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ABSTRACT: In this study, Variational Iteration Method is employed so as to investigate the linear and
non-linear transverse vibration of Euler-Bernoulli beams. This method is a very powerful approach with
a high convergence speed providing an analytical and semi-analytical solution to the linear equations

and is able to be extended to present semi-analytical solution to the non-linear ones. In this method,
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firstly, Lagrange's multiplier and Initial Function should be chosen. The suitable choice of these two

elements would effectively affect the convergence speed. In this attempt, in addition to presenting a
discussion on how to choose these two functions appropriately, the calculated frequencies in the non-

linear state are compared with the available results in the literature, and the accuracy and convergence

speed are studied, as well.
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1- Introduction

The problem of linear and nonlinear vibration of a beam with
a clamped-clamped boundary condition at both ends has been
considered in a huge number of studies. In these studies,
for linear problems, different numerical and analytical
methods have been employed. In nonlinear ones, however,
due to the larger amplitudes, researchers tend to apply
numerical approaches to obtain the frequencies and mode
shapes. The purpose of this study is to present Variational
Iteration Method (VIM) which is capable of predicting the
free vibration behavior of the beam with a larger amplitude
as well as giving semi-analytical response for nonlinear ones.
VIM is a powerful method which has both high accuracy
in calculations and high convergence speed. It presents
analytical and semi-analytical solutions for linear and
nonlinear equations, respectively. J. H. He offered Such a
method for the first time, in 1999 [1- 5], and afterwards, it was
used for various equations, including Fokker-Planck equation
[6], quadratic Riccati differential equations [7], nonlinear
heat transfer equations [8,9], ordinary nonlinear differential
equations [10], fourth-order parabolic equations [11], wave
equations [12], and singular fourth-order parabolic partial
differential equations [13].

Over the last few years, this method has become a very
powerful means to solve complicated equations. Y. Liu and
C.S. Gurram [14], investigated the free vibration of Euler-
Bernoulli beams and calculated the natural frequencies
for different boundary conditions using VIM. They also
demonstrated the high convergence speed for this method.
He [15] presented variational approach to limit the cycles
of nonlinear oscillators. He [16] also suggested Hamiltonian
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approach to obtain approximate frequency—amplitude
relationship of a nonlinear oscillator with acceptable accuracy.
The nonlinear free vibration of an oscillator consisting mass
and spring was studied by M. Baghani, et al. [17], and the
results were compared by those obtained through Homotopy
analysis method, which showed a perfect accuracy of the
results. In an another attempt, Y. Huang and H. Liu [18], by
combining VIM and Homotopy methods, presented a modified
VIM which then was used to solve Van Der Pol equations.
S. Siddiqi, M. Iftikhar [19], conducted another research and
tried to solve seventh order boundary value problems by using
He’s polynomials and VIM. Moreover, they presented some
examples to express the method and to put emphasis on its
high convergence speed. Using a nonlinear example, H. Jafari
[20] made a comparison between Successive Approximate
Method and VIM and concluded that the results have a
complete agreement with each other. Later, A. Al-Sawoor and
M. Al-Amr [21] carried out a study to solve the reaction-
diffusion system through presenting the modified VIM, and
reached to the point that the proposed method has a higher
convergence speed compared to that of VIM method and
would consequently be more suitable for the fast reversible
reaction. Wave-like and heat-like equations in large domains
were then studied by H. Ghaneai and M. Hosseini [22]. Their
approach was to combine VIM with one auxiliary parameter.
Y. Chen et al., [23] looked into natural frequencies of marine
risers by variational iteration method. M. Daeichi and M.T.
Ahmadian [24] converted the nonlinear partial differential
equation of motion to a set of coupled ordinary differential
equations using the Galerkin technique and analyzed the
nonlinear vibration of transversely vibrated beams with
large slenderness and immovable ends using the Variational

233



K. Torabi et al., AUT J. Mech. Eng., 2(2) (2018) 233-242, DOI: 10.22060/mej.2017.12332.5315

Iteration Method. O. Martin [25] used Galerkin’s method and
a modified form of the variational iteration method (VIM) for
the analysis of the isotropic linear viscoelastic beams. S.A.
Khuri and A. Sayfy [26] extended the Variational Iteration
Method (VIM) for the proper treatment of boundary value
problems (BVPs). VIM is presented to solve the second-
order singular initial value problems of the Lane—Emden type
by A. Ghorbani and M. Bakherad [27].

