Fixed Point Properties For Non-expansive Representations Of Topological Semigroups

E. Nazari §: A., H. Riazi

ABSTRACT

In this paper, first we extend theorem of Goebel-Schoneberg for non-expansive representations of a left amenable semitopological semigroup on a nonempty subset D of a Hilbert space H. Then we state and prove a common absolute fixed point theorem for these semigroups.

KEYWORDS

Nonexpansive mapping, fixed point, semitopological semigroup, invariant mean, Hilbert space.

1. Introduction

Let S be a semitopological semigroup with identity, that is, S is a semigroup with a Hausdorff topology such that for each $a \in S$, the mappings $s \rightarrow a.s$ and $s \rightarrow s.a$ from S into S are continuous. Let D be a non-empty subset of a Hilbert Space H and $\mathfrak{I} = \{T_t : t \in S\}$ be a continuous representation of S as mappings from D into D, that is, (i) T = I; (ii) $T_{st} = T T \text{ for all } s, t \in S$; (iii) The map $S \times C \to S$ defined by $(t,s) \to T_{t}x$, $t \in S$, $x \in C$, is continuous when $S \times C$ has the product topology. Let \mathfrak{I} be a continuous representation of the semigroup S and each T, $s \in S$, be a non-expansive self-map of D, i.e, $\left\|T_{s}x - T_{s}y\right\| \le \left\|x - y\right\|$, for all $x, y \in D$ and $s \in S$. Then $\mathfrak I$ is called a continuous nonexpansive semigroup on D. In this paper, first we extend theorem of Goebel-Schoneberg [3] for the continuous non-expansive representations of a left amenable semitopological semigroup on a nonempty subset D of a Hilbert space H and then we consider the concept of absolute fixed point,

and prove a common absolute fixed point theorem for this semigroup.

2. PRELIMINARIES

All topologies in this paper are assumed to be Hausdorff. Given a non-empty set S, we denote by $\int_{-\infty}^{\infty} (S)$ the Fanach space of all bounded complex valued functions on S with supremum norm. Let S be a semigroup. A subspace X of $\ell^{\infty}(S)$ is left (resp. right) translation invariant if $\ell_a(X) \subset X$ (resp. $r_a(X) \subset X$) for all $a \in S$, where $\ell_a(f)(s) = f(as)$ and $\gamma_{\alpha}(f)(s) = f(sa), s \in S$. If S is a semitopological semigroup, we denote by CB(S) the closed subalgebra of $\int_{-\infty}^{\infty} (S)$ consisting of continuous functions. Let LUC(S)(resp. RUC(S)) be the space of left (resp. right) uniformly continuous functions on S, that is, all $f \in CB(S)$ such that the mapping from S into CB(S) defined by $s \to \ell_s f$ (resp. $s \to r_s f$) is continuous when CB(S) has the supremum norm topology. It is well-known that LUC(S) and RUC(S) are left and right translation

Faculty of Math. and Comp. Sci, Amirkabir University of Technology, Tehran, Iran (e-mail: n7713914 @aut.ac.ir).

invariant closed subalgebras of CB(S) respectively, containing constants [1]. Note that when S is a topological group, then LUC(S) is precisely the space of left uniformly continuous functions on S defined in [4]. Now suppose X be a subspace of $\ell^{\infty}(S)$ containing constants. Then $\mu \in X^*$ is called a mean on X if $\|\mu\| = \mu(1) = 1$. Moreover, let X be right invariant. Then, a mean μ on X is right invariant if $\mu(r_{\mathcal{S}}f) = \mu(f)$ for all $s \in S$ and $f \in X$. Similarly, we can define left invariant means. μ is called an invariant mean if it is left and right invariant. The value of a mean μ at $f \in X$ will also be denoted by $\mu(f)$ or $\langle \mu, f \rangle$. A net $\{\mu_a\}$ on RUC(S) is called asymptotically invariant [10] if for each $f \in RUC(S)$ and $a \in S$, $\mu_{\alpha}(r_{\alpha}f) - \mu_{\alpha}(f) \to 0$ and $\mu_{\alpha}(\ell_{\alpha}f) - \mu_{\alpha}(f) \to 0$.

