 1). The stiffness of the 

springs is assumed constant. It is noted that in order to 

make the analysis continuous, the spring distribution is 

used for the delaminated regions as well as for the 

undelaminated regions. However, in the delaminated 

regions, some fictitious transverse forces are added at a 

number of discrete points in order to make the net 

transverse force at each of these points to vanish. 

 

 
Figure 1: A continuous model of a delaminated plate under 

compression with parallel springs. 

 

This modeling technique is also capable of simulating 

generally elastic supports by including the rotational 

springs with different spring constants at the loaded ends. 

The same modeling technique is adopted in the current 

study, in which the simply supported boundary conditions 

are assumed at the loaded ends. Effectively, by increasing 

the stiffness of the springs the boundary conditions at the 

delamination edges tend to become of clamped nature. 

However, it is noted that whilst Wang and Chang studies 

are confined to the problem of either single delamination 

or multiple delaminations located at the same positions 

across the thickness, the scope of the current paper is 

significantly enhanced by extending the application of the 

spring modeling technique to the problem of laminates 

containing multiple through-the-width delaminations 

located at different positions across the thickness.  

The governing out-of-plane differential equation for a 

symmetrically laminated composite plate which is under 

in-plane loadings Nx, Ny, Nxy as well as a transverse load q 

is [19]-[20]: 
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where w is the out-of-plane deflection and Dij coefficients 

are the bending stiffness terms for the composite plate. 

For a specially orthotropic plate subjected to uniaxial in-

plane compression Nx, whilst undergoing cylindrical 

bending, the governing equation can be simplified as 

follows: 
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The above equation is assumed to be applicable to the 

analysis of each sublaminate which exists in a beam-plate 

with multiple delaminations. This means that an 

individual sublaminate is assumed to be specially 

orthotropic, and encounter cylindrical bending. For a 

given sublaminate, the transverse load (q) is the force due 

to the springs and fictitiously added transverse forces. For 

a sublaminate, (2) will become [10]: 
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and P is the axial compression force, Kf is the transverse 

stiffness of the parallel springs, D is the flexural stiffness 

of the sublaminate, qi is the fictitious transverse loads 

added at the delaminated regions, �(x-xi) is the Dirac-delta 

function and ND is the number of the discrete points taken 

in the delaminated regions. 

The simply supported boundary conditions at the loaded 

ends (at x=0 and x=L) are: 
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The transverse displacement for the sublaminate with 

simply supported boundary conditions is represented in 

the following form: 
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By substituting (6) in the governing differential 

equation (3), the Wm coefficient for m ranging from 1 to 
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As mentioned at the beginning of this part, the net 

traction at each point x=xi in the delamination region is 

required to vanish, i.e., 
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that may be approximated for a small value of �xi by: 
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With the assumption of constant �xi=�x in the 

numerical computations and by substituting the Wm given 

in (7) in (6) and (10), a system of homogeneous algebraic 

equations in terms of qi (i=1,2,…,ND) is obtained. This 

leads to n equations which can be written in a matrix 

form: 
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The elements of the vector{ }X  are the transverse 

loads qi (i=1,2,…,ND), which are yet unknown and the 

elements of the matrix A are: 
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The non-trivial solution for (11) is obtained by setting 

the determinant of the matrix A equal to zero. This 

corresponds to finding the lowest value of buckling load P 

(i.e. Pcr) 

Fig. 2 shows a composite plate containing two 

through-the-width delaminations in different positions 

across the thickness. This problem is attempted to be 

solved by applying the continuous modeling concept of 

distributed springs, which is depicted in Fig. 2. It is noted 

that the total load P is composed of two parts; namely P(1) 

and P(2), which are the loads applied to the sublaminates 

(1) and (2) respectively. It is also noted that the following 

relationship exists among the loads: 
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Figure 2: A continuous model of a delaminated plate 

under compression with parallel springs containing two 

through-the-width delaminations 

 

