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1- Introduction
The control of nonlinear systems is still a challenging area in 
the literature of control systems theory and some efforts have 
been made to study this subject [1]. However, most of them 
can only be  applied to a certain class of nonlinear systems. 
For example, feedback linearization is only applicable to a 
class of nonlinear systems meeting the involutivity condition 
and can be transformed into the companion form [1]. Many 
other methods have some limitations. For example, chattering 
is the most important problem in sliding mode control (SMC) 
[2]. It has been shown that sliding mode controller (SMC) 
is a powerful tool in facing uncertainties, disturbances, and 
noises that always produce difficulties in the realization of 
the designed controller for real systems [3]. This is due to the 
invariance property (insensivity against disturbances), which 
is stronger than robustness [1-4]. The invariance property 
motivates researchers to use  SMC for various applications [5-
8] especially the  precise systems [9]. The greatest limitation 
of SMC is the chattering, i.e. the high (but finite) frequency 
oscillations with small amplitude, which produces heat losses 
in electrical power circuits and wear mechanical parts [3, 4]. 
Four design methodologies have been proposed to overcome 
this problem: boundary layer, adaptive boundary layer, 
higher order SMC (HOSMC) and DSMC [2, 3]. Boundary 
layer and adaptive boundary layer methods cannot preserve 
the invariance property of SMC [1-3]. HOSMC is proposed 
to reliably prevent chattering [4, 10]. In higher order SMC, 
the effect of switching is totally eliminated by moving the 
switching to the higher order derivatives of desired output 
[10]. Many algorithms are proposed for implementation 
of second or higher order SMC [11]. However, the main 
drawback is that the controller design generally requires the 
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knowledge of higher-order derivative of plant model [11]. 
Hitherto, when the relative degree is 2, usually plant model 
derivative has to be estimated using complicated observer, for 
example sliding differentiator [12]. In DSMC, an integrator 
or a low pass filter is placed in front of the system and then 
time derivative of control input is applied to the augmented 
system, i.e.  system plus the integrator [3] and then chattering 
is removed. Accordingly, the design of DSMC is challenging 
because the dimension of the sliding surface is larger than 
the other approach’s since the surface is designed for the 
augmented system and, then, the plant model should be 
completely known when one needs to use SMC to control 
the augmented system [2, 3]. Therefore, in DSMC, the plant 
model is needed but in HOSMC the derivatives of the plant 
model must be known. This is the advantage of DSMC to the 
HOSMC.
In the past decades, neural networks are used as controllers 
in nonlinear systems [13, 14] and researchers have proposed 
various neural SMC methods (see [15] and references 
therein). Generally, these methods can be classified into 
two categories: direct and indirect approaches [15]. In direct 
approache, SMC is implemented by a neural network system. 
But, in indirect approache, neural networks are used to meet 
a secondary goal to assist controller in SMC. Intelligent 
approaches such as neural networks can help solve the 
problem of DSMC to identify the plant model and, then, this 
is an indirect approach.
The rest of this paper is organized into six sections. The system 
model and problem formulation are described in section 
II. In section III, we present the first system identification 
procedure and corresponding DSMC. In section IV, the 
second model identification and a corresponding DSMC are 
presented. Finally, in section V, we discuss simulation and 
comparison results to verify theoretical concepts presented 
in previous sections. The conclusion is given in section VI.
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2- Problem Formulation
Consider the following single input nonlinear system:
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where T
nxxxx ],,[ 21 =  is a vector state, u  is the input 

control signal and y  is the system output dependent to the 
states via vector 1×∈ nRC  and, moreover, the function )(xf  is 
unknown. The other form of this equation is as follows:
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Assume that 1 2ia , i , , ,n=   are such that A  is a Hurwitz 
matrix i.e. for a symmetric positive definite matrix Q , there 
exists a symmetric positive definite matrix P  satisfying the 
following Lyapunov equation:

TA P PA Q+ = −               (4)

Our purpose is using DSMC to find a suitable smooth u  
such that, T

nxxxxx ],,,,[ 321 =  and augmented state nn xx =+1  
converge to zero. Due to the use of DSMC, closed-loop 
system is invariant and has acceptable performance. Note 
that invariance is the inherent property of sliding mode 
control (SMC) and is stronger than robustness. In DSMC, 
the switching is filtered due to the integrator which is placed 
before the input control of the system; then chattering 
is removed and we will have a smooth u . To this aim, an 
appropriate sliding surface is defined as follows:

[ ]nnn xxs λλλλλλλ ,,,,, 32111 =+= ++            (5)

Moreover, note that T
nxxxxx ],,,,[ 321 =  and 1+nx  

converge to zero if s  becomes zero and the coefficients 
121 ,,, +nλλλ   are properly chosen such that the polynomial 