Let μ be a mean on X and E be a Banach space, $\phi: S \to E$ be a bounded function, and K be a closed convex subset of E. Suppose for each $x \in K$, the realvalued function \mathcal{S} $f_{\mathbf{x}}$ on $f_{r}(t) = \|\phi(t) - x\|^2$, for all $t \in S$ belongs to X.

Then set, $r(x) = \langle \mu, f_x \rangle$, for all $x \in K$ and define $r = \inf_{x \in K} r(x)$ and $M_{u} = \left\{ y \in K : r(y) = r \right\}$.

Lemma 2.1. The non-negative real-valued function ron K defined as above is continuous, convex and $r(x_n) \to \infty$ as $x_n \to \infty$. If E is reflexive or K is weakly compact, then M_{μ} is a non-empty closed convex subset of K. Furthermore, if E is a Hilbert Space, then $M\mu$ contains a unique element y such that $r + ||y - x|| \le r(x)$ for all $x \in K[8]$.

Definition 2.2. Let D be a nonempty subset of a Hilbert space H and $\mathfrak{F} = \{T_t : t \in S\}$ be a nonexpansive semigroup on S. We call a point $p \in D$ a common absolute fixed point for semigroup 3 if there non-expansive extension

 $\widetilde{\mathfrak{I}} = \left\{ \widetilde{T}_t : t \in S \right\}$ on $D \cup \left\{ p \right\}$ such that $\widetilde{T}_t p = p$ for all $t \in S$ and if p is a fixed point for every non-expansive extension of $\mathfrak I$ to the union of D and a subset of H

containing p. We denote by $AF(\mathfrak{I})$ the set of all common absolute fixed points of semigroup \Im in p [2].

Remark 2.3. Let D be a subset of a real Hilbert space

 $H, x \in H$ and let $\mathfrak{I} = \{T_t : t \in S\}$ be a non-expansive semigroup on D. Suppose $\{T, z : t \in S\}$ is bounded for some $z \in D$. Then, the functions $f_x(t) = \|T_t z - x\|^2$ and $g_x(t) = \langle T_t x, x \rangle$ are in RUC(S), [7] (see also [6]). Now if μ is a mean on RUC(S), by the Riesz representation theorem, there exists $z_{u} \in H$ such that $\langle \mu, g_x(.) \rangle = \langle z_H, x \rangle$ for each $x \in H[9]$.

Lemma 2.4. Let S be a semitopological semigroup, D be a non-empty subset of a Hilbert space H and $\mathfrak{I} = \{T_t : t \in S\}$ be a non-expansive continuous representation of a semitopological semigroup S on D . Suppose $\{T_t z : t \in S\}$ is bounded for some $z \in D$ and $\mathit{RUC}(S)$ has a left invariant mean μ . Then $z_{\mu} \in H$, $||T_{St}x-z_{Ll}|| \le ||T_{t}x-z_{Ll}||$ for all $x \in D$ and $s,t \in S$.

Proof: Let μ be a LIM on RUC(S). By Remark 2.3 for $x \in H$, the function $f_x(t) = \left\| T_t z - x \right\|^2$ and $g_{\chi}(t) = \langle T_t z, x \rangle, \ t \in S \text{ are in } RUC(S). \text{ Let }_{M_{\mu}}, \ r(x)$ and $\it r$ be as above for the convex set $\it H$. By Lemma 2.1, $_{M\, \iota \iota}$ contains a unique element $_{\mathcal{Y}}$ such that $|x| + ||y - x|| \le r(x)$ for all $x \in H$. Now let $x \in H$ and $t \in S$. Then,

$$||z_{\mu} - x||^{2} = ||T_{t}z - x||^{2} - ||T_{t}z - z_{\mu}||^{2}$$
$$-2\langle T_{t}z - z_{\mu}, z_{\mu} - x \rangle$$