The springs are considered between the sublaminates 

(1) and (2) as well as between the sublaminate (1) and the 

base laminate. The governing coupled differential 

equations are: 
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where the superscripts are related to the sublaminates (1) 

and (2), and ND
(1) and ND

(2) are the number of the discrete 

points taken in the delaminated regions. Boundary 

conditions at the loaded ends (x=0, x=L) are simply 

supported: 
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Similar to the case of a plate with one through-the-

width delamination, in the case of a plate with multiple 

delaminations, the transverse displacement for each 

sublaminate can be represented by the following 

equations: 
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By substituting (16) in the governing differential 

equations (14) the W
(1)

m and W
(2)

m coefficient for m 

ranging from 1 to � are obtained: 
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In line with the solution procedure adopted earlier in 

the study for the case of a single delamination, the net 

traction at each discrete point in the delamination regions 

is required to vanish, i.e., 
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Similar to the case of a single delamination, by 

substituting (17), (18), (19) into (16), and substituting the 

outcome into (21), a system of homogeneous algebraic 

equations in terms of qi(1) (i=1,2,…, ND(1)) and qr
(2) 

(r=1,2,…, ND
(2)) is resulted. The resulting ND

(1)
+ND

(2) 

equations can be written in the following matrix form: 

(22)�[ ]{ } 0=XA �

The elements of the vector{ }X  are the qi
(1) and qr

(2) 

which are unknown, and the elements of the matrix A are 

dependent to the applied loads P(1) and P(2). The non-

trivial solution for (22) is attempted by setting the 

determinant of the matrix A equal to zero. The resulting 

equation is solved in conjunction with (13-a), (13-b) and 

(13-c) to find the lowest value of the buckling load P. 

3.  FINITE ELEMENT ANALYSIS 

The FEM analysis is performed in order to investigate 

the validation of the results obtained by the method 

developed in the current study. The FEM buckling 

analysis is performed employing ANSYS5.4 software, 

commercially available finite element code. Within 

ANSYS5.4 software, the buckling analysis is a two-pass 

analysis. The first pass is a linear static analysis which 

determines the stresses for a given reference set of loads. 

The second pass is an eigen-value analysis which 

provides the results in terms of load factors (eigen-values) 

and mode shapes (eigen-vectors).  

In this study, three different FEM modeling 
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approaches are adopted. In the first approach, which is 

designated as Beam modeling technique, the model is 

constructed by using beam elements which are supported 

on the elastic foundation. It is noted that each beam 

element has two nodes. In the second approach, which is 

designated as Shell modeling technique, the beam 

elements considered in the Beam modeling technique is 

replaced by 4-noded shell elements which are again 

supported on the elastic foundation. Finally, in the third 

approach designated as Solid modeling technique, the 

whole laminate is modeled by implementing layered 8-

node brick elements with 3 degrees of freedom at each 

node.  

It is noted that in all cases of FEM models, the mesh is 

further refined at the discontinuous delamination front in 

order to preserve the accuracy of the results. 

4.  RESULTS ADN DISSCUSION 

The material properties of the carbon/epoxy which are 

used in this study are E11=148000MPa, E22=9650MPa, 

G12=4550MPa and υ12=0.3.  

Fig. 3 depicts the convergence investigation for the 

buckling load of a simply-supported laminate with a 

central through-the-width delamination. The lay-up 

sequence of the sublaminate is [0,90,90,0] and the 

thickness of the sublaminate is 1mm. The length of the 

plate is L and the delamination length is LD. The buckling 

loads are non-dimensionalised by the buckling load Pcr, 

which corresponds to the converged buckling load of the 

plate under consideration. The numerical values of the 

geometrical parameters and material properties are shown 

in the figure. The parameter m represents the number of 

terms in the Fourier series which postulates the transverse 

deflection of the plate. The parameter ND is the number 

of discrete points in the delaminations regions.It is seen in 

the figure that for a given number of discrete points, the 

buckling load is decreased and converged to a certain load 

by increasing the number of terms in the Fourier series. 
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Figure 3: Convergence study of buckling loads for a laminate 

with a central delamination (L=0.797m, LD=0.305m, Kf=27E6 

N/m3, D=11.3N-m, Pcr=120.5N) 

 

 

Fig. 4 also shows the convergence study for simply-

supported plates with a centrally through-the-width 

delamination. The lay-up sequence of the sublaminate is 

[0,90,90,0] and the thickness of the sublaminate is 1mm. In 

this figure, the variation of the dimensionless buckling 

loads with the change in the number of discrete points ND 

is depicted. The buckling loads are non-dimensionalised 

by the buckling load Pcr0, which corresponds to the 

buckling load for a plate without delamination. The 

numerical values of the geometrical parameters and 

material properties are shown in the figure.  The effects of 

change in the delamination length LD on the buckling 

load are also investigated in Fig. 4. The figure shows that 

for any given delamination length, a converged value of 

the buckling load can be obtained by using approximately 

100 discrete points. It is noted that the number of terms in 

the Fourier series is assumed to be nine (i.e. m=9). 

