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ABSTRACT: Functionally graded materials (FGMs) have been widely used in many structural 
applications over the past decades. The rapid growth of the FGMs is due to their remarkable mechanical 
and thermal properties. The mechanical buckling analysis of functionally graded ceramic-metal 
rectangular plates is considered in this paper. The two-variable refined plate theory (RPT), in conjunction 
with the bubble finite strip method, is employed for the first time to evaluate the mechanical buckling 
loads of rectangular FGM plates. The theory, which has a strong similarity with the classical plate theory 
(CPT) in many aspects, accounts for a quadratic variation of transverse shear strains across the thickness 
of the plate and satisfies the zero traction boundary conditions on the top and bottom surfaces of the 
plate without using the shear correction factor. In comparison with the ordinary finite strip method, the 
convergence of the bubble finite strip method is very rapid due to using bubble shape functions. The 
mechanical properties of the FGM plate are assumed to vary according to a power law distribution of 
the volume fraction of constituents. The accuracy and efficiency of the present method are confirmed by 
comparing the present results with those available in the literature. Furthermore, the effects of power-
law index, plate thickness, aspect ratio, loading types and various boundary conditions on the critical 
buckling load of the functionally graded rectangular plates are investigated.
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1- Introduction
A large number of plate theories have been developed to 
analyze plate structures. The classical plate theory (CPT) is 
the most popular theory which neglects the transverse shear 
deformation effects. This theory provides rational results for 
the thin plate [1], however, it underestimates the deflections 
and overestimates the natural frequencies as well as buckling 
loads of moderately thick and thick plates. To overcome these 
defects, the shear deformation plate theories such as first-
order shear deformation theory (FSDT) [2-5] and higher-
order shear deformation theories (HSDT) [6-11] as well as 
the refined plate theory (RPT) [12] are proposed. In the RPT, 
it is assumed that the in-plane and transverse displacements 
consist of bending and shear components in which the 
bending components do not contribute toward shear forces 
and, likewise, the shear components do not contribute toward 
bending moments. Contrary to the FSDT which needs shear 
correction factor, the transverse shear strains across the 
thickness of the plate are quadratic in the RPT. Consequently, 
the zero traction boundary conditions on the top and bottom 
surfaces of the plate is satisfied. This is the most interesting 
feature of the RPT, while it uses fewer unknowns. This theory 
is successfully developed and used to analyze functionally 
graded plates [13, 14]. 
In this study, the mechanical buckling analysis of functionally 
graded ceramic-metal rectangular plates is considered. 
The two-variable refined plate theory, in conjunction with 
the bubble finite strip method, is employed in the current 
formulation. The bubble functions are used to increase the 
convergence of the finite strip method.

2- Mechanical properties of FG rectangular plate
Consider a rectangular functionally graded plate of total 
thickness h, side length a in x-direction and b in y-direction as 
shown in Figure 1. A coordinate system (x, y, z) is established 
on the middle plane of the plate. The plate is made of isotropic 
material and the material properties are assumed to vary 
through the thickness according to the power law distribution 
[15]:
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where Pm and Pc are the properties of the metal and ceramic, 
respectively. Vc is the volume fraction of the ceramic and n is 
the power law index. The Poisson’s ratio, V, is assumed to be 
a constant for convenience.

Corresponding author, E-mail: sarrami@cc.iut.ac.ir Fig. 1. Functionally graded plate and its dimensions.
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3- Displacement field
Based on the assumptions of RPT [12, 16], the displacement 
field is defined as:
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where aaaaaaaaaaaaaaaaaaa ,   and wb are ws the bending and 

shear components of transverse displacement, respectively 
and z0 is the position of the neutral surface which is defined 
as [16]:
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in which E(z) is the modulus of elasticity of FG plate and 
follows the power law distribution as introduced in Equation 
1.

4- Stability equation
After calculating the strain energy and the potential energy 
of the external forces, Hamilton’s principle is used to derive 
the equations of motion appropriate to the displacement field 
and the constitutive equation. According to the RPT, the 
governing equations of the buckling analysis of FG plate can 
be written as [16, 17]:
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in which Db, Dbs, Ds and C are defined as follows:
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where aaaaaaaaa  and aaaaaaaaaaaaaaaaaa.

5- Solution by refined finite strip method
The bubble finite strip method (BFSM) is employed here to 
investigate the buckling behavior of FG rectangular plates 
with different boundary conditions. Figure 2a shows a single 
strip of length bs and width as in the rectangular coordinate 
system (x, y, z) with two nodal lines of i and j. The strip nodal 
degrees of freedom are shown in Figure 2b.

