
AUT Journal of Mechanical Engineering

AUT J. Mech. Eng., 1(2) (2017) 211-218
DOI: 10.22060/mej.2017.12557.5364

An Analytical Procedure for Buckling Load Determination of an Axisymmetric 
Cylinder with Non-Uniform Thickness Using Shear Deformation Theory
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ABSTRACT: In this article, the buckling load of an axisymmetric cylindrical shell with a variable 
thickness is determined analytically by using the perturbation method. The loading is axial and the 
material properties are defined by the Hooke’s law. The displacement field is predicted by using the 
first order shear deformation theory and the nonlinear von-Karman relations are used for the kinematic 
description of the shell. The stability equations, which are the  system of nonlinear differential equations 
with variable coefficients, are derived by the virtual work principle and  are solved using the perturbation 
technique. Also, the buckling load is determined by using the finite element method and it is compared 
with the analytical solution results, the classical shell theory, and other  references. The effects of linear 
and nonlinear shell profiles variation on the axial buckling load are investigated. Also, we studied the 
effects of geometric parameters on the buckling load results. The results show that the first order shear 
deformation theory is more useful for buckling load determination of thicker shells.
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1- Introduction
Buckling load determination of a shell with a variable 
thickness is interesting due to conserving the weight. 
Hutchinson [1] calculated the axial buckling load of a shell 
with initial geometric imperfection by using the Rayleigh-
Ritz method. Morgan et al. [2] investigated the effects 
of R/h (radius to thickness ratio) on the buckling load of 
cylindrical and conical shells experimentally. Malik et al. 
[3] determined the buckling load of a cylindrical shell with 
a variable thickness under external pressure by using an  
experimental method. Mahboubi and Eipakchi [4] extracted 
the equations of cylindrical shells with a constant thickness 
by using the first order shear deformation theory (FSDT) 
and solved them by applying the perturbation method. The 
buckling load of a cylindrical shell with a variable thickness 
was presented analytically by Koiter et al. [5]. The governing 
equations were determined by considering the classical shell 
theory (CST) with the linear kinematic relations, and they 
were solved  using the asymptotic expansion. Li et al. [6] 
obtained the axial buckling load of a composite shell with 
a variable thickness by using the finite difference method. 
The thickness varied sinusoidally and the kinematic relations 
were linear. Andrianov et al. [7] determined the buckling 
load of a shell with a circumferential reinforcing band under 
external pressure. The shell was divided into several parts 
with constant thicknesses and each part was solved separately 
and the buckling load was determined by considering the 
continuity conditions. Gusic et al. [8] studied the effects of 
circumferential changes of the thickness on the buckling 
load. The governing equations were derived by considering 
the von-Karman theory and the solution was obtained with 
the finite elements (FE) method. Sofiyev and Erdem [9] 

