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ABSTRACT: In this paper, a new phase field method for the interaction between martensitic phase 
transformations and dislocations is presented which is a nontrivial combination of the most advanced 
phase field methods to phase transformations and dislocation evolution. Some of the important points in 
the model are the multiplicative decomposition of deformation gradient into elastic, transformational and 
plastic parts, defining a proper energy to satisfy thermodynamic equilibrium and instability conditions, 
including phase-dependent properties of dislocations. The system of equations consists of coupled 
elasticity and phase field equations of phase transformations and dislocations. Finite element method 
is used to solve the system of equations and applied to study the growth and arrest of martensitic plate 
and the evolution of dislocations and phase in a nanograined material. It is found that dislocations play 
a key role in eliminating the driving force of the plate growth and their arrest which creates athermal 
friction. Also, the dual effect of plasticity on phase transformations is revealed; due to dislocations 
pile-up and its stress concentration, the phase transformation driving force increases and consequently, 
martensitic nucleation occurs. On the other hand, the dislocation nucleation results in decreasing the 
phase transformation driving force and consequently, the phase transformation is suppressed.
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1- Introduction
The interaction between martensitic Phase Transformations 
(PTs) and dislocations is of great importance for various 
applications such as transformation-induced plasticity 
[1], plastic shear-induced PTs under high pressure [2,3], 
martensite nucleation and growth [4,5,6], and heat and 
thermomechanical treatments of steels. The main focus of the 
current paper is on PFA to the interaction between evolving 
martensitic PTs and discrete dislocations at the nanoscale. 
Martensitic nucleation in the presence of stationary 
dislocations was studied by Wand and Khachaturyan [7]. The 
evolution of martensite (M) with dislocations located at the 
moving phase interface was treated in Kundin et al. study [8]. 
A simplified version of a PFA for discrete dislocation theory 
with martensitic PTs is presented by Levitas and Javanbakht 
[9]. Here, we combine the most advanced and the only 
available large-strain PFA with multivariant martensitic PTs 
[10] and dislocation evolutions [9] and include their nontrivial 
interactions. For compactness, the single martensitic variant 
is treated. The FEM simulations are applied to study the 
growth and arrest of the martensitic plate for temperature-
induced PTs, the evolution of dislocations and high-pressure 
phase in a nanograined material under pressure and shear, 
and inheritance of dislocations of martensite in austenite for 
stress-induced PT. Some preliminary results are presented in 
[11, 12].

2- Complete System of Equations
The following multiplicative decomposition of the 
deformation gradient F into elastic Fe, transformational 

Ut, and plastic Fp contributions is justified: F=Fe∙Ut∙Fp . In 
order to satisfy thermodynamic equilibrium and instability 
conditions, Ut vs. the order parameter η for a single martensitic 
variant is accepted as in [10]:
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where εt is the transformation strain tensor and I is the unit 
tensor. For multiple slip systems, an additivity of the plastic 
velocity gradients for different slip systems is accepted, like 
in crystal plasticity:
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Here ξα is the order parameter for a dislocation in a slip 
system α, which varies between n-1 and n when n-1 complete 
dislocations exist and the nth dislocation appears; Int(ξα) and 
ξα are the integer and the fractional parts of ξα, respectively; 
bα is the Burgers vector of the slip system α, Hα is the height 
of dislocation, nα is the unit vector normal to the slip system, 
mα is the unit vector in the direction of bα, and γα=bα/Hα is the 
plastic shear strain. The Helmholtz free energy per unit mass 
can be expressed as the sum of elastic energy ψe, thermal 
energy for PT ψη

θ, crystalline energy for dislocations ψξ
c, 

the energy of interaction of dislocation cores belonging to 
different slip systems ψξ

int, and gradient energies related to 
martensitic PT ψη

∇ and dislocations ψη
∇ as follows
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The elastic energy is
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where C is the fourth-rank elastic moduli tensor and 
Ee=1/2(Fe

T. Fe-I) is the Lagrangian elastic strain tensor. Also, 
Jt=detUt is the determinant of Ut. The thermal energy is 
derived as
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where θc is critical temperature at which stress-free A loses 
its stability, θe is equilibrium temperature, ∆s is the jump in 
entropy, and  A0 is a parameter. The crystalline energy for 
dislocations is accepted as follows
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in which PTs and the inheritance of slip systems during PTs 
are taken into account. The coefficient Aα(η,yα) characterizes 
the phase dependent theoretical yield strength. It is a periodic 
step-wise fucntion of the coordinate yα along the normal to 
the corresponding slip plane α. The parameter Aα is equal 
to its normal value Aα within each dislocation band of the 
height Hα and kAα (k >>1) in a thin boundary layer between 
dislocations of the width dα.  Thus, it excludes the spreading 
of the dislocation outside the desired dislocation band. 
The energy of interaction of dislocation cores belonging to 
different slip systems is expressed in the following form:
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where Aαk
A and Aαk