012
1

1 =++++ −
+ λλλλ SSS n

n
n

n   is Hurwitz. However, 
there is a problem with calculation of this surface. The variable 

1+nx  cannot be evaluated due to the unknown function )(xf . 
To solve this problem, neural observers are constructed.
Based on the literature, the neural networks can approximate 
any real continuous function with an arbitrary accuracy 
[3, 13]. This means that these networks have universal 
approximation property [3, 13]. Accordingly, there exists an 
ideal but unknown weight vector mRw∈  with an arbitrary 
large enough dimension m  such that the system can be 
written as follows:
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In which xε  is an arbitrary small reconstruction error with 
bound εB , i.e. εε Bx <  and moreover, mn RRx →:)(ξ  is the 
transfer function of the hidden neurons. Now, we propose two 
procedures to construct neural observers.

3- First Proposed Approach

3- 1- Model Identification
Now, an estimate of (6) is given by:
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Defining the observer error as xxx ˆ~ −=  and weight vector 
error as www ˆ~ −=  and ξξξ ˆ)(~

−=x  where )(xξξ =  and 
)ˆ(ˆ xξξ =  and using (6) and (7), the error dynamics can be 

expressed as:
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Theorem 1: The observer error xxx ˆ~ −=  in (8) converges 
to the inside of the bound xB~  if the weights are updated 
according to the following equation:
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            (9)
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where wBw ≤ , wBw ≤ˆ , 1 1E Aηρ− −= , 0>η  is the learning rate 
and ρ  is a small positive number.

Proof: Consider a Lyapunov function candidate as 
follows:

11 1
2 2
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          (11)

where 0>= TPP  and the time derivative of (11) is given by:
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By inserting  (8), (9), and (4) into (12) and using the equality 
ww 

 ˆ~ −=  one obtains:
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such that wBw 2~ ≤ , ξξ B≤ , ξξ B≤ˆ  and ξξ Bx 2)(~
≤ . Now 

using (13) and (14) results in:
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where σ  denotes minimum singular value. Furthermore, by 
using bound (10), we obtain the following equation:

( ) xBxQtV x
~~)(5.0)( ~−−≤ σ          (16)

Assume that ( ) xBxQt x
~~)(5.0)( ~−= σω  and xBx ~~ > . Then, 
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one can say that 0)( ≤−≤ tV ω . Integrating from zero to t  
yields:

)0()()()(0
00

VtVdd
tt

≤+≤≤ ∫∫ ττωττω        (17)

when ∞→t , the above integral exists and is less than or 
equal to )0(V . Since )0(V  is positive and finite, according to 
the Barbalat’s lemma [1], we will have:

( ) 0~~)(5.0lim)(lim ~ =−=
∞→∞→

xBxQt xtt
σω         (18)

Since )(5.0 Qσ  is greater than zero, (18) implies that x~  
decreases until it becomes less than xB~ , i.e.

xt
Bx ~~lim ≤

∞→
.

This guarantees that xB~  is the upper bound of x~ .
Remark 1: As mentioned in the introduction, this approach 

has two disadvantages. Firstly, we assume that the system’s 
states are accessible and, secondly, only boundedness of the 
observer error to bound xB~  is guaranteed. However, this 
bound may be large. These two issues will be solved in the 
second proposed approach.

3- 2- Design of DSMC
From equations (5) and (7), we have:
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Such that gˆ  is known and can be calculated from equations 
(7) and (9) as follows:

            (21)
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Theorem 2: The following dynamical equation causes the 
sliding surface s  as in (19) converges to zero:
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Proof: Consider the Lyapunov function 25.0 sV = , then, 
ssV 

 =  and replacing u  from equation (22) into (20) follows 
that:

skssignks 21 )( −−=           (24)

Hence:
skskskV 1

2
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Suppose ft  is the finite reaching time to the sliding surface, 
i.e. 0)( =fts , then, it is easy to show that 1/)0( kst f ≤ .

4- Second Proposed Approach

4- 1- Model Identification
In the second approach, the proposed observer for (6) is given 
by:
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where observer gain vector 1×∈ nRT  are chosen such that 
T

sA A TC= −  is stable, i.e., for any symmetric positive 
definite matrix Q , there exists a symmetric positive definite 
matrix P  satisfying the following Lyapunov equation,
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By subtracting (26) from (6), we obtain:
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Theorem 3: By using the following adaptive weight law:
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the estimation error )(~ tx  converges to zero if ∞→xk  with 
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Using the equality ww 
 ˆ~ −=  and tuning law (29) in the above 

equation leads to:
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Here, consider the properties of positive definite matrices Q  
and P , and using www ~ˆ −= , the above equation yields:
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whereas εξεξ BBBw wx
T +≤+ 2~ . Now, we define xB~  as 

follows:
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where σ  and σ  denote maximum and minimum singular 
values, respectively; therefore:
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Since ( )0.5 ( ) ( )T
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Then, x~  or x~  will converge to zero if ∞→xk .