investigated the stability of a heterogeneous cylindrical shell 
with a variable thickness under uniform external pressure. 
The stability equations were derived by using the linear 
kinematic relations and modified Donnell’s theory. Filippov 
et al. [10] obtained the buckling load and natural frequencies 
of a cylindrical shell with a variable thickness and curvilinear 
edge. The governing equations were extracted by considering 
linear kinematic relations and they were solved by using 
the matched asymptotic solution and FE method. Aghajari 
et al. [11] studied the buckling and post-buckling behavior 
of a cylindrical shell with a variable thickness by using the 
experimental and numerical methods. Luong and Hoach 
[12] determined the buckling load of a cylindrical panel 
with a variable thickness by using the Galerkin method. The 
governing equations were obtained linearly by considering the 
small deformation assumption. Luong et al. [13] investigated 
the buckling behavior of a cylindrical shell with a variable 
thickness under external pressure. The kinematic relations 
were linear and the governing equations for the elastic case 
were solved  using the perturbation technique and Bubnov-
Galerkin method.  Fakhim et al. [14] presented the buckling 
load of a shell with a variable thickness under the hydrostatic 
pressure, experimentally. The thickness profile changed 
stepwise and the shell had a conical cap. The buckling load 
of a shell with a stepwise variable thickness was calculated 
by Chen et al. [15]. They predicted the buckling load by 
using the weighted smeared wall method. Chen et al. [16] 
solved the Koiter equations and obtained the buckling load of 
a shell with a stepwise variable thickness. The solution was 
determined by using the perturbation technique for each part 
of the shell with a constant thickness. Shariyat and Asgari [17] 
extracted the equation of a nonhomogeneous and temperature 
dependent shell with variable thickness by considering 
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the third-order shear deformation theory and nonlinear 
von-Karman assumptions and determined the buckling 
temperature by using the FE method. Alashti and Ahmadi 
[18] investigated the buckling of a cylindrical panel with a 
varying thickness. The governing equations were obtained by 
considering the linear kinematic relations and these equations 
were solved by differential quadrature (DQ) method. Fan et 
al. [19] introduced an analytical method for dynamic buckling 
load determination of the shell with a variable thickness. By 
combining the Fourier series expansion and the perturbation 
technique, analytical formulas for buckling load of cylindrical 
shells with a variable thickness under time-dependent 
external pressure were determined. They converted the shell 
to some cylinders with  constant thicknesses. Zhou et al. [20] 
presented an analytical method to investigate the buckling 
behavior of the shell with a stepwise variable thickness under 
uniform external pressure. The analytical method consists 
of separation of variables method, perturbation technique, 
and Fourier series expansion. The presented method is just 
suitable for the shells with a stepwise thickness.    
To determine  the buckling load of the shells with a variable 
thickness,  most authors have used the numerical methods. 
Some of them have used the analytical methods based on the 
approximated functions, e.g., Frobenius series. The analytical 
methods were usually used for the linear problems and the 
classical shell theories. In this article, an analytical procedure 
is presented to determine the buckling load of an axisymmetric 
shell with a variable thickness. The displacement field is 
defined  using the FSDT. The kinematics of the shell obeys 
the nonlinear von-Karman relations and the Hooke’s law is 
used as the constitutive equation. The governing equations, 
which are a system of nonlinear coupled differential equations 
with variable coefficients, are solved analytically  using the 
perturbation technique. The analytical results are compared 
with the FE method and other available works.

2- Governing Equations
The horizontal and vertical coordinates of a point on the 
longitudinal section of an axisymmetric cylinder with a 
varying thickness are defined by r and x, respectively (Fig. 
1) and r=R(x)+z; R(x) is the middle surface radius and z is 
measured from the middle surface. L is the length of the 
shell and h(x)=Router-Rinner(x). By considering the FSDT, the 
displacement field in the axisymmetric case is assumed as:
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( , ) ( ) ( ) 
0 1

U x z u x zu x
x
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Uz and Ux are the radial and axial displacements, respectively, 
u0 and w0 are the middle surface displacements. u0, u1, w0 
and w1 are unknown functions of x. By considering the von-
Karman kinetic relations, the strain-displacement relations 
are [21]:
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For FSDT, the normal transverse strain is constant in 
z-direction but in the CST, it equates to zero. The Hooke’s 
law for a homogeneous, isotropic and linear elastic material 
is as  follows;
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Where λ and μ are lame’s constants and A=λ+2μ. The 
governing equations can be derived using the principle of 
virtual work which states that δU = δW. U is the strain energy 
and W is the potential energy due to in-plane load. We have 
[22]:
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Where P (N/m2) is stress at x=L. The stress resultants are 
defined as:
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Where, κ is the shear correction factor which is assumed 
5/6. By inserting  Eqs. (1-3,5) into the principle of virtual 
work and equating each of the coefficients δu0, δu1, δw0, δw1 
to zero, we obtain the following equations in terms of stress 