The bending and shear deflections of the strip are defined, 
respectively as:
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in which r is the number of harmonic modes and
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where ξ=x/as and Yq(y) is the qth mode of a trigonometric 
function which are given in [17]. Yq(y) is chosen such that 
it satisfies the boundary conditions in one direction. δq

b and  
δq

s which are the displacement vectors related to mode q, are 
given by:
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in which (wi
b)q, (wj

b)q, (θi
b)q and (θj

b)q are bending degrees 
of freedom of each nodal line, whereas (wi

s)q, (wj
s)q,                                

(θi
s)q and (θj

s)q are the shear degrees of freedom and θ=∂w/∂x. 
(wbub

b)q and (wbub
s)q are the degrees of freedom corresponding 

to the third shape function in Equation 10 which is called 
bubble function. These bubble displacements belong to the 
middle line between the two nodal lines i and j. Assuming the 
bending and shear deflections of the nanoplate as expressed 
in Equations 9a and b, the method of weighted residuals is 
then applied to the Equations 7a and 7b which should be 
solved simultaneously. In the absence of the lateral load, the 
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Fig. 2. a) The strip and b) Nodal degrees of freedom
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buckling equations of a plate could be written as:

( )G δ− =K K 0 (12)

in which δ is the eigenvector; K is the stiffness matrix of the 
plate and KG is the stability matrix. The stiffness matrix of a 
strip corresponding to mth and nth modes, (K)e

mn, which is a 
10×10 matrix is defined as:
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In these equations, Y'q and Y"q represent the first and second 
derivatives of Yq with respect to y, respectively; also
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It should be noted that Nxx = σxh and Nyy = σyh. σx and σy are 
stresses parallel to x-direction and y-direction, respectively.
Having the finite strip formulation, a computer program is 
developed in the MATLAB environment to study the buckling 
of FGM plates. To obtain the total stiffness and stability 
matrices in Equation 12, the plate is first divided into a proper 
number of strips. Then, the stiffness and stability matrices 
of each strip are computed using Equations 13 and 18. The 
matrices are finally assembled using the equilibrium and 
compatibility equations along the nodal lines. The boundary 
conditions are then applied and finally the eigenvalue problem 
in Equation 12 is solved by vanishing the determinant of the 
coefficient matrix as:

0G− =K K (21)

Equation 21 is solved to obtain the critical buckling stress of 
the FGM plate.

6- Results and discussion
In order to validate the accuracy and efficiency of the present 
formulation, several examples are presented and discussed. 
Table 1 shows the material properties of the FG plate.

The comparison of non-dimensional critical buckling load,  
N=Ncra

2/Emh3, for a simply supported FG plate subjected to 
uniaxial compression along the x-axis, biaxial compression 
and biaxial compression (along x-axis) and tension (along 
y-axis) are presented in Table 2-4, respectively. Different 
width to thickness ratios, a/h, aspect ratios, b/a, and power 
law index, n, are considered in the results. It can be seen that 
the non-dimensional critical buckling loads obtained based 
on the present study are in an excellent agreement with those 
reported by Thai and Choi [18].
Table 5 shows non-dimensional buckling load, N, for 
square FG plate under uniaxial compression with different 
boundary conditions and several widths to thickness ratios, 
a/h. Different values of power law index, n, are also taken. 
In Table 5, S, C, F, and G simply refer to clamped, free and 
guided supports, respectively.
All the results presented in Tables 2-5 indicate that the 
proposed BFSM is a powerful method to solve the buckling 
of FGM plates with any boundary conditions and different 

Material Em Ec v
Al / Al2O3 70 GPa 380 GPa 0.3

Table 1. Material properties
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loading types. In comparison with the FEM, fewer degrees of 
freedom is required in the FSM. Moreover, using the bubble 
functions leads the method to utilize even fewer degrees of 
freedom than the ordinary FSM. It can be observed from the 
results that compared to other solution methods proposed 
in the literature, the BFSM is a more powerful, simple, 
economical and efficient method to solve the buckling 
problem of FG
Figure 3 indicates the effects of aspect ratio, b/a, on non-
dimensional critical buckling load of simply supported FG 
plate subjected to uniaxial compression along y-axis. It can 
be observed that by increasing the aspect ratio, the non-
dimensional buckling load decreases.
The effects of power-law index, n, on the buckling load of 
a simply supported square plate (a=b=10h) under various 
loading conditions are shown in Figure 4. Three loading 
conditions are uniaxial compression, biaxial compression (C 
& C), and biaxial tension and compression (T & C). It can 
be seen that the non-dimensional buckling load increases by 

a/b a/h Method
n

0 0.5 1 2 5 10 20 100 inf
0.5 5 RPT[18] 6.7203 4.4235 3.4164 2.6451 2.1484 1.9213 1.7115 1.3737 ---