It should be noted that there is also another method named
Adomian which is very similar to VIM. At first, since there
were some problems to determine Lagrange's multiplier,
Adomian was more popular. After resolving the available
problems, however, VIM, which had a higher convergence
speed than Adomian, gained more interests. Those researchers
who have worked on both methods have also confessed to
this fact [14].

The purpose of this study is to express VIM as a new
method which is capable of presenting accurate responses
with a high convergence speed for both linear and nonlinear
equations. VIM has been used in a wide variety of articles.
The importance of choosing Lagrange's multiplier and Initial
Function has always been a controversial issue since the
proper choice of them can tremendously affect the accuracy
and convergence. Improper choice of them, however, can
lead to the increase of calculation and decrease of accuracy,
which could be considered as a negative point. In previous
articles, Lagrange's multiplier and Initial Function were
calculated separately. The simplest function which could
satisfy the boundary conditions would be considered as Initial
Function. In this article, there is a relationship between these
two functions in a way that firstly one of them is chosen and
then the next function will be calculated. For this purpose, to
solve the linear problem, Laplace transformation is applied.
This could be useful not only in determining Initial Function
but also in simplifying the governing equations, which in
turn can lead to the decrease of calculation remarkably. In
the nonlinear state, using linear solution, the relationship
between Lagrange's multiplier and Initial Function is gained.
To this end, first this method is described, and then analytical
and semi-analytical solutions for the linear vibration of beams
under different boundary conditions are presented. Next, the
nonlinear vibration of beams is investigated as well as the
accuracy and the convergence speed, and finally, the results
are compared with those achieved through DQM and FEM.

2- Basic Idea of Variational Iteration Method (VIM)
VIM, which has recently received a great deal of attention
in a broad range of engineering ficlds is a very powerful
method for solving a wide variety of linear and nonlinear
equations. In this study, this method has been employed so
as to calculate the natural frequencies of linear and nonlinear
Euler-Bernoulli beam.

In order to describe the fundamental idea of it, consider the
following nonlinear equation [28-29].

Lu($)+Nu(S) =g(&), (M

In which L is a linear operator, NV is a nonlinear operator and
g({) is a definite function. In this method, the correctional
function is defined as below [28-29]:

234

() =1, () + [ 1 (Lu, o)+ NG, () - g (M) dn. (2)

In which x4 is the Lagrange's multiplier which should be
determined by variation theory and &, is considered as the
limited variation. In other words, dit,=0. u,({) is also the
possible Initial Function for the unknown parameters.

The important issue in this method is to determine the proper
Initial Function and Lagrange's multiplier in order to start the
trend for solving the problem because the suitable choice of
these two elements would effectively affect the convergence
speed. It is necessary to explain clearly how to determine the
most optimal coefficients. Determining coefficients is a part
of the novelty of the present work that will be shown in the
following.

3- Vibration Analysis for Linear Euler-Bernoulli Beam

3- 1- Governing Equations

Considering a beam with a uniform cross-section and defining
non-dimensional parameters (4), the governing differential
equation for the free linear vibration of Euler-Bernoulli will
be as (3) [30]:

4
a;?j -2'w =0, 3)
x Y YA S
=7 > W =— s 14 = B 4
¢ L L EI @

Where Z is the non-dimensional natural frequency, p is the
density, S is the transverse cross section, £ is Young's module,
1 is the moment inertia of the beam cross section, L is the
length of the beam, and W is the transverse displacement of
the beam.