Fig. 1. Longitudinal section of shell subjected to axial stress at 
x=L
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resultants:
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By inserting  Eqs.  (2-3,5) into Eq. (6) the governing equations 
as a function of displacements are extracted. These equations 
are a system of four nonlinear coupled differential equations 
with variable coefficients. The general form of these 
equations is as follows. L1 to L4 are differential operators. 
The dimensionless form of equations has been reported in the 
appendix.
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3- Analytical Solution
The perturbation technique is used to  solve the governing 
equations. For this purpose, it is necessary to convert the 
equation to dimensionless form. We define the following new 
parameters,
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Where h0 and R0 are the thickness and radius characteristics, 
respectively (the thickness and radius at x*=1 as shown in 
Fig.1) and (*) stands for a dimensionless quantity. ε is a small 
parameter which  will be taken as the perturbation parameter. 
By using Eqs. (7-8) and considering the new variable η=x*/ε, 
the governing equations are converted to the dimensionless 
form. In order to solve them, the straightforward expansion 
method has been used [23]. This solution is considered as a 
uniform expansion of ε.
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The Taylor expansions of the middle surface radius and 
thickness about ε =0 are as  follows:
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By inserting Eqs. (9) and (10) into the dimensionless form of 
equations, the equations of the same order of ε are determined. 
The order-one equations are as Eq. (11). The higher orders of 
these equations do not provide  any new information about 
the buckling load and they can just improve the buckling 
mode shape of the shell.
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where ( )′=d/dη, ( )"=d2/dη2. Eq. (11) is a system of 
homogeneous coupled ordinary differential equations with 
constant coefficients which have the exact solution. The 
solution of Eq. (11) is considered as in the following:

{ } { }, , ,* * * * , , , exp( )0 10 00 10 1 2 3 4V u w w v v v v mη= (12)

By inserting  Eq. (12) into Eq. (11), we have:

[ ] { } { }1 2 3 4 4*14*4
, , , 0Tax v v v v = (13)

For a nontrivial solution, we set the determinant of  Eq. (13) 
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to zero. The roots of this algebraic equation are m1, m2, m3, m4, 
m5, m6 which are functions of P*. Thus, the general solution 
is:

{ }
{ }
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1
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The constants Ci are determined from the boundary 
conditions which are clamped at x*=0 and at x*=1, it is 
u10

*=w10
*=w00

*=0. By applying the boundary conditions, we 
have [bx]6*6{C1,C2,C3,C4,C5,C6}T={0}6*1. For a nontrivial 
solution, the determinant of matrix coefficients is equated to 
zero. It is a complicated algebraic function in terms of P1

*. 
The roots of this equation which are calculated by using the 
bisection method are the dimensionless buckling load.

4- Numerical Analysis
ANSYS 11 FE package has been used for the buckling analysis 
of the cylindrical shells with a varying thickness. PLANE82 
element in axisymmetric mode, which is an element with 
eight nodes and two translational degrees of freedom at each 
node, was used for the buckling analysis. This element is an 
axisymmetric element and  is used to model the longitudinal 
section of the cylinder. The shell is clamped at x*=0 and at 
the section x*=1 it is restricted to move in the radial direction. 
The shell properties have been listed in Table 1. For the shell 
with a variable thickness, the inner radius has linear and 
nonlinear variations and the outer radius is constant in the 
case studies. Fig. 2 shows the selected element, mesh pattern, 
loading, boundary conditions and buckled shell.

5- Results and Discussion
According to the mentioned formulation, the buckling load 
of a shell with a variable thickness has been determined 
analytically. A program has been prepared to perform the 
calculations using MAPLE13 mathematical software. 
The dimensionless buckling load of shells with different 
thicknesses have been reported in Table 2. It is seen that the 
increase  of the thickness decreases the difference percentage 
and the analytical results are improved by increasing the 
thickness. In  other words, the current method is more useful 
for thicker shells (Fig. 3).

Fig. 3 shows the effect of thickness on the buckling load of 
the shell with a constant thickness. The results of this study 
have been compared with those obtained by  FE method, the 
classical (Lorenz) formula [24] and the analytical method 
which have  been presented in reference [4]. Ref. [4] assumes 
that the radial displacement is independent of z i.e w1=0 (in 
Eq. (1)). In comparison with the FE method, it has the better 

Fig. 2. Mesh pattern and buckled shell.

