
AUT Journal of Electrical Engineering

AUT J. Elec. Eng., 50(2) (2018) 157-162
DOI: 10.22060/eej.2018.12086.5036

Estimation of the Domain of Attraction of Free Tumor Equilibrium Point for Perturbed 
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ABSTRACT: In this paper, we are going to estimate the domain of attraction of tumor-free equilibrium 
points in a perturbed cancer tumor model describing the tumor-immune system competition dynamics. 
The proposed method is based on an optimization problem solution for a chosen Lyapunov function that 
can be casted in terms of Linear Matrix Inequalities constraint and Taylor expansion of nonlinear terms. 
We find a specific Lyapunov function in order to vanish maximum perturbation of modeling error, aging 
or uncertainties which exist in this system. Using this method and appropriate Lyapunov function, we 
demonstrate that there is an invariant polytope that for the set of perturbed initial conditions belonging 
to such region, the convergence to the healthy state is guaranteed.
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1- Introduction
Over the past decades, numerous papers have been published 
on the development of reliable dynamical models of cancer 
tumor. Bajzer et. al. report a complete survey over the 
mathematical modeling of tumor growth [1]. One of the most 
accurate and effective methods of is presented by explaining 
the interaction of the cancer tumor and the immune systems 
through a patient’s body. To better understand the tumor-
immune system interaction dynamics, various models have 
been constructed. Early models in this category utilize Lotka-
Volterra and Verhulst logistic terms [2-4] as the nonlinear 
quadratic equations in which tumor growth dynamics is 
explained in terms of competition between malignant, 
normal and immune cells. Further models of this category 
are developed as they are using non-polynomial terms to 
describe the interactions [5]. These models can describe 
the different dynamics of the cancer development, such as 
unbounded growth which leads to an uncontrolled tumor, 
steady state condition in which the populations of normal 
and malignant cells coexist and their sizes do not vary  cycle 
the profiles of the size of the tumor cells population (tumor 
recurrence) and steady state of tumor eradication, due to 
the action of the immune response (tumor remission) [6]. 
Besides these behaviors, the work [7] shows that this kind 
of models also provides a good fitting of decelerating the 
pattern of tumor growth detected in clinical data, so we select 
one of these models for our work. In this work, we focus on 
the dynamical model of tumor growth provided in [5]. The 
recently published survey of Eftimie et al. in [8] contains 125 
publications on these models. 