Present 6.7204 4.4235 3.4164 2.6451 2.1484 1.9213 1.7115 1.3737 1.2379
10 RPT[18] 7.4053 4.8206 3.7111 2.8897 2.4165 2.1896 1.9387 1.5251 ---

Present 7.4054 4.8207 3.7111 2.8897 2.4165 2.1896 1.9387 1.5250 1.3641
20 RPT[18] 7.5993 4.9315 3.793 2.9582 2.4944 2.269 2.0054 1.5683 ---

Present 7.5994 4.9315 3.7931 2.9582 2.4944 2.2690 2.0054 1.5683 1.3998
50 RPT[18] 7.6555 4.9634 3.8166 2.9779 2.5172 2.2923 2.025 1.5809 ---

Present 7.6556 4.9635 3.8167 2.9779 2.5172 2.2923 2.0250 1.5809 1.4102
100 RPT[18] 7.6635 4.968 3.82 2.9808 2.5205 2.2957 2.0278 1.5827 ---

Present 7.6637 4.9681 3.8201 2.9808 2.5205 2.2957 2.0278 1.5827 1.4117
1 5 RPT[18] 16.0211 10.6254 8.2245 6.3432 5.0531 4.4807 4.007 3.2586 ---

Present 16.0211 10.6254 8.2245 6.3432 5.0531 4.4807 4.0070 3.2586 2.9512
10 RPT[18] 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528 4.8346 3.8198 ---

Present 18.5786 12.1230 9.3391 7.2631 6.0353 5.4528 4.8346 3.8198 3.4223
20 RPT[18] 19.3528 12.5668 9.6675 7.5371 6.3448 5.7668 5.0988 3.9923 ---

Present 19.3529 12.5668 9.6675 7.5371 6.3448 5.7668 5.0988 3.9923 3.5650
50 RPT[18] 19.5814 12.697 9.7636 7.6177 6.4373 5.8614 5.1782 4.0434 ---

Present 19.5815 12.6971 9.7637 7.6177 6.4373 5.8614 5.1781 4.0434 3.6071
100 RPT[18] 19.6145 12.7158 9.7775 7.6293 6.4507 5.8752 5.1897 4.0508 ---

Present 19.6146 12.7159 9.7776 7.6293 6.4507 5.8752 5.1897 4.0508 3.6132
1.5 5 RPT[18] 28.1996 19.251 15.0344 11.4234 8.4727 7.2952 6.6106 5.6325 ---

Present 28.2030 19.2535 15.0363 11.4248 8.4736 7.2960 6.6112 5.6331 5.1952
10 RPT[18] 40.7476 26.9091 20.8024 16.0793 12.9501 11.5379 10.2958 8.3112 ---

Present 40.7548 26.9139 20.8062 16.0821 12.9522 11.5398 10.2975 8.3126 7.5074
20 RPT[18] 45.893 29.905 23.0286 17.9221 14.9472 13.5273 11.9843 9.4447 ---

Present 45.9021 29.9109 23.0332 17.9257 14.9501 13.5299 11.9867 9.4466 8.4556
50 RPT[18] 47.5786 30.8691 23.7414 18.5177 15.6238 14.2156 12.5629 9.8207 ---

Present 47.5885 30.8754 23.7463 18.5215 15.6270 14.2185 12.5654 9.8227 8.7663
100 RPT[18] 47.8297 31.0119 23.8469 18.6061 15.7256 14.3198 12.6502 9.8769 ---

Present 47.8397 31.0184 23.8518 18.6100 15.7288 14.3228 12.6528 9.8789 8.8125

Table 2. Non-dimensional critical buckling load of simply supported FG plate under uniaxial compression along the x-axis 

Fig. 3. Effects of aspect ratio, b/a, on the non-dimensional 
critical buckling load of simply supported FG plate subjected to 

uniaxial compression along y-axis.
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decreasing the power law index under any type of loading.
The convergence of the bubble finite strip method (BFSM) 
in comparison with the ordinary finite strip method (OFSM) 
is shown in Figure 5. BFSM converges very rapidly due to 
using the bubble functions. It can be seen that the results 
obtained from the BFSM with two strips are equal to those 
obtained from the OFSM using six strips. Therefore, it could 
be concluded that the degrees of freedom remarkably reduces 
due to using the bubble functions.
Figure 6 indicates the output sample of the developed 
computer program in the MATLAB environment for FG plate 
analysis in an especial case that a/h = 5, power low index,       
n = 0, and the number of strips equals to 3. The plate is square 
and simply supported.