3- 2- Solving the Linear Equation with VIM
Comparing equations (1) and (3) and using equation (2), the
correctional function will be stated as follows [14]:

W, =W, () + jfu[dff—f;f’”—ﬂ“wn (U)Jdn- )

In order to solve the equation by VIM, it is needed to
determine the Lagrange's multiplier ¢ and the Initial Function
W ({) whose calculation trend is seen in the following.
Using integration by parts, equation (5) could be rewritten
as below:

W, () =W, () + [ O ) = "W P () ©
6
W ) = W, O ]+ [ = 2w,

By applying variation to the both sides of equation (6) with
respect to I the result will be:

SW,a()=SW () + 4, 5W, ()
—u WA+ u®| w0 @)

Y7
_/u(3)|;7:4 o Wn (é’) + .l.og['uu) - 14‘u:| J W” (77)d77~
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Ifow . (O)=0, W ({) will be minimum or maximum. In other
words, the left side of the equation (7) should be zero. In this
situation, the stationary conditions obtained from relationship
(7) will be as follows [33]:

H, =0, (8-a)
W =0, (8-b)
n=¢
(2 =0 ~
ui| =0, (8-¢)
1-u =0, (8-d)
n=¢
u =2t =0. (8-¢)

Lagrange's multiplier could be gained through the five above-
mentioned equations. If the obtained Lagrange's multiplier
satisfies equations (8-a) to (8-¢), an analytical solution would
be possible for the equation and this Lagrange's multiplier is
unique, and if it satisfies the first four ones, yet does not satisfy
equation (8-e), thus the response will be semi-analytical and
this multiplier is not unique.

3- 2- 1- Semi-analytical response

Considering equations (8-a) to (8-d), the obtained Lagrange's
multiplier will be as follows [14]:

(1=¢) ©)

Inserting equation (9) into equation (5), the correctional
function will be:

W, .(&)=W, (<)
+.[§ (n=¢) |(aw,m)
ol 6 act

In order to start the calculations from equation (10), the Initial
Function (W ({)) is needed. It could be different functions as
long as it satisfies the boundary conditions at the beginning
of the beam. It is a normal practice to consider the first few
terms of Maclaurin Series as the Initial Function [22,23].
Laplace transform is used to simplify and find the proper
Initial Function. Applying Laplace transform to both sides
of equation (10), and showing transverse displacement /¥ in
Laplace space with W7, it could be concluded:

(10)

-A'w, (n))d .

7)) £ 970w 0 - 0
g (11)
W "(0)s =V "(0)) = AU, (5) ],

Simplifying the above relationship, we have

le(s):_’_W (0)s® +W '(0)s* ;I—W "(0)s +W "(0)
K

. (12)
+207,9)
S

Now, with applying inverse Laplace, we will have:

W (€)= @+ O+ O+ "0

n+l

Wold) (13)
e g) =) s ayan.

Therefore, the correctional function will be in the form of
equation (14):

W) =W0(:)—Lf@ﬂ“wn (mdn, (14)

In which W ({) is the Initial Function, and is presented by
relationship (15)

Wo(&)=W (0)+W (0)§’+W”(O)§ +W"’(0)‘;3 (1%5)

By defining coefficients (c, - c,), relationship (15) can be
rewritten as the following relationship. The coefficients
will be subsequently calculated through applying boundary
conditions to the both ends of the beam.

Wo(§)=c.+c2§+%§2+%§3. (16)

Consequently, considering relationship (14), it is concluded:

W)= (&)~ j )/1W(f7)df7,
) s
W& =W~ =L 2wy, 1)
W (&) =(&) - jj@z“ml(n)d 7,
And the final result will be:
W (&) =W, (), (18)

In the latter relationship, the value of & is chosen based on the
required accuracy. The accuracy considered for calculating
the non-dimensional frequency 4 is defined according to the
following relationship

k k-
4 -2 <e, (19)
Where k is the number of correctional function iteration,

j is the number of the mode, and ¢ represents the required
accuracy.
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3- 2- 2- Analytical response

To obtain the analytical response of the equation (3) through
VIM, first, the Lagrange's multiplier is required. Equations
(8-a) to (8-e) should be taken into consideration so as to find
the Lagrange's multiplier, which is presented below:

! s[sinh A(n-¢)-sinA(n-¢)]. (20)

H=o

Substituting relationship (20) for equation (5), the correctional
function will be as follows:

o), )+ ]| ialsinn 2l -2)

d‘w .
—sinA(n - ./;)])(?4(’7)—/14% (n)ﬂd n.

