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ABSTRACT: This study aims to analyze the linear elastic behavior of an aluminum matrix 
nanocomposite reinforced with SiC nanoparticles. Once, a representative volume element was considered 
for the nanocomposite with a cuboidal inclusion. The elastic moduli of the matrix and the inclusion were 
the same, but it contained eigenstrain. The stress and the strain fields were obtained for the inclusion 
and the aluminum by Galerkin vector method. The stress and the strain fields in the inclusion problem 
were in a good agreement with the results in the literature. A similar representative volume element was 
considered for the nanocomposite with a cuboidal inhomogeneity. The elastic moduli of the matrix and 
the inhomogeneity were different, but it did not have any eigenstrain. For the calculation of the Eshelby 
tensor and the elastic fields for the inhomogeneity problem, the equivalent inclusion method (EIM) was 
applied. In the EIM, the uniform and equivalent eigenstrain were considered. The stress and the strain 
fields within the inhomogeneity and the matrix were obtained. Results showed that the stress and the 
strain in the cuboidal inclusion were less than the cuboidal inhomogeneity due to the difference between 
the matrix and the reinforcement materials.
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1- Introduction
With the increasing application of the nanocomposites in 
advanced industries, the mechanical behaviors of these 
materials are important [1]. Nanocomposites are a wide 
class of composite materials consisting of at least one phase 
with dimensions in the nanometer scale [2]. As an example, 
aluminum matrix nanocomposite reinforced with different 
kinds of ceramic nanoparticles, have been widely used in 
many engineering fields, because of its remarkable mechanical 
properties, such as wear resistance, high elastic modulus, high 
thermal stability, good oxidation and corrosion resistance and 
fatigue strength [3]. The aluminum matrix nanocomposites 
have been considered as good candidates, applied as structural 
materials to the automotive, aerospace and military industries 
[4]. Many ceramic nanoparticles are used as a reinforcement 
for the aluminum matrix nanocomposite, namely; Al2O3, 
ZrO2, MgO, FeTiO3, Si3N4, TiC, B4C, SiC [5]. In this research, 
we select the SiC as a common reinforcement, because it is 
inexpensive and accessible.
The nanocomposites are an inhomogeneous material. When 
a reinforcement is embedded in an elastic matrix, an internal 
stress field develops inside the reinforcement and the matrix. 
The reinforcement in the nanocomposite materials disturbs 
the elastic stress and the strain fields. The disturbance of the 
stress and the strain fields changes the mechanical behavior 
of the nanocomposite materials [6]. The calculation of the 
elastic strain and stress fields existing in the nanocomposites 
is necessary to characterize the strength, the conditions for 
fracture, and computation for the critical parameters defects 
formation. The elastic fields in the nanocomposites depend 
on many  parameters such as the reinforcement and the matrix 