Property Value
Shell length L=0.8 m

Young’s modulus E=200 GPa
Poisson’s ratio ν=0.3

Table 1. Shell characteristics

Router (m) FE Analytical Difference percentage 
with respect to FE

0.154 0.0209 0.0203 2.8%
0.156 0.0297 0.0260 12.4%
0.158 0.0380 0.0367 3.4%
0.16 0.0472 0.0460 2.5%
0.165 0.0642 0.0604 6%
0.17 0.0810 0.0780 3.6%
0.175 0.0960 0.0953 0.8%

Table 2. Dimensionless buckling load of various shells with 
Rinner(x*=0)=0.14m, Rinner(x*=1)=0.15m

Fig. 3. Effect of thickness on buckling load for the shells with 
constant thickness – Comparison with classical formula, FE 

and Ref. [4].
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results with respect to our work for smaller thicknesses but 
when the thickness increases, the presented formulation is 
closer than to the FE results with respect to Ref. [4]. In other 
words, for the thicker shells, it is necessary to consider w1 in 
Eq. (1). Also, for thin shells, the CST is sufficient to calculate 
the buckling load.
Fig. 4 shows the buckling load with different inner wall 
slopes as Rinner=αx*+Rinner(0). In all cases, the shells have the 
same volume. The outer radius is constant. It is seen that by 
increasing the inner wall slope, the buckling load decreases. 
Fig. 5 shows the effect of Rm/hm (which Rm, hm are the mid-
surface radius and thickness of the shell at x*=0.5) on the 
buckling load. The inner and outer radiuses ranges for Fig. 5 
have been reported in Table 3.

It is seen that the buckling load decreases by increasing                 
Rm/hm ratio. This graph can be approximated as                                                                                      
P1

*=123.7(hm/Rm)1.13. In CST, the buckling load is proportional 
to h/R.
In Fig. 6, the buckling load for shells with linear and nonlinear 
profiles versus different outer radius has been presented. For 
the linear case, Rinner =0.01x*+0.14 and for the nonlinear case, 
Rinner=0.06x*2-0.06x*+0.155. In all cases, the shells have the 
same volume. It is specified that the shells with nonlinear 
profile have a higher buckling load and, as a result, they can 
be more efficient.

6- Conclusion
An analytical procedure based on the FSDT and the 
perturbation technique was presented to determine the 
buckling load of cylindrical shells with a variable thickness.
•	 This method converts the nonlinear equations with 

variable coefficients to a system of ordinary differential 

equations with constant coefficients. This system of 
equations has closed-form solutions.

•	 This analytical solution has a fast convergence and good 
accuracy.

•	 This analysis does not require to build the FE models and 
mesh them.

•	 The geometrical properties (inner and outer radius and 
the shell length), are just as an input for the prepared 
program. Thus, one can perform the sensitivity analysis 
easily for different shells with linear and nonlinear 
thickness variations. 

•	 By using the FSDT, the difference between analytical 
and FE results for thicker shells decreases.

•	 For the cylindrical shells with a linear thickness 
variation, by increasing the gradient of the inner profile, 
the buckling load decreases. 

•	 By increasing Rm/hm in cylindrical shells with variable 
thickness, the buckling load decreases significantly.

•	 The presented method is capable of  determining  the 
buckling load for the shells with an arbitrary continuous 

Min. Max.
Router 0.11m 0.17m

Inner(x*=0) 0.8m 0.14m
Inner(x*=1) 0.9m 0.15m

Table 3. Inner and outer radiuses values in Fig. 4

Fig. 4. Buckling load for different slops with Router=0.145m (with 
the same volume).

Fig. 5. Effect of Rm/hm on buckling load.

Fig. 6. Buckling load for linear and nonlinear variation of shell 
profile.
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profile (linear or nonlinear).
•	 The shells with the nonlinear profiles have a higher  

efficiency in comparison with the shells with linear 
profiles for the same volume.

•	 According to the FSDT, the buckling load of shells is 
proportional to (hm/Rm)1.13, which for the CST, it is 
proportional to hm/Rm.

•	 Considering w1 in Eq. (1), improves the results especially 
for the thicker shells.
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