Likewise, Laplace transform is used to simplify and find the
proper initial function.

W,.(s)=W, (s)—(s4 iﬂ][(s“l/f,, (s) =W (0)s’

W (0)s> =W "(0)s IV "(0)) = AW, (5) ],

(22)

Simplifying the above relationship, we have

W (s)= W (0)s® +W '(Ozi 2_+1V£/ "(0)s +W "(0) ’ (23)

Now, by applying inverse Laplace, it is concluded.

B (7 (A7 - "(0))
Wn+] (C) - 213

. (w (0)/12/1—3W "(0)) cos(i)
(7 (@27 +w "(0))
+
24°
(7 (02> +w "(0))
+
24

sin(A¢)

24

sinh (1¢)

cosh(A4),

By deleting the integral from the correctional equation, there is
no need for iteration and the obtained function in relationship
(25) would be the analytical response for relationship (3),
for which the coefficients will be gained through applying
boundary conditions to the both ends of the beam.

- _(czﬂp2 —04) - (cl/l2 —03) 3
(Q—TSIH( §)+TCOS( $)

A 25)

c,A* +c c AT +c
+(ZZT4)sinh(l§) + %cosh(ﬂg’).
The obtained function (W(()) from relationship (18) and (25)

is a function of variables {’, 1, ¢, , ¢, , ¢, and ¢, . Therefore, it
could be presented in the following form:

236

W) =2 (5,0, (26)

In which f; is a function of {'and / .

Now, considering the four boundary conditions at both ends
of the beam, the natural frequencies A could be found. In the
following, the way of calculating the frequencies for clamped-
clamped boundary condition is presented. The boundary
condition for such a beam is presented below.

aw
== _(0)= 27
W (0) dg“(o) 0, (27)
aw
W(l)—z(l)—(), (28)

Using relationship (16) or (25) and the relationship (27), one
can obtain:

W (0)=c, +¢,(0) +¢,(0) +¢,(0)=0=>¢, =0,

dVZé('O):cl(O)+Cz +¢3(0)+¢,(0)=0=c, =0. )

Relationship (26) will consequently be simplified in the
following form:

W (&) =&, A) s +fu(E,A) ¢y (30)

Now, considering the two mentioned conditions in (28) and
utilizing (30), it is concluded:

w 1) =f3(1,ﬂ)6‘3 +f4(1’ﬂ)c4 =0

aw , )
e N T R R

— f3(1?ﬂ“) f4(15/1) C3 _ O
£, £ \le, o)
Hence, equaling the obtained matrix determinant zero in

relationship (31), the characteristic equation will be gained
by:

04 LA

JECR IS0 N (32)

For other boundary conditions, the same procedure will be
suitable.

4- Vibration Analysis for Nonlinear Euler-Bernoulli beam
4- 1- Governing equations

Consider a uniform beam made by homogenous isotropic
material without damping. Figure one shows the geometry of
the beam in which u and w represent the axial and transverse
displacement of the beam, respectively. Therefore, the strain-
displacement relationship and curvature-displacement of the
beam can be shown below [30,31]:
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8_8_u+ [6w) K_azw
Toox Ox T (33)

X u
0 4

W%W Tw ”%m

Fig. 1. Geometry of Beam [30]

Considering relationship (33), the axial force could be
expressed below [30,31]:

ou 1(ow Y
N(x,t)= ESLX (Ej } (34)

In which E is the Young's module and S is the transverse cross
section.

Assuming that the beam does not have any axial displacement
at both ends, or in other words, ©(0,7)=u(L,£)=0, the axial force
N is independent of x and only dependent on ¢. Therefore, it
could be written [30-33]:

N(x,t)= ESF” (aW”
ox ox

2
:N(t)—% o@WTJ dx .