$$0 \le \|z_{\mu} - x\|^{2} = \langle \mu, f_{x}(.) \rangle - \langle \mu, f_{z_{\mu}}(.) \rangle$$
$$-2 \langle \mu, g_{z_{\mu}} - x(.) \rangle + 2 \langle z_{\mu}, z_{\mu} - x \rangle$$

$$= \langle \mu, f_{x}(.) \rangle - \langle \mu, f_{z_{\mu}}(.) \rangle$$
$$-2 \langle z_{\mu}, z_{\mu} - x \rangle + 2 \langle z_{\mu}, z_{\mu} - x \rangle$$

$$= \left\langle \mu, f_{x}(.) \right\rangle - \left\langle \mu, f_{z\mu}(.) \right\rangle$$

This implies that $z_{\mu} \in M_{\mu}$, so by lemma 2.1 M_{μ} consists of a single point z_{μ} . To prove the second part, let $x \in D$. Then $\{T_i x : i \in S\}$ is bounded because $\|T_t x - T_t z\| \le \|x - z\|$ for $t \in S$.

 $p=z_{\mu} \in M_{\mu}$ and $s,t,\theta \in S$ we have,

$$2\langle T_{t}x - T_{st}x, T_{\theta}z - p \rangle = ||T_{t}x - p||^{2} - ||T_{st}x - p||^{2} + ||T_{st}x - T_{\theta}z||^{2} - ||T_{t}x - T_{\theta}z||^{2}$$

Now, applying μ to both sides of the above equality with respect to θ we have

$$0 = 2\langle T_t x - T_{st} x, p - p \rangle = \|T_t x - p\|^2 - \|T_{st} x - p\|^2 + \langle \mu, f_{Tst} x \rangle - \langle \mu, f_{Tt} x \rangle.$$

On the other hand, since

$$\begin{split} & f_{T_{st}x}(\theta) = f_{T_{st}x}(s\theta) = \left\| T_{st}x - T_{s\theta}z \right\|^2 \\ & \leq \left\| T_tx - T_{\theta}z \right\|^2 = f_{T_tx}(\theta). \end{split}$$

So, by left invariance of μ we have,

$$\left\langle \mu, f_{T_{st}x}(.) \right\rangle = \left\langle \mu, f_{T_{st}x}(.) \right\rangle$$

$$\leq \left\langle \mu, f_{T_tx}(.) \right\rangle.$$

$$\begin{aligned} & \left\| T_{st} x - p \right\|^2 \le \left\| T_x x - p \right\|^2 + \left\langle \mu, f_{T_t x}(.) \right\rangle \\ & - \left\langle \mu, f_{T_t x}(.) \right\rangle \end{aligned}$$

$$\left\| T_{st} x - p \right\| \le \left\| T_t x - p \right\|.$$

This competes the proof.

3. FIXED POINT THEOREMS

We now state and prove our main fixed point theorems. First, we extend Goebel-Schoneberg's theorem [3] for non-expansive continuous representations of a left amenable semitopological semigroup on a subset D of a Hilbert space.

Theorem 3.1. Let S be a semitopological semigroup with identity, D be a non-empty subset of a Hilbert space and let $\mathfrak{J} = \{T_t : t \in S\}$ be a non-expansive continuous representation of S on D. Suppose RUC(S)has a left invarinat mean μ . Then \Im has a common fixed point in D, if and only if $\{T_t x : t \in S\}$ is bounded for some $x \in D$ and for any $y \in \overline{co} \left\{ T_t x : t \in S \right\}$, there is a unique $p \in D$ such that $||y - p|| = \inf_{z \in D} ||y - z||$

Proof: Necessity is obvious. Let us prove the sufficiency. Assume $\{T_t x : t \in S\}$ is bounded for some $x \in D$, $M\mu$ is as in the proof of Lemma 2.4 and $c = z_{\mu} \in M_{\mu}$. Then using $c \in \overline{co}\{T_t x : t \in S\}$. Therefore there exists a unique $p \in D$ such that $||c-p|| \le ||c-z||$, for all $z \in D$. On the other hand, by Lemma 2.4 we know that $||T_t p - c|| = ||T_{te} p - c|| \le ||T_{e} p - c|| = ||p - c||$. Hence, we have $||c-p|| = \inf_{z \in D} ||c-z|| \le ||c-T_t p|| \le ||c-p||$, $t \in S$, and the uniqueness of p implies that $T_t p = p$ for all $t \in S$, that is, p is a common fixed point for \Im .