Moreover, a very good agreement is seen to exist between 

the converged results obtained in the current study and 

those obtained by Wang and Cheng [10]. 
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Figure 4: Convergence study of buckling loads for laminates 

with a central delamination (L=0.797m, Kf=27E4 N/m3, D=11.3N-

m, Pcr0=86.6N, m=9) 

 

Fig. 5 depicts the variation of the dimensionless 

buckling loads with the change in the delamination length 

for simply-supported plates with a central through-the-

width delamination. The lay-up sequence of the 

sublaminate is [0,90,90,0] and the thickness of the 

sublaminate is 1mm. The material properties are shown in 

the figure. In order to further investigate the validation of 

the developed spring simulation technique, the various 

FEM buckling analyses based on different modeling 

approaches are performed and their results are presented 

in the figure. A very good agreement is seen to exist 

between the results obtained by the application of the 

developed method in the current study and those obtained 

from different FEM analyses. For completeness, it is seen 

in the figure that the buckling loads of the sublaminates 

are decreased by increasing the length of the 

delamination. 
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Figure 5: Non-dimensional buckling loads of laminates 

containing a central delamination (L=0.797m, Kf=27E8 N/m3, 

D=11.3N-m, Pcr0=4397.3N). 

 

Fig. 6 depicts the variation of the dimensionless 

buckling loads with the change in the position of a 

through-the-width delamination along the length of a 

simply-supported plate. The lay-up sequence of the 

sublaminate is [0,90,90,0] and the thickness of the 

sublaminate is 1mm. The buckling loads are non-

dimensionalised by the buckling load Pcr0, which 

corresponds to the buckling load for a plate with a 

centrally located delamination. The numerical values of 

the geometrical parameters and material properties are 

shown in the figure. Two different FEM analyses, namely 

Shell and Solid, are carried out and their results are 

presented in the figure. Moreover, the results obtained by 

Wang and Cheng [10] are also presented. Once again, a 

very good agreement is seen to exist between the results 

obtained by the application of the developed technique 

with those either obtained from FEM analyses or 

available in [10]. The figure shows that as long as a non-

central delamination is located close to the centre, the 

buckling load of a plate with a non-central delamination is 

almost equal to that of a plate with a central delamination. 

However, as the delamination moves near to the ends of 

the plate, a significant loss in the buckling capacity of the 

sublaminate occurs. It is noted that the comparable results 

are obtained by using much less degrees of freedom in the 

presented method in comparison with the solid finite 

element analysis. For example, in the case of the plates 

with single through-the-width delaminations 150 degrees 

of freedom have been used for the presented method 

whilst for the same case 8600 degrees of freedom have 

been used in the solid finite element analysis. 

Fig. 7 represents the variation of the dimensionless 

buckling loads for a plate which contains two through-

the-width delaminations at different locations along the 

length. It is noted that both delaminations are located at 

the same position across the thickness of the plate.  It is 
also noted that whilst the position of one of the 

delaminations is assumed to remain unchanged and stay at 

the centre, the effects of change in the position of the 
other delamination along the length of the plate are 

investigated. The lay-up sequence of the sublaminate is 

[0,90,90,0] and the thickness of the sublaminate is 1mm. 