(35)

Considering the above assumption, the Kinetic energy K and
strain energy U of the beam will be expressed below [30]:

K—lf S(aljzdx (36)
2 0 P ot ’
LN e feAL 2d LN,
—_— — +_ N .
R Rl e [T (37)

Since N is not dependent on x and considering relationship
(35), relationship (37) could be rewritten below:

2
v=1 [[Er ow
270 ox
1o (0w ES(rifowY )
:—IEI W2 dx+—J — | dx | .
270 ox 8L |70\ ox
Considering the Energy Conversation Law, which means

that the total energy of kinetic and strain will be constant,
we have:

P INL
dx +—
2 ES

(38)

K +U =cte. 39)
Using equations (36), (38), (39), it could be written:

Lo (owY, e (0w
K +U 25-[0 pS(a—tj dx +EIO E][axzj dx

P 2
+£ JL [%j dx | =cte.
8L | 70\ ox

Now employing the separation of variables, the displacement
would be considered by two functions, one is the function
of the time and the other a function of the place which are
multiplied

(40)

w(x,0) =Y (x)T(), (41)

Substituting relationship (41) for equation (40), the above
relationship will be presented below:

o 22

El cr(d¥ (x)) ,

*7[10[ - jdx]T ® (42)
ES( (v )Y . )., ~

+_8L (J.O( ™ jdeT (t)=cte.

In order to make the relationship (42) non-dimensional, these
parameters should be considered.

X 1 Y ~ | EI
:—,R: —,W :—’t:t _—
¢ L \E R \/pSL“ (43)

Applying the mentioned parameters in relationship (43) to
equation (42), it is concluded

EIR?
K+U=""73 (j w (g“)dg”)T @)
JEIR?[pfd? W() 2
e P

2 2 :
+E[1€3 Il W (¢) d¢ | TH) = cte.
8L |0\ oc
Now equation (44) could be simplified in the form of equation
(45)

T2E)+ AT >0+ AT () =cte. (45)

Parameters 4, 4, in this equation, are expressed below:

(W)Y 1 1(5W(§)J2d
:I"( ¢’ jdg ;‘[L oc ) (46)
[w g NG

By applying derivatives at the both sides of equation (45)
with respect to 7 it is concluded
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T'(@)+AT () +2A,T°(F)=0. 47)

Therefore, equations (47) will represent the governing
differential equation for nonlinear Euler-Bernoulli beams
[35].

There are two differences in investigating the linear and
nonlinear vibration by VIM. The first one is that the
governing equation in linear state is investigated according
to the position of x, while in that of nonlinear it is written
according to the time. The second difference lies in linear
equations, the boundary conditions will be applied after VIM
whereas in nonlinear ones first the boundary conditions will
be applied and then VIM will be employed [14,35].
Considering equation (41), the function Y(x), or the non-
dimensional form of it #(x), should have the characteristics
of mode shapes. Thus, W(x) should be chosen in a way that
satisfies the boundary conditions at both ends of the beam.
Then, the numerical value of the coefficients will be gained
by relationship (46).

The boundary condition for the nonlinear Euler-Bernoulli
beam with simply supported ends will be expressed below:

W(O)—d " 0)=o,
2 (48)
W(1)=‘;VZ (1)=0.

There are different functions that can satisfy the above-
mentioned boundary conditions in relationship (48). In this
study, one of the simplest functions used in equation (49) is
employed.

W =sin(zg). (49)

This function could also be obtained from the linear mode
shape mentioned in relationship (25). Now using equation
(49) and the relationship (46), the parameters 4, , A, will be
gained for a beam with simply supported ends.

A=rt L A= (50)

Similarly, for nonlinear Euler-Bernoulli beams with clamped-
clamped boundary conditions, we have

aw
W(O)—E(O)—O,

(51)
W(1)=‘;—V2(1):0.