types, size and shape of the reinforcement, the surface energy 
of interface, and the matrix and the reinforcement mutual 
diffusion [7]. 
In the micromechanical models, the reinforcement as an 
inclusions in the nanocomposites are represented by an 
eigenstrain, which are identified with the difference of the 
matrix and the reinforcement crystal lattices [8]. Generally, 
the eigenstrain in the micromechanics shows the inelastic 
strains, namely initial, plastic, thermal, misfit, and phase 
transformation strains [9]. The eigenstress is caused by one 
or several of the eigenstrains, which are free from any other 
external force and surface constraint. We did not consider the 
concept of the eigenstress in this research. In other words, 
when the eigenstrain is prescribed in a finite subdomain in 
a homogenous material, and the eigenstrain is zero in the 
remainder material (matrix), the subdomain is called the 
inclusion. When the inclusion is considered, it is assumed the 
elastic moduli of the material to be homogenous. On the other 
hand, if the elastic moduli of the subdomain in a material is 
different from the matrix, then the subdomain is called an 
inhomogeneity [8].
Mura categorized discontinuous materials into three 
categories, namely homogeneous inclusions or inclusions, 
inhomogeneities and inhomogeneous inclusions [9]. The 
elastic moduli of the homogeneous inclusion or inclusion 
is similar to the matrix, but it contains the eigenstrain. The 
elastic moduli of the inhomogeneity is different from the 
matrix, and it does not have any eigenstrain. Usually, for 
the calculation of the elastic fields in the inhomogeneity, 
the equivalent inclusion method (EIM) is  applied [9]. In 
EIM, the uniform eigenstrain was considered due to the 
difference in the matrix and the reinforcement materials. The 
inhomogeneous inclusion is an inhomogeneity which contains Corresponding author, E-mail: dashtbayazi@uk.ac.ir
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eigenstrain. Sometimes, the inhomogeneous inclusion is 
called an inhomogeneous inhomogeneity [8]. The eigenstrain 
inside the inhomogeneous inclusion are misfit and phase 
transformation strains [9].   
The elastic fields in the nanocomposites are approximated 
by different approaches. These approaches include  the 
classical linear elasticity [10], atomistic simulations [11], 
and the combine elastic continuum models with the atomistic 
simulations [12]. Several analytical solutions have been 
introduced for the calculation of the linear elastic fields for 
the inclusions inserted in an infinite medium, like ellipsoidal 
[13], cuboidal [14], and cylindrical inclusions [15, 16]. The 
strain field due to a cuboidal inhomogeneity is calculated by 
Johnson et al. [17, 18]. They applied a polynomial form for 
equivalent eigenstrain. Eshelby’s solution is an important 
procedure for the calculation of the elastic field for ellipsoidal 
elastic inclusions in an infinite elastic body with a uniform 
eigenstrain [19]. The strain gradient effect was not considered 
by the Eshelby’s solution [19]. Ma and Gao  considered a 
strain gradient elasticity theory in the Eshelby problem [20]. 
Rodin showed  that the Eshelby tensor was not constant 
inside inclusion with polyhedral shape [21]. Also, Rodin 
explained the Eshelby tensor for polygonal inclusions in two-
dimensional space. Nozaki and Taya  derived the Eshelby 
tensor for the polyhedral inclusions in three-dimensional 
space [22]. Nozaki and Taya calculated the elastic field inside 
and outside of the regular polyhedral inclusions with different 
shapes, namely tetrahedron, hexahedron, octahedron, 
dodecahedron, and icosahedron. Rodin [21] and Nozaki and 
Taya [22]  applied an algorithm developed by Waldvogel 
[23] for the calculation of the Newtonian potential for the 
polyhedral inclusions. Kuvshinov  presented a compact 
form for the Eshelby tensor for the polyhedral inclusions 
[24]. Many analytical solutions were obtained for polyhedral 
inclusions such as cuboidals by Chiu [25]; Lee and Johnson 
[26]; Liu and Wang [27], and pyramids by Pearson and Faux 
[28]; Glas [29]; Nenashev and Dvurechenskil [30]. 
In this study, the linear elastic behavior of the aluminum 
matrix reinforced with the SiC nanoparticles is investigated. 
The shape of the reinforcement is considered cuboidal due 
to the crystal structure of the SiC [31]. One of the important 
structure for the SiC is 3C-SiC (β), which we have considered 
in our research. Like a diamond crystal structure, the crystal 
structure of 3C-SiC (β) is cubic [32]. The cuboidal SiC is 
considered once as the inclusion (the inclusion problem) 
and once again, as the inhomogeneity (the inhomogeneity 
problem). It is assumed that the SiC nanoparticles are randomly 
distributed in the aluminum matrix, and the behavior of the 
nanocomposites are isotropic. The mechanical properties of 
SiC in a single crystal form is anisotropic [33]. The random 
distribution of the SiC nanoparticles in the aluminum matrix 
develops an isotropic condition for Al/SiC nanocomposite. 
Finally, the stress and the strain distributions of the cuboidal 
inclusion and inhomogeneity are obtained and the results are 
compared.