The values of the geometrical parameters are shown in the 

figure. The material properties of the plate and the 

buckling load Pcr0 are the same as those considered 

earlier in connection with the plates studied in Fig. 6. The 

FEM analyses based on Shell modeling technique are also 

performed to find the buckling loads of plates containing 

multiple through-the-width delaminations. It is seen that 

the buckling loads obtained in the present study by the 

application of the developed spring simulation technique 

are in good agreement with those available in [10] and 

with FEM results. It is also seen that when one of the 

delaminations is fixed at the center of the plate whilst the 

position of the other delamination is moved towards the 

ends of the plate, the buckling load for the plate with two 

delaminations are converged to the buckling load of a 

plate containing one delamination. In other words, in the 

case of a plate with two delaminations, the effects of the 

centrally fixed delamination on the buckling load 

becomes insignificant as the other delamination moves 

towards the ends of the plate. 
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Figure 6: Non-dimensional buckling loads of laminates with a 

single delamination (L=0.797m, LD=0.1L, Kf=27E6 N/m3, 

D=11.3N-m, Pcr0=446.2N). 
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Figure 7: Non-dimensional buckling loads of laminates with two 

through-the-width delaminations (L=0.797m, LD1=LD2=0.1L, 

Kf=27E6 N/m3, D=11.3N-m, Pcr0=446.2N). 
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Fig. 8 shows the variation of the dimensionless 
buckling load of a plate, which contains two through-the-

width delaminations located at different position across 

the thickness of the plate, with changes in the position of 

the delaminations through the length of the plate It is 

noted that the delaminations are of the same length, and 

move together along the length of the plate. The lay-up 

sequence of the each sublaminates is [0,90,90,0] and the 

thickness of the each sublaminate is 1mm. It is also noted 

that the buckling loads are non-dimensionalised by the 

buckling load Pcr0, which corresponds to the buckling 

load for a plate without delamination. The numerical 

values of the geometrical parameters and material 

properties are shown in the figure. It may be noted that 

both sublaminates are identical as far as the geometrical 

parameters and material properties are concerned. The 

FEM analyses based on Solid modeling technique are also 

performed to find the buckling loads of plates. It is seen 

that the buckling loads obtained in the present study by 

the application of the developed spring simulation 

technique are in good agreement with those obtained from 

FEM.  Similar to that experienced earlier in connection 

with the plates containing a single delamination (see Fig. 

6), it is seen in Fig. 8 that as long as the non-central 

delaminations are located close to the centre, the buckling 

load of a plate with two non-central delaminations is 

almost equal to that of a plate with two central 

delaminations. However, as the delaminations move near 

to the ends of the plate, a significant loss in the buckling 

capacity of the plate occurs. 
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Figure 8: Buckling loads of laminates with two through-the-

width delaminations (L=0.797m, LD1=LD2=0.1L, K
(1)

f=K
(2)

f 

=27E6 N/m3, D1=D2=11.3N-m, Pcr0=511.1N). 

 

Fig. 9 shows the variation of the buckling load of a 

plate, which contains two central delaminations at 

different positions across the thickness, with the change in 

the length of one of the delaminations, whilst the length 

of the other delamination is kept constant (i.e., 

LD1=0.1L). The lay-up sequence of each sublaminates is 

[0,90,90,0] and the thickness of each sublaminate is 1mm. 

The material properties and thickness of the sublaminates, 

and the buckling load Pcr0 are the same as those 

considered earlier in connection with the plates studied in 

Fig. 8. 
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Figure 9: Buckling loads of laminates with two central 

declamations (L=0.797m, LD1=0.1L, K
(1)

f=K
(2)

f=27E6N/m3, 

D1=D2=11.3N-m, Pcr0=511.1N). 

 

It is seen in Fig. 9 that the buckling load of the 

laminate is significantly diminished by the increase in the 

length of the delamination. Once again it is seen that the 

buckling loads obtained in the present study by the 

application of the developed spring simulation technique 

are in excellent agreement with those obtained from FEM 

analysis.  

5.  CONCLUSION 

A continuous method of analysis is developed for 

determining the buckling loads of plates containing 

multiple through-the-width delaminations. In the 

developed method, the springs of constant stiffness are 

distributed between the delaminated layers. The results 

obtained have provided confidence in the validity of the 

formulation of the developed method. It is worth 

mentioning that in the cases analyzed and discussed in 

this study the difference between the obtained results by 

using presented method and finite element analysis is 

between 0.05% and 4.2%. Moreover, the ability of the 

developed method to provide valuable insight into the 

buckling behavior of the delaminated plates has been 

demonstrated. 
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