The function stated in relationship (52) satisfies the above-
mentioned boundary conditions

W = %(1 —cos(27¢)), (52)

Now using function (52) and relationship (46), the parameters
A4, , 4, for a clamped-clamped beam will be obtained below
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4
T
Al = 5 A2 :?. (53)

4- 2- Solving the nonlinear equation using VIM

Comparing relationships (1) and (47) and according to
relationship (2), the correctional function will be stated as
follows:

T,.,(@)=T,@)

i (dT
o[ LD N 282y |
0 dn

(54

To solve the equation through VIM, Initial Function, and
Lagrange's multiplier will be necessary for this purpose. The
boundary condition will be considered below.

T0)=4 , T(0)=0, (55)

Therefore, the Initial Function which satisfies relationship
(55) will be considered as follows:

T, =Acos(A1). (56)

To find Lagrange's multiplier in nonlinear problems, the
linear terms are just considered. Therefore, applying by part
integration to the linear terms of the relationship (54), it could
be rewritten:

T, @) =T, @)+ [T, )~ T, () |,

[ [+ AT, (. o7
Applying the variation to both sides of the equations (57)
with respect to 7 (¢), it results as follows:

ST, () =0T, )+ 4| . 6T ()~ ,u(”| ST, ()

+f) [+ Au] 8T, (), oY

In order to put T (t) in minimum or maximum condition,
it is needed that 6T (t) =0. In other words, the left side of
equation (58) should equal zero. Therefore, the obtained
stationary conditions from equation (58) will be:

ul, ;=0 (59-a)

1- =0 (59-b)
) _

42 A =0, (59-¢)

Considering the stated conditions in relationships (59-a) to
(59-c), the Lagrange's multiplier will be [28]:

1. =
u= ﬁsm(\/x(n —1)). (60)
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In order to find the relationship between the Lagrange's
multiplier and Initial Function, the linear terms of equation
(47) are considered, it results in the following

T +ATH=0=>T()=-AT (D). (61)
Substituting equation (56) for equation (61), we will have:

T'(f)=-AAcos(A7)

i

L)TI ()= {AlA si_n(/Tf)} _Ad si_n(ZE)
o 2 (62)
L)T,(f) - {AIA c_ozs(ﬂ)}t _AAd  Ad cgs()?f),
A 0 A A

In order to avoid the creation of secular terms in the next
iteration, the first term of 7'(¢) is neglected and by putting the
coefficients of cos(4¢) in equation (56) and (62) equal to zero,
the following relation is found [35]:

A =27 (63)

Putting (63) in (60), Lagrange's multiplier will be:
I . = -
U= Tsm(ﬂ» (n-1). (64)

Using relationships (54, 64), the correctional function is:

T, ()=T,()+ jj(%sinu‘ (n- f))]
. (65)
(@Mﬁ (f7)+2Asz(f7)Jd77.
n

Considering (56) as Initial Function and employing (65), the
second function will be gained:

T,()=Acos(A D)+ J.;-(%sin(z (n— f)).j

dT
(ﬁﬁ’”wln <n>+2A2T,f(n)jdn:

2. —. 66
2A,4° cos(At)—2A,4° cos(31 T) (66)

3227
(1627 —16A, —24A,47 ) A A Tsin(2 D)
3227

T,({)=A cos(A 1) -

+

b

Equaling the secular term made in (66) zero, the vibration
frequency is calculated:

A=A +15A,47. (67)

Using the same procedure, considering the stated correctional
function in (65), and using 7,(t) , T,(r) are obtained. This
trend should be followed to reach the required accuracy.

It should be noted that in order to find the response with the
required accuracy there is no need to iterate a lot and one or
two iterations would be enough.

5- Results and Conclusions

In this article, VIM, as a new method, is used in order to
investigate the linear and nonlinear vibration of Euler-
Bernoulli beams and the accuracy and convergence speed are
investigated, as well.

First, in order to investigate the accuracy and convergence
speed in linear problems, semi-analytical responses are used.
Since there is a total agreement between linear analytical
responses and other analytical responses available in other
methods, the issue of investigating the accuracy is illogical.
Moreover, since in linear analytical solution using VIM the
response will be achieved through only one iteration, the
issue of investigating convergence speed will be irrational
as well. Table 1 illustrates the non-dimensional natural
frequency obtained from semi-analytical response for Euler-
Bernoulli beams with clamped-clamped boundary conditions
for different iterations of the correctional equation.