2- Definition of the problems
Fig. 1 shows the representative volume element of the 
nanocomposite, containing a cuboidal SiC. The SiC 
reinforcement was considered once as an inclusion. The 
elastic moduli of the matrix and the inclusion are the same, 
but the inclusion has eigenstrain. A similar representative 

volume element for the nanocomposite was considered which 
contains of the cuboidal inhomogeneity. The elastic moduli 
of the matrix and the inhomogeneity are different and the 
inhomogeneity does not have eigenstrain. The aim of the 
research was finding the stress and the strain distributions in 
the matrix, the inclusion, and the inhomogeneity.

3- Solution to the inclusion problem
In this research, the stress and the strain distributions for 
the cuboidal inclusion were obtained by the Galerkin vector 
method [34]. Chiu [14]  derived an expression to obtain 
the stress and the strain fields in an isotropic elastic matrix 
containing a cuboidal inclusion with the inelastic strains (the 
eigenstrain) by the Galerkin vector method. Final results 
of the gradient of displacement parameters are obtained as 
follows [14]:
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where λ and μ are the Lame’s constants, ui is displacements 
vector, and υ is the Poisson’s ratio, D is a function of Cn 
vectors that was  introduced in [14], eij is the uniform initial 
strains inside the inclusion and it is zero outside the inclusion.
After the gradients of displacements were calculated by  Eq. 
(1), the elastic components of the strains in the inclusion and 
the matrix are obtained by [14]:

( ) '
, ,1 / 2ij i j j i ije u u e= + − (2)

Then the stresses for the inclusion and the matrix were 
calculated by the Hooke’s law.

4- Solution of the inhomogeneity problem
As mentioned earlier, EIM was applied to calculate the 
elastic fields for the inhomogeneity problem. The EIM was 
implemented to calculate the Eshelby tensor for the cuboidal 
inhomogeneity. The uniform eigenstrain was considered due 
to the difference in the matrix and the reinforcement materials 
and temperature variation. Then, the equivalent eigenstrain 
was calculated. The eigenstrain was added to the total strain 

Fig. 1. Cuboidal nanoparticle and Cartesian coordinate with 
the origin at the centroid

_
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of the inclusion, and then, the strain of the inhomogeneity 
was calculated. Finally, the stress and the strain distributions 
were obtained in the inhomogeneity and the matrix.

4- 1- Equivalent inclusion method (EIM)
In EIM, the SiC inhomogeneity simulates as the inclusion 
within the matrix with an initial eigenstrain εij

p which adds to 
an equivalent eigenstrain εij

* [35]. In EIM, the inhomogeneity 
in Fig. 2(a) changes into the inclusion in Fig. 2(b). Equivalent 
eigenstrain εij

* is a fictitious strain which simulates the 
perturbation of a stress and strain fields, introduced by the 
inhomogeneity with different elastic moduli into the applied 
remote stress. Consequently, equivalent eigenstrains has been 
defined in order to simulate inhomogeneity problem by the 
use of the inclusion method [9]. The elastic strains εij

e in the 
equivalent inclusions are obtained by [35]:

*e p
ij ij ij ijε ε ε ε= − − (3)

where εij is the total strain and εij
p  is an initial eigenstrain. 

According to Hooke’s law,  Eq. (4) is explained for any point 
at the equivalent inclusion [35]:

( ) ( )*     , , , 1, 2,3p
ij ijkl kl kl klC i j k lσ ε ε ε= − − = (4)

where σij is stress tensor and Cijkl is stiffness tensor.

4- 2- Definition of the polyhedral inhomogeneity
The elastic field in the inhomogeneity with an arbitrary 
polyhedral shape in an infinite elastic body was calculated 
by Rodin [21], Nozaki and Taya [22], and Kuvshinov [24]. 
According to [36], the p-faced polyhedral inclusion is divided 
into tetrahedral duplexes. Each duplex is divided into two 
simplexes. Each simplex was considered as a tetrahedron 
(Fig. 3). The four vertices in each of the duplexes are the 
projection point of x on a polyhedral surface (i.e., xI), two 
adjacent vertices on this surface (i.e., VIJ

+ and VIJ
-), and 

the point x itself, respectively. A local cartesian coordinate 

Fig. 2. Description of the equivalent inclusion method (a) Schematic of SiC arbitrarily shaped inhomogeneity with elastic moduli 
Cijkl

SiC and initial eigenstrain εij
p embedded in an aluminum matrix with elastic moduli Cijkl (i,j,k,l=1,2,3) under external load, and 

(b) Using EIM, SiC inhomogeneity in (a) is equivalently treated as an inclusion with εij
p plus equivalent eigenstrain εij

* [35].