M are the coefficients of the energy of 
interaction of dislocation cores in the austenite (A) and 
M, respectively. This interaction energy term ensures that 
dislocations do not simultaneously pass through the same 
material point. For PTs with only one martensitic variant, the 
gradient energy can be written as follows:

2
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β
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where βη is the coefficient of the gradient energy for PT. For 
dislocations, the gradient energy can be written based on 
the form in [9] but by considering different coefficients for 
different phases
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where βξ
A and βξ

M are the coefficients of the gradient energy 
for dislocations in A and M, respectively; M is the ratio of 
the coefficients for the gradient energy normal to and along 
the slip plane; ∇m and ∇n are the gradient operators along and 
normal to the slip system α, respectively.
The Ginzburg-Landau equations for PTs and dislocations at 
large strains are expressed as
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where P=ρ0 Je Fe . ∂ψ/∂Ee . Ut
-1 . Fp

T-1 is the first Piola-
Kirchhoff stress; Lα

A  and Lα
M are the kinetics coefficients for 

dislocations in A and M, respectively. Momentum balance 
equation is expressed as ∇.P=0. The boundary conditions for 
PTs and dislocations are ∇η∙k=0 and ∇ξα∙b

α=0, respectively, 
where k is the unit normal.

3- Numerical Solutions
FEM approach and code COMSOL with embedded remeshing 
procedure have been utilized. Plane strain problems and 
straight edge dislocations are considered. All size and time 
parameters are normalized by 1nm and 1ps, respectively. 
All results are shown in the deformed configuration. 
The following material parameters are used unless stated 
different [11,12]: H=0.7nm, |b|=0.35nm, βξ

A=βξ
M=7.5 ×10-

11 N, Aα
M=3Aα

A=2.25GPa, γα=0.5, βξ
A=βξ

M=2.59×10-10 N, 
Lα

A=Lα
M=2600(Pa∙s)-1, A0=20.6MPa/K, ∆s=5.05MPa/K, 

θ=298K, θc=-90K, θe=100K, a=4, εt
x=εt

y=-0.05, εt
xy=0.1, 

shear modulus  μ=71.5 GPa, bulk modulus K=112.6 GPa. To 
validate the numerical procedure, it is found that the results 
well match the local thermodynamic equilibrium condition 
and the interfaces well coincide with the equilibrium contours 
[18].

3- 1- The evolution of dislocations and high-pressure phase 
in a nanograined material under pressure and shear
For the chosen material parameters, the phase equilibrium 
pressure between the low and high-pressure phases is 10 GPa. 
With one dislocation, PT starts and occurs to a significant 
extent at hydrostatic pressure of Ph=15 GPa. A rectangular 
sample with the size of 50×20 is considered which includes 
two nanograins surrounded by two areas at the top and bottom 
of the sample, each with the size of 50×5, which plays a role 
as elastic accommodators (Fig. 1). A horizontal dislocation 
band is located in the middle of the left grain. Two dislocation 
systems inclined at ±30° from the horizontal line are located 
in the right grain. The lower side of the sample is fixed in 
both directions, the periodic boundary conditions are applied 
at the lateral sides, and a vertical stress is applied to the upper 
side in the deformed state, which results in the initial average 
pressure in the nanograins. The upper side is also subjected 
to a horizontal displacement u (which is given in terms of 
prescribed macroscopic shear γ=u/h, with the height of grains 
h=20). In the first problem, dislocation activity in the right 
grain is forbidden. Under the applied shear, the dislocations 
of opposite signs are nucleated from both grain boundaries 

_

_
_



M. Javanbakht and V. I. Levitas, AUT J. Mech. Eng., 1(2) (2017) 243-246, DOI: 10.22060/mej.2017.11892.5209

245

in the left grain and create dislocation pile ups. The pile-ups 
produce strong concentration of the stress tensor near their 
tips, which significantly increase the local transformation 
work. Thus, the external pressure required for PT can be 
drastically decreased. For example, in this problem due to the 
generation of 3 dislocation piled ups due to applied γ=0.2, 
the PT pressure is reduced from Ph=15 GPa to 1.2 GPa (an 
averaged pressure over grains after PT). This explains drastic 
reduction of the PT pressure due to the applied shear in 
experiments for various materials [2, 3]. Figs. 2(a) and 2(b) 
show the coupled solutions for PT and dislocations at some 
initial stages (t=0.5) and the stationary solutions in the right 
grain, respectively. The phase concentration, i.e. the ratio 
of the transformed area to the initial area in the right grain, 
reaches c=0.51. Such a significant transformation progress 
is due to the small distance between stress concentrators, 
which leads to a coalescence of nuclei and corresponding 
morphological transition. 