As can be seen in Table 1, by increasing the number of
iterations, the result will converge to real values so that the
first non-dimensional natural frequency will have 0.0001
accuracy after the fourth iteration. Also, second, third and
fourth frequencies will have the same accuracy after the
sixth, eighth and tenth iteration, respectively. Therefore the
convergence is highly suitable in this method.

Table 1. The first four frequencies for Euler-Bernoulli beam
with clamped-clamped boundary conditions for different
iterations of correctional equation

k 2, 4, 2, Py
2 47778 6.1931
3 47305 73281
4 47300 7.8081
5 47300 7.8525
6 47300  7.8532  11.0856  12.0215
7 47300 7.8532  10.9968  13.4014
8 47300 7.8532  10.9956  14.0519
9 47300 7.8532 10,9956  14.1352
10 47300 7.8532  10.9956  14.1371
11 47300  7.8532  10.9956  14.1371

Tables 2 and 3 will show the proportion of non-dimensional
linear frequency to that of nonlinear one for two different
boundary conditions.

Table 2 demonstrates the results of this proportion for

different values of maximum vibration amplitude for simply
supported boundary condition and the results are compared
with the closed form results of DQM and FEM, which shows
an acceptable accuracy of the results obtained from VIM.
Table 3 presents the same results for the beam with clamped-
clamped boundary conditions.
As in nonlinear problem, the optimized Lagrange's multiplier
and Initial Function are used, the maximum extent of
convergence is expected. In all nonlinear responses presented
here, two iterations are used because the second iteration will
bring about the required convergence and its difference with
the third will be extremely small.
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Table 2. The proportion of nonlinear frequency to linear
frequency for simply supported Euler-Bernoulli beam

A VIM Exact[36] DQM’[37] DQ’[31] FEM'[38]

0.1 1.0009 1.0009 1.0009 1.0010  1.0009
0.2 1.0037 1.0037 1.0037 1.0043 1.0037
04 1.0149 1.0149 1.0149 1.0170  1.0148
0.6 1.0331 1.0332 1.0332 1.0384  1.0339
0.8 1.0580 1.0583 1.0583 1.0673 1.0578
1.0 1.0892  1.0897 1.0897 1.1030  1.0889

Table 3. The proportion of nonlinear frequency to linear
frequency for clamped-clamped Euler-Bernoulli beam

A VIM GFEM [34] ASM*[39] DQ|31] FEM [38]
0.1 1.0003 1.0003 1.0003 1.0003 1.0003

0.2 1.0012 1.0012 1.0012  1.0011  1.0012
0.4 1.0048 1.0048 1.0048  1.0044  1.0048
0.6 1.0107 1.0107 1.0107  1.0100  1.0107
0.8 1.0190  1.0190 1.0190  1.0178  1.0190

1.0 1.0296 1.0295 1.0296  1.0278  1.0295

6- Conclusions

In this article, the function of VIM in analyzing the linear and
nonlinear vibration of the beam is investigated, and it is seen
that this method has the proper accuracy and convergence.
VIM is capable of presenting analytical and semi-analytical
solutions for linear problems.

The proper choice of Lagrange's multiplier and Initial
Function will play a key role in this method. Semi-analytical
results presented in the linear state show that the obtained
values will converge to the accurate values quickly in a way
that the first and second frequencies will reach the accuracy
of four decimal after four and six iterations, respectively. In
order to investigate the ability of this method in nonlinear
problems, the nonlinear vibration of Euler-Bernoulli beams
is also studied for two different boundary conditions. VIM
presents semi-analytical responses to nonlinear problems. In
this article, although the Lagrange's multiplier satisfies all
the exploited stationary conditions, since the employed mode
shapes are related to the linear equations, the responses will
be semi-analytical. Finally, the results are compared with
some those of other methods, including DQM and FEM and
the proper accuracy is presented, as well.
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