(a) (b)

Fig. 3. A polyhedron represented by duplexes: (a) a polyhedron (with five duplexes shown); (b) a duplex and the associated local 
coordinate system constructed from an arbitrary point x [36].

(a) (b)



H. Pourhashemi and M. R. Dashtbayazi, AUT J. Mech. Eng., 1(2) (2017) 149-158, DOI: 10.22060/mej.2017.12281.5303

152

system is considered for each duplexes, and point x is 
considered as the origin. λ, η and 𝜁 are considered as the three 
orthogonal axes of the local coordinate system. Fig. 4 shows 
the coordinates of the two vertices VIJ

+ and VIJ
- on the Jth 

edge of the Ith surface by (bJI, lJI
+, aI) and (bJI, lJI

-, aI). The unit 
vectors associated with the local coordinates λ, η and 𝜁 are 
λJI

0, ηJI
0 and ξI

0. An arbitrary point on the Jth edge of the Ith 
surface is y, and the position vector of y relative to the origin 
x (i.e., r=y-x) is r, and the projection of r on the Ith surface is 
rI

s. (x1 , x2 , x3) are the cartesian coordinates with a (e1 , e2 , e3) 
as base vectors.

4- 3- Calculation of the Eshelby tensor 
The Eshelby tensor Sijkl is obtained by two distinct tensors 
[36]:

C G
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where, Sijkl
C and Sijkl

G are the classical part and the gradient 
part of Eshelby tensor, respectively, δij is the Kronecker delta, 
and Φ(x), Λ(x) and Γ(x) are three scalar-valued potential 
functions. In order to simplify, in this research, the gradient 
part of the Eshelby tensor Sijkl

G is ignored. Finally, the Eshelby 
tensor is given by:

C
ijkl ijklS S= (8)

Fig. 5 shows the number of the surfaces for the cuboidal 
inhomogeneity. According to the definition of the classical 
Eshelby tensor [22], in Fig. 5, the values of p (i.e. The number 
of  surface) is p=6 and the values of q (i.e. the number of edge 
in each surface) is q=4. Then, the classical Eshelby tensor 
from Eq. (8) is given by [36]:

(9)

The parameters in Eq. (9) are defined as [36]:
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Fig. 4. A duplex with its base on the Ith surface and one local 
coordinate axis (η) along the Jth edge of the Ith surface [36].

Fig. 5. Number of surfaces in the cuboidal inclusion
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where I, J are the number of surfaces and the number of the 
edges in each surface, respectively, functions Φ1

JI,(Φ1
JI)+,(Φ1

JI)-

and Λ1
JI,(Λ1

JI)+,(Λ1
JI)- in Eq. (10) are defined in  Ref. [36]. The 

parameters aI , bJI , lJI
+ , lJI

- must be obtained where are related 
to the cuboidal inhomogeneity through Eshelby tensor in Eq. 
(9) where the parameters aI , bJI , lJI

+ , lJI
- are related to x 

through [36]:
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The parameters for the surface number one is depicted in Fig. 
6.
According to equations in Ref. [36], the parameters aI, bJI, lJI

+, 
lJI

- can be calculated as follows:
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From Fig. 6 for the surface number one, it can be calculated:
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From Eqs. (12) to (18) for the surface number one, the 
parameters aI , bJI , lJI

+ , lJI
- are calculated as:

( )1 1 1 1 10a b x b x== − (19)
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Fig. 6. The parameters of the surface number one for cuboidal 
inclusion
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The details for the calculation of the parameters for other 
surfaces in Fig. 5 have been described in Ref. [37]. 
The Eshelby tensor is shown as:

(23)