a/b a/h Method
n

0 0.5 1 2 5 10 20 100 inf
0.5 5 RPT[18] 5.3762 3.5388 2.7331 2.1161 1.7187 1.537 1.3692 1.099 ---

Present 5.3763 3.5388 2.7331 2.1161 1.7187 1.5370 1.3692 1.0989 0.9903
10 RPT[18] 5.9243 3.8565 2.9689 2.3117 1.9332 1.7517 1.551 1.22 ---

Present 5.9243 3.8565 2.9689 2.3117 1.9332 1.7517 1.5510 1.2200 1.0913
20 RPT[18] 6.0794 3.9452 3.0344 2.3665 1.9955 1.8152 1.6044 1.2547 ---

Present 6.0795 3.9452 3.0344 2.3665 1.9955 1.8152 1.6043 1.2546 1.1199
50 RPT[18] 6.1244 3.9708 3.0533 2.3823 2.0137 1.8338 1.62 1.2647 ---

Present 6.1244 3.9708 3.0533 2.3823 2.0137 1.8338 1.6200 1.2647 1.1281
100 RPT[18] 6.1308 3.9744 3.056 2.3846 2.0164 1.8365 1.6222 1.2662 ---

Present 6.1309 3.9745 3.0560 2.3846 2.0164 1.8365 1.6222 1.2662 1.1293
1 5 RPT[18] 8.0105 5.3127 4.1122 3.1716 2.5265 2.2403 2.0035 1.6293 ---

Present 8.0105 5.3127 4.1122 3.1716 2.5265 2.2403 2.0035 1.6293 1.4756
10 RPT[18] 9.2893 6.0615 4.6696 3.6315 3.0177 2.7264 2.4173 1.9099 ---

Present 9.2893 6.0615 4.6695 3.6315 3.0176 2.7264 2.4173 1.9099 1.7111
20 RPT[18] 9.6764 6.2834 4.8337 3.7686 3.1724 2.8834 2.5494 1.9961 ---

Present 9.6764 6.2834 4.8337 3.7685 3.1724 2.8834 2.5494 1.9961 1.7825
50 RPT[18] 9.7907 6.3485 4.8818 3.8088 3.2186 2.9307 2.5891 2.0217 ---

Present 9.7907 6.3485 4.8818 3.8088 3.2186 2.9307 2.5890 2.0217 1.8035
100 RPT[18] 9.8073 6.3579 4.8888 3.8147 3.2254 2.9376 2.5948 2.0254 ---

Present 9.8073 6.3579 4.8888 3.8146 3.2253 2.9376 2.5948 2.0254 1.8066
1.5 5 RPT[18] 11.682 7.8299 6.0799 4.6637 3.6176 3.1718 2.841 2.36 ---

Present 11.682 7.8298 6.0799 4.6637 3.6175 3.1718 2.8510 2.3599 2.1519
10 RPT[18] 14.6084 9.5685 7.3793 5.7279 4.7124 4.2384 3.7657 2.9959 ---

Present 14.6084 9.5685 7.3793 5.7278 4.7124 4.2384 3.7657 2.9959 2.6910
20 RPT[18] 15.5887 10.1332 7.7977 6.0761 5.1006 4.63 4.0961 3.2135 ---

Present 15.5887 10.1332 7.7976 6.0761 5.1006 4.6299 4.0961 3.2134 2.8716
50 RPT[18] 15.8876 10.3036 7.9236 6.1815 5.2212 4.7531 4.1995 3.2803 ---

Present 15.8876 10.3036 7.9236 6.1815 5.2212 4.7531 4.1994 3.2802 2.9266
100 RPT[18] 15.9312 10.3284 7.9419 6.1969 5.2389 4.7712 4.2147 3.29 ---

Present 15.9312 10.3284 7.9419 6.1968 5.2389 4.7712 4.2146 3.2900 2.9347

Table 3. Non-dimensional critical buckling load of simply supported FG plate under biaxial compression

Fig. 4. The effect of power-law index, n, on the buckling load of 
simply supported square plate (a=b=10h) under various loading 

conditions.
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a/b a/h Method
n

0 0.5 1 2 5 10 20 100 inf
0.5 5 RPT[18] 8.9604 5.898 4.5551 3.5268 2.8646 2.5617 2.282 1.8316 ---