Corollary 3.2. (Goebel-Schoneberg [3]). Let T be a non-expansive self-mapping of a nonempty subset D of a Hilbert space H. Then T has a fixed point in D if and only if $\{T^n x\}$ is bounded for some $x \in D$ and for any $y \in \overline{co} \mid T^n x : n > 0$ there is a unique $p \in D$ such that $||y - p|| = \inf_{z \in D} ||y - z||.$

Proof: Let S = (N, +) and $\Im = \{ T^n : n \in N \}$. Since S is amenable, then by Theorem 3.1 the proof is complete.

Now we prove a necessary and suffcient condition (namely, boundedness of orbits) for the existence of an absolute common fixed point of a non-expansive representation of a left amenable continuous semitopological semigroup S.

Theorem 3.3. Let S be a semitopological semigroup with identity and let $\Im = \{T_t : t \in S\}$ be a non-expansive strongly continuous representation of S on a non-empty subset D of a Hilbert space H. Suppose RUC(S) has a left invariant mean μ . Then \Im has a common absolute fixed point in H, if and only if $\{T_{t}z:t\in S\}$ is bounded for some $z \in D$. In this case z_{μ} is a absolute fixed point

Proof: By assumption there exists $z \in D$ such that $\{T_s z : s \in S\}$ is bounded. Let $f_{x}(t) = \|T_t z - x\|^2$ and $p \in M_{H}$. For each $\tilde{T}_s: D \cup \{p\} \to D \cup \{\tilde{T}_s p\}$ be a non-expansive extension of T. As a result by Lemma 2.1 we have,

$$\|p-y\| \le \langle \mu, f_{y}(.) \rangle - \langle \mu, f_{p}(.) \rangle$$

for every $y \in H$. Now for each let $y = \widetilde{T}_{c} p$. Therefore,

$$\|p - \widetilde{T}_{S} p\| \le \langle \mu, f_{\widetilde{T}_{S} p}(.) \rangle - \langle \mu, f_{p}(.) \rangle.$$

$$f_{\widetilde{T}_{S}p}(t) = f_{\widetilde{T}_{S}p}(st) = \|T_{st}z - \widetilde{T}_{S}p\|^{2}$$

$$= \|\widetilde{T}_{st}z - \widetilde{T}_{S}p\|^{2} \le \|\widetilde{T}_{t}z - p\|^{2} = f_{p}(t).$$
So

$$\begin{split} & \left\| p - \widetilde{T}_{S} p \right\| \leq \left\langle \mu, f_{\widetilde{T}_{S} p}(.) \right\rangle - \left\langle \mu, f_{p}(.) \right\rangle \\ & = \left\langle \mu, f_{\widetilde{T}_{S} p}(.) \right\rangle - \left\langle \mu, f_{p}(.) \right\rangle \\ & \leq \left\langle \mu, f_{p}(.) \right\rangle - \left\langle \mu, f_{p}(.) \right\rangle \\ & = 0. \end{split}$$