Finally, all parameters for the cuboidal inhomogeneity are 
substituted into Eq. (6). In our problem, numerical values of 
the cuboidal inhomogeneity with dimensions b1=b2=b3=1 are  
calculated as:

(24)

4- 4- Calculation of the total strain for the inhomogeneity 
problem
In EIM, equivalent eigenstrain εij

* is defined as [35]:

* ´́
ij ijkl ijS eε = (25)

where eij
´´ is the uniform initial eigenstrain which is due to 

the difference in temperature and materials and is defined by:

( )´́
ij Al SiC ije Tα α δ= − ∆ (26)

where αAl and αSiC are thermal expansion coefficients of 
the aluminum and the SiC, respectively. δij is Kronecker 
delta and ∆T is the temperature difference. The thermal 
expansion coefficients of the aluminum and the SiC are                        
αAl=23.6×10-6/℃  and αSiC=4×10-6/℃, respectively, and ∆T 
is the temperature difference between the melting point of 
the aluminum to environmental temperature (i.e. ∆T=660.32-
25=635.32 ℃. Then Eq. (26) is calculated by:

( ) ( )´́ 312.452 10ij Al SiC ij ije Tα α δ δ−= − ∆ = × (27)

The equivalent eigenstrain εij
* is obtained by Eq. (25). All 

elements of the initial eigenstrain εij
p are considered zero 

expect ε11
p=0.01,ε22

p==0.01,ε33
p==0.01, and the total strain is 

obtained by Eq. (3).

5- Results and Discussion
For the purpose of the model validation, the results of the 
inclusion problem are compared to the available results 
by Nozaki and Taya [22]. Fig. 7 shows the results are in a 
good agreement. Figs. 8 and 9 depict the distribution of the 
dimensionless stress (σ11 ⁄E) for the inclusion problem and 
the inhomogeneity problem along the dimensionless position 
(x1 ⁄b1), respectively. According to results presented in Figs. 
8 and 9, the variation of (σ11 ⁄E), for the inclusion and the 
inhomogeneity problem along the axis (x1 ⁄b1), inside of the 
inclusion is negative (compression). The variations of (σ11 ⁄E), 
for the inclusion and the inhomogeneity problem along the 
axis (x1 ⁄b1), at interface of the inclusion and the inhomogeneity 
is continuous. Stress outside of the interface for the inclusion 
tends to be zero. By eliminating the eigenstrain in the 
inhomogeneity problem, the results of the inclusion problem 
are obtained. Thus, the results for the inhomogeneity problem 
are consistent to the inclusion problem.
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21 3 3 3 3

31 2 2 2 2

41 3 3 3 3

,
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Fig. 7. Comparison of dimensionless stress σ11 ⁄E for the 
inclusion problem with respect to the dimensionless points 

x2  ⁄ b2  with Nozaki and Taya results [22]

Fig. 8. Distribution of σ11 ⁄E for the inclusion problem along the 
dimensionless position x1  ⁄ b1 
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Figs. 10 and 11 show the distribution of the dimensionless 
stress (σ11 ⁄E), for the inclusion problem and the 
inhomogeneity problem along the dimensionless position                                                     
(x2  ⁄b2), respectively. According to Figs. 10 and 11, the 
variation of (σ11 ⁄E), for the inclusion and the inhomogeneity 
problems along the axis (x2  ⁄b2), inside of the inclusion is 
compressive. The variations of (σ11 ⁄E), for the inclusion 
and the inhomogeneity along the axis (x2  ⁄b2), at interface of 
the inclusion and the inhomogeneity is discontinuous. The 
variations of the stress at the outside of the interface for the 
inclusion tend to be zero.

Figs. 12 and 13 show the distribution of the dimensionless 
stress (σ11 ⁄E), for the inclusion and the inhomogeneity 
problems along the dimensionless position (x3  ⁄b3) , 
respectively.”. According to Figs. 12 and 13, the variation 
of (σ11 ⁄E), for the inclusion and the inhomogeneity problems 
along the axis (x3 ⁄b3) is similar to the variation of (σ11 ⁄E) for 
the inclusion and the inhomogeneity problems along the axis 
(x2  ⁄b2).