Present 8.9605 5.8981 4.5552 3.5268 2.8646 2.5617 2.2820 1.8316 1.6506
10 RPT[18] 9.8738 6.4275 4.9481 3.8529 3.2219 2.9195 2.585 2.0334 ---

Present 9.8739 6.4276 4.9482 3.8529 3.2220 2.9195 2.5850 2.0334 1.8188
20 RPT[18] 10.132 6.5753 5.0574 3.9442 3.3259 3.0253 2.6739 2.0911 ---

Present 10.132 6.5754 5.0574 3.9442 3.3259 3.0253 2.6739 2.0911 1.8665
50 RPT[18] 10.207 6.6179 5.0888 3.9706 3.3562 3.0564 2.7 2.1079 ---

Present 10.207 6.6180 5.0889 3.9706 3.3563 3.0564 2.7000 2.1079 1.8803
100 RPT[18] 10.218 6.6241 5.0934 3.9744 3.3606 3.0609 2.7037 2.1103 ---

Present 10.218 6.6241 5.0934 3.9744 3.3606 3.0609 2.7037 2.1103 1.8823
1 5 RPT[18] 26.2058 17.7704 13.8486 10.5589 7.959 6.897 6.232 5.2556 ---

Present 26.2111 17.7742 13.8516 10.5611 7.9605 6.8982 6.2332 5.2566 4.8283
10 RPT[18] 35.8416 23.592 18.2206 14.1073 11.4583 10.2468 9.1281 7.3263 ---

Present 35.8518 23.5988 18.2258 14.1113 11.4614 10.2496 9.1306 7.3284 6.6042
20 RPT[18] 39.4951 25.71 19.7925 15.4115 12.8878 11.6779 10.34 8.1336 ---

Present 39.5074 25.7181 19.7987 15.4163 12.8917 11.6814 10.3431 8.1361 7.2776
50 RPT[18] 40.6574 26.374 20.2833 15.8219 13.3554 12.1543 10.7401 8.3931 ---

Present 40.6705 26.3825 20.2898 15.8269 13.3596 12.1581 10.7435 8.3957 7.4919
100 RPT[18] 40.8291 26.4717 20.3554 15.8823 13.425 12.2256 10.7998 8.4315 ---

Present 40.8423 26.4802 20.3620 15.8874 13.4293 12.2295 10.8033 8.4342 7.5235
1.5 5 RPT[18] 29.0249 20.1105 15.7823 11.9009 8.525 7.2422 6.6008 5.7477 ---

Present 30.3731 20.3576 15.8078 12.1256 9.4057 8.24681 7.4127 6.1359 5.5950
10 RPT[18] 37.9819 24.8781 19.1863 14.8925 12.2523 11.0199 9.7909 7.7894  ---

Present 37.9820 24.8782 19.1863 14.8925 12.2523 11.0198 9.7909 7.7894 6.9966
20 RPT[18] 40.5307 26.3463 20.274 15.798 13.2616 12.0379 10.65 8.3551 ---

Present 40.5308 26.3463 20.2740 15.798 13.2616 12.0379 10.6500 8.3550 7.4662
50 RPT[18] 41.3076 26.7894 20.6013 16.0719 13.5752 12.358 10.9186 8.5287 ---

Present 41.3077 26.7894 20.6013 16.0719 13.5752 12.3580 10.9186 8.5287 7.6093
100 RPT[18] 41.4211 26.8539 20.6489 16.1118 13.6212 12.4052 10.9581 8.5541 ---

Present 41.4212 26.8539 20.6490 16.1118 13.6212 12.4052 10.9581 8.5541 7.6302

Table 4. Non-dimensional critical buckling load of simply supported FG plate under biaxial compression (along x-axis) and tension 
(along y-axis)

Fig. 5. Convergence rate of BFSM in comparison with OFSM.

Fig. 6. Output sample of computer program for FG plate 
analysis
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7- Conclusion
In this study, the two-variable refined plate theory, in 
conjunction with the bubble finite strip method is employed 
for the first time to study the buckling of functionally graded 
rectangular plates. To decouple governing equations, the 
equations are written based on neutral surface. In comparison 
with other shear deformation plate theories, the two-variable 
refined plate theory uses a lower number of unknowns and 
therefore decreases the degrees of freedom of the system. 
Moreover, using the bubble functions in the interpolation of the 
displacement field increases the efficiency and convergence 
of the finite strip method. In conclusion, the proposed method 
is a simple, efficient, accurate and economical method to 
analyze the buckling of FG rectangular plates.
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