4- 2- Design of DSMC
From equations (5) and (26), we have:
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Such that gˆ  is known and can be calculated from equations 
(26) and (29) as follows:
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Moreover, the unknown terms are placed in ϕ . Variable ϕ  
is considered as uncertainty due to its dependency to the 
unknown variable xCy T

 = .
Theorem 4: The following dynamical equation causes the 

sliding surface s  as in (40) to converge to zero:
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where ϕB  is the bound of ϕ , i.e. ϕϕ B≤ .
Proof: Consider the Lyapunov function 25.0 sV = , then, 

ssV 

 =  and, moreover, replacing u  from (43) into (41) 
follows that:

ϕλ 121 )( ++−−= nskssignks         (45)
Hence:
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Now, consider 1k  as in (44). Then:
V s .ε≤ −           (47)

Suppose ft  is the finite reaching time to the sliding surface, 
i.e. 0)( =fts , then, it is easy to show that ε/)0(st f ≤ .

5- Simulation Result
In the following examples, the proposed method is applied 
to a nonlinear system to show the effectiveness of these 
approaches. Consider the following model of Duffing-
Holmes chaotic systems (DHC) [16, 17]:

Txxx

utbxbxbxb

uxfx
xx

],[

)2.1cos(

),(

21

4
3

132211

2

21

=

++++=

=
=





        (48)

where 2b  is the damping ratio, 3
1311 xbxb +  is the recoverability 

term, )2.1cos(4 tb  is the force period term and u  is the input 
control signal [16]. We select 11 =b , 2.02 −=b , 13 −=b , 

32.04 =b 0.32 and Tx ]1,2[)0( −=  where (48) is in the chaotic case 
which is shown in figure 1. Moreover, Tx ]0,0[)0(ˆ =  and also 

[ ]10,10=λ [10,10], 1.03 =λ . The initial conditions of the weight 
vector are all set to zero and:
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The simulations are done by MATLAB with the sample time 
0.01. The controller parameters are chosen as 17.01 =k 0.17 and 

202 =k 20.
Example 1: In this example, the first proposed approach in 

section 3 has been simulated. The network tuning parameters 
are chosen as 50=η 50 and 10=ρ 10. Figures 2, 3, 4 and 5 show 
the simulation results. From Figure 3, we can see the stability 
of the closed-loop system and neural observer since the 
system states converge to zero. Figure 4.a shows the input 
control signal which is without chattering. Note that Figure 
4.b is not important for us because it is before the integrator 
and is not applied to the system.

Example 2: In this example, the second proposed 
approach in section 4 has been simulated. The network tuning 
parameters are chosen as 5=wk , 3=ek  and 50=xk 50 and 
also TC ]1,0[= . Figures 6, 7, 8 and 9 show the simulation 
results.
Comparison: We can see the convergence in example 2 is 
better because the bound xB~  converges to zero in example 2.

6- Conclusion
In this paper, two new approaches for the control of nonlinear 
systems based on dynamic sliding mode controller (DSMC) 
are proposed which is used to control Duffing-Holmes 
chaotic system (DHC). To solve the problem of DSMC, 
neural observer is used. Two neural observers are presented, 
the first observer is based on accessible system states and the 
observer error converges to a bound which is not guaranteed 
to be small, but in the second neural observer we only use  
system output and we prove observer error converges to zero. 
Because of using DSMC, chattering is removed completely. 
Moreover, the proposed approach preserves all the main 
properties of SMC such as invariance and simplicity in the 
design and implementation. Simulation results show the 
effectiveness of these approaches.
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Fig. 1. Chaotic behavior of Duffing-Holmes system
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Fig. 2. System states and their estimations (a) first state and (b) second state (in example 1)
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Fig. 3. (a) sliding surface and (b) norm of weights matrix (in example 1)
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Fig. 4. (a) input control signal and (b) derivative of input control signal (in example 1)
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Fig. 6. System states and their estimates: (a) first state and (b) second state (in example 2)
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Fig. 7. (a) sliding surface and (b) norm of weights matrix (in example 2)
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Fig. 8. (a) input control signal and (b) derivative of input control signal (in example 2)

-2 -1.5 -1 -0.5 0 0.5
-0.5

0

0.5

1

1.5

2

x1

x2

Behavior of Duffing-Holmes system with controller

-0.01 -0.005 0 0.005 0.01
-2

0

2

4

6

8

10

12
x 10

-3

Fig. 9. Behavior of Duffing-Holmes system (in example 2)
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