Figs. 14 to 19 depict the distribution of the strains for the 
inclusion and the inhomogeneity problems along the 
dimensionless axes, respectively. Results show that the 
distributions of the strains at the interface are discontinuous. 
Fig. 14 shows that inside the inclusion, the strain ε11 is 
compressive. Although, around the interface of the inclusion, 
the strain distribution changes from positive (tension) 
to negative (compression). Fig. 15 shows inside and the 
outside of the inhomogeneity, the strain ε11 is compressive. 
According to Fig. 16, inside  the inclusion, the strain ε11 is 
compressive and  outside  the inclusion is tensile. Fig. 17 
shows the strain distribution in the inside and the outside 
of the inhomogeneity is compressive. According to Figs. 18 
and 19, the variation of the strain ε11 for the inclusion and the 
inhomogeneity problems along the dimensionless position                                                                                            
x3 /b3 is similar to the variation of  the strain ε11 for the inclusion 
and the inhomogeneity problems along the dimensionless 
position x2 /b2, respectively. Totally, the stress and the strain 
distributions along the same axes for the inclusion and 
the inhomogeneity problems have the same trend but the 
stress and the strain in the inclusion problem is less than 
the inhomogeneity problem due to the difference between 

Fig. 9. Distribution of σ11 ⁄E for the inhomogeneity problem 
along the dimensionless position x1  ⁄ b1

Fig. 10. Distribution of σ11 ⁄E for the inclusion problem along 
the dimensionless position x2  ⁄ b2

Fig. 11. Distribution of σ11 ⁄E for the inhomogeneity problem 
along the dimensionless position x2  ⁄ b2

Fig. 12. Distribution of σ11 ⁄E for the inclusion problem along 
the dimensionless position x3  ⁄ b3

Fig. 13. Distribution of σ11 ⁄E for the inhomogeneity problem 
along the dimensionless position x3  ⁄ b3
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properties of reinforcement and matrix materials.

6- Conclusion
The linear elastic behavior of the aluminum matrix reinforced 
with the SiC nanoparticles was analyzed. Two representative 
volume elements for the nanocomposite were considered, 
one for the cuboidal inclusion and the other for the cuboidal 
inhomogeneity. The stress and the strain distributions were 
found for the inclusion problem by the Galerkin vector 
method, and for the inhomogeneity problem by the equivalent 
inclusion method (EIM). The major outcomes of this study 
were:
•	 The variations of the dimensionless stress (σ11 ⁄ E) for 

the inclusion and inhomogeneity problems along the 
dimensionless position (x1 ⁄ b1), at the interface of the 
inclusion and the inhomogeneity was, continuous.

•	 The variations of the dimensionless stress (σ11 ⁄ E) for 
the inclusion and the inhomogeneity problems along the 
dimensionless position (x2  ⁄ b2), at the interface of the 
inclusion and the inhomogeneity was, discontinuous.

•	 The distributions of the strains at the interface of the 
inclusion and the inhomogeneity were discontinuous.

•	 The stresses and strains distributions along the same 
axes for the inclusion and the inhomogeneity problems 
had the  same trend but the stresses and strains in the 
inclusion problem were  less than the inhomogeneity 
problem due to the differenece between mechanical 
properties of matrix and reinforcement materials.

Fig. 14. Distribution of strain ε11 for the inclusion problem 
along the dimensionless position x1  ⁄ b2

Fig. 15. Distribution of strain ε11 for the inhomogeneity problem 
along the dimensionless position x1  ⁄ b2

Fig. 16. Distribution of strain ε11 for the inclusion problem 
along the dimensionless position x2  ⁄ b2

Fig. 17. Distribution of strain ε11 for the inhomogeneity problem 
along the dimensionless position x2  ⁄ b2

Fig. 18. Distribution of strain ε11 for the inclusion problem 
along the dimensionless position x3  ⁄ b3

Fig. 19. Distribution of strain ε11 for the inhomogeneity problem 
along the dimensionless position x3  ⁄ b3
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