Therefore, $\widetilde{T}_{S}p = p$ for each $s \in S$. Thus p must be a fixed point for every non-expansive semigroup extending \Im to the union of D and a subset of Hcontaining p. To prove that p is an absolute fixed point of 3, we have to show that there exists a semigroup $\widetilde{\mathfrak{F}} = \{ \widetilde{T}_s : s \in S \}$ of non-expansive strongly continuous representation \widetilde{T}_s of S on $D \cup \{p\}$ extending and leaving p fixed. To do this, we define the semigroup $\widetilde{\mathfrak{I}} = \left\{ \widetilde{T}_s : s \in S \right\} \text{ on } D \cup \left\{ p \right\} \text{ by } \widetilde{T}_s x = T_s x \text{ for }$ $x \in D$ and $s \in S$ and $\widetilde{T}_{S} p = p$ for all $s \in S$. By Lemma 2.1 we know that for any $y \in D$ we have $||T_s y - p|| \le ||y - p||$ (take t = e). This shows that \widetilde{T}_s is non-expansive on $D \cup \{p\}$ for every $s \in S$. So $\mathfrak{J} = \{ \widetilde{\tau}_{s} : s \in S \}$ is a semigroup of nonexpansive strongly continuous representation \widetilde{T} of S on $D \cup \{p\}$. Therefore p is an absolute fixed point of \mathfrak{I} in H. Since

by Lemma 2.1, $z_{\mu} \in M_{\mu}$, then z_{μ} is an absolute fixed point of \Im . For the converse, let p be an absolute fixed point for 3. Then, by definition we can extend the semigroup 3 to the semigroup 3 of non-expansive mappings on $D \cup \{p\}$ such that p is a fixed point of $\widetilde{\mathfrak{I}}$. So for each $x \in D$ we have,

$$||T_{S}x|| \le ||\widetilde{T}_{S}x - \widetilde{T}_{S}p|| + ||\widetilde{T}_{S}p||$$

$$\le ||x - p|| + ||p||$$

This shows that $\{T_{x:t} \in S\}$ is bounded and the proof is complete.

Theorem 3.4. Let H, D, S, \mathfrak{I} be as in Theorem 3.3. If μ is an invariant mean on RUC(S), and $\{T_{i,z}: i \in S\}$ is bounded for some $z \in D$, then for any asymptotically invariant net $\{\mu_{\alpha}\}$ of means on RUC(S), the net z_{μ}^{2} converges weakly to z_{μ} . In particular, if v is another invariant mean on RUC(S), then $z_{\mu} = z_{D}$.

Proof: By Theorem 3.3, we can extend the semigroup 3 to the semigroup 3 of non-expansive strongly continuous representation of S on $D \cup \left\{p\right\}$ such that z_{II} is a common fixed point of the semigroup $\tilde{\mathfrak{F}}$. The rest of the proof is similar to [6, Theorem 4.8]. Note that since $z \in D$, then we have $\widetilde{T}_t z = T_t z$.

4. REFERENCES:

- J. F. Berglund, H. D. Junghenn, and P. Milnes, Analysis on semigroups, John Wiley & Sons, New York, 1989.
- B. Djafari Rouhani, On the fixed point property for non-expansive mappings and semigroups, Nonlinear Anal, 30 (1997) 385-396.
- K.Goebel and Schoneberg, Moons, bridges, birds... nonexpansive mappings in Hilbert Space, Bull. Austral. Math. Soc. 17 (1977) 463-466.
- E. Hewitt and K. Ross, Abstract Harmonic Analysis I, Springer-
- O. Kada, A. T. Lau, and W. Takahashi, Asymptotically invariant nets and fixed point set for semigroup of nonexpansive mappings, Nonlinear Anal. 29 (1997), 539-550.
- A. T. Lau and W. Takahashi, Invariant means and fixed point properties for nonexpansive representations of topological semigroups, Topological Methods in Nonlinear Analysis. 5 (1995),
- A. T. Lau, Semigroup of nonexpansive mappings on a Hilbert space, J. Math. Analysis Appl. 105 (1985), 514-522.
- N. Mizoguchi and W. Takahashi, On the existence of fixed points and ergodic retractions for Lipschitzian semigroups in Hilbert spaces, Nonlinear Anal. 14 (1990), 69-80.
- W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81(1981), 253-256,
- W. Takahashi, Fixed point theorems and nonlinear ergodic theorems for nonexpansive semigroups without convexity, Canad. J. Math. 35 (1992),1-8.