When dislocations in the right grain are included, in addition 
to the promoting effect of plasticity on PT, it also suppresses 
PT by relaxing stresses at other concentrators. The solutions 
for PT and dislocations with two dislocation systems in 
the transformed grain are presented in Figs. 2(c) and 2(d). 
Several dislocations nucleated at the tip of the pileup and 
propagated through the right grain. Due to stress relaxation, 
almost no high-pressure phase appears at the left side of the 
right grain.  For the same reason, PT is also suppressed in the 
right side of the right grain and the transformed region (Fig. 
2(c)) is smaller than that in Fig. 2(b). Therefore, while the 
number of dislocations increases, coalescence does not occur 
and the stationary solution is reached with c=0.19 and 6 and 
3 dislocations in the lower and the upper dislocation systems, 
respectively.

3- 2- Growth and arrest of a martensitic plate.
A rectangular sample with the size of 67×20 is considered, 
which is divided into two grains. The transformation strain 
in the right grain is rotated by 15° counter clockwise with 
respect to the left grain. The lower and upper straight sides 
are fixed in the y direction; the lateral sides are stress-free. 
A martensitic rectangular nucleus with the size of 5×3 is 
initially located at the lower left corner of the sample. Two 
dislocation systems inclined at ±60° are included in the left 
grain with initial conditions ξα=0.01. The sample is initially 
stress-free and subjected to uniform cooling. The following 
material parameters are used [12]: A0=4.4MPa/K, θc=-
183K, θe=215K, a=3, εt

x=0, εt
xy=-0.13, εt

y=0.137 for the 
left grain, and εt

x=0.063, εt
xy=-0.147, εt

y=0.074 for the right 
grain. Without plasticity, the M propagates through the entire 
left grain and below the critical temperature T=50K, the 
M plate passes through the grain boundary and propagates 
through the entire right grain (Fig. 3(a)). With plasticity, 
dislocation pairs in both slip planes nucleate at the tip of the 
growing plate. For the coupled dislocations and PT problem, 
dislocations of one sign propagate toward upper boundary 
of the sample and dislocations of the opposite sign remain 
within the M plate. For 40 < T < 50 K, the M plate is arrested 
by one dislocation in the middle of a sample (Fig. 3(b)). This 
results in an athermal friction of 10 K in terms of overcooling 
temperature. For T < 40 K, the growth continues through the 
right grain similar to that of Fig. 3(a). The obtained results 
are in qualitative agreement with experiments on plate-lath 
martensite morphological transition due to plastic M growth 
[4].

Fig. 1. Schematics of the sample under pressure and shear 
and stationary solution. Dislocations in the left grain cause 

transformation from the low-pressure (blue) to the high (red) 
pressure phases.

Fig. 2. The solution for PT without plasticity in the right grain 
at t=0.5 (a) and for the stationary state (b). The coupled PT and 
dislocation solutions at t=0.5 (c) and for the stationary state (d). Fig. 3. Stationary solutions for (a) completed martensitic plate 

without dislocations at T=50K and (b) arrested martensitic 
plate due to dislocations in the left grain at T=50K.
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To summarize, a PFA to the interaction between PTs 
and dislocations at large strains is presented,  including 
the following main features of the interaction event: (a) 
multiplicative kinematic decomposition of the deformation 
gradient into elastic, transformational, and plastic 
contributions; (b) inheritance of dislocations of austenite 
in martensite during martensitic PT and dislocations of 
martensite in austenite during reverse PT; (c) dependence 
of all material parameters for dislocations on the order 
parameters for PT. Problems for temperature and stress-
induced PTs interacting with dislocation evolution are solved 
and several effects, including the dual effect of plasticity on 
PT and athermal interface resistance caused by dislocations 
are presented.  A similar approach can be developed for the 
interaction of dislocations with twins and diffusive PTs, as well 
as electromagnetic and reconstructive PTs. For multivariant 
martensitic PTs, the thermodynamic potential should include 
a thermodynamically consistent expression for interface 
tension (stresses) [14-16] and a mixed term of the gradients 
of different order parameters which allows us to control the 
energy of a martensite-martensite interface independent of 
the energy of the austenite-martensite interface. Also, the 
effect of the variable surface energy and finite width of the 
external surface should be included [17], which may lead to 
multifaceted effects similar to those revealed in [17] without 
plasticity.
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