One way of analyzing the tumor-immune model’s behavior 
is to find equilibrium points of the model and the domain of 
attraction for its stable points. From the clinical perspective, it 
is also interesting to determine if, under a given perturbation 
of the state variables such as modeling error, disturbance, 
uncertainties and aging, the system trajectories go back to the 
steady state or not. Finding the domain of attraction of the 
nonlinear systems with non-polynomial terms and considering 
such perturbation is not simple. In the last two decades, many 
researches have dealt with the similar problem of estimating 
DA of stable equilibrium points of nonlinear systems. While 
R. Genesio et. al. [9] and H. Chiang [10] find an alternative 
way to obtain an estimate of the DA, based on topological 
considerations, more recent publications have been focused 
on LMI feasibility problem [11-13]. These methods are based 
on Lyapunov stability theory which means by choosing a 
Lyapunov function that proves local asymptotic stability 
of the equilibrium point, any subset level of this function 
included in the region, where its temporal derivative takes 
negative values, is guaranteed to be an inner estimate of the 
DA. In the above cited papers, DA estimation is obtained by 
solving a convex optimization problem with LMI constraints 
for a specific Lyapunov function derived from the polynomial 
terms of the systems.  
In spite of polynomial systems, most of the real systems are 
non-polynomial ones which in most cases present precise 
description of the behavior of the systems. A good example 
of such systems is tumor models described before. 
We can also use LMI-based methods, as described in above 
references, to estimate DA of non-polynomial systems. The 
idea consists of solving the polynomial optimization, arising 
for a chosen LF which is obtained by expressing the non-Corresponding author, E-mail: yazdan@ut.ac.ir 
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polynomial terms of the system’s equations via truncated 
Taylor expansions and parameterizing their remainders inside 
a convex polytope [14]. This allows us to take into account 
the worst-case remainders by simply considering only 
vertices of the polytope. The employed Lyapunov function in 
this method is a critical part of selection as it can be chosen 
in order to import the effect of perturbation in estimating the 
DA. 
In this paper, we present a perturbed tumor immunotherapy 
model in Section 2 which is selected from non-polynomial 
nonlinear systems of such models, and compared with other 
models, it describes the behavior of tumor cells precisely. It is 
important to know that in this model some of the perturbation 
of modeling error, aging and uncertainties are also considered 
and imported in the equations of the system which their effects 
will be analyzed in the estimating domain of attraction. In 
Section 3, the problem we deal with is precisely stated with 
some preliminary notations and the purposed methodology is 
applied to estimate the region of attraction of non-polynomial 
perturbed systems. In Section 4, we present the results of 
estimating DA for the chosen tumor model, and we will 
analyze the results from clinical point of view. Finally, some 
concluding remarks are given in Section 5. 
2- non-polynomial model for tumor cancer
In this section, we introduce nonlinear non-polynomial model 
of the tumor growth [5], which is the foundation for later 
developments in this area. In other words, the non-polynomial 
terms which are used in this model can be developed to more 
complex models. This model is important from clinical point 
of view as the effect of different drugs can be imported in its 
equations. It is clear that further researches are possible for 
different aspects of this model. 
In this model, the tumor progression is described by means 
of interaction among malignant, normal and immune cells in 
which each equation consists of production and destruction 
of such cells. Immune cells play an important role to destroy 
malignant cells that are categorized into three different types 
such as T-lymphocytes, macrophages and natural killer cells. 
These cells engulf and neutralize tumor cells. T-lymphocytes 
are divided into two categories of regulatory and cytotoxic. 
Normally, cytotoxic T-lymphocytes are inactive cells. 
When some malignant cells grow in the body, regulatory 
T-lymphocytes cells, called helpers, send the activation signal 
to activate cytotoxic cells, and these cells are going to destroy 
the tumor cells. As explained before, in this type of tumor 
modeling, the effect of a different type of drug treatment can 
be considered. For example there exist such drugs which 
activate cytotoxic T-lymphocytes in the body that will destroy 
the tumor cells faster or other different types of drugs that 
destroy malignant cells directly. As this model is based on 
destruction, production and interaction among different types 
of cells in the body, it can consider the effect of drugs as 
explained above.
Thereby, it is clear that the selected model contains three 
state variables including the density of tumor cells T, density 
of active immune cells I and density of natural cells N. The 
equation can be written in the form of  state equations as 
below:

(1) 
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Where r1 is the growth rate of tumor cells, r2 is the growth 
rate of natural cells and s is the constant external sources of 
immune cells. These parameters show the rate of production 
of each type of cells along with others. Usually r1> r2 which 
means that malignant cells grow faster than natural cells. 
b1 and b2 are the maximum carrying capacity of tumor 
and natural cells which mean that there is a limit for the 
growth rate of each type, and cells cannot grow infinitely. 
In particular, for each population, b1 and b2 represent the 
maximum number of cells that the environment could carry 
in the absence of competition among these populations. c1 is 
the rate of destruction of immune cells by tumor ones, c2 is the 
rate of destruction tumor cells by active immune cells, c3 is 
the rate of conversion of  tumor cells to natural ones and c4 is 
predation of natural cells by tumor cells. It is clear that these 
terms can explain interactions between three state variables, 
as defined before. Fractional term in the third equation shows 
that in presence of malignant cells, regulatory T-lymphocytes 
activate cytotoxic ones which this interaction is limited by 
two parameters of α, defined as safety threshold rate, and β 
defined as immune response rate. 

In Eq. (1), ig  is defined as the perturbation of modeling 
error and aging of system which is considered as an upper 
limit for this as 

(2)( )g x xγ<

Where ( )g x   is defined as

(3)Tgggxg ],,[)( 321=

We will discuss this perturbation and its limit in the next 
sections where we are going to estimate the domain of 
attraction of an asymptotically equilibrium point of this 
model, using the appropriate method. 
Several clinical tests on measurable tumors confirm that this 
type of modeling describes the behavior of tumor cancer 
precisely. In [5] parameter values are estimated from clinical 
tests which are considered as 1 2 1b b= = , 0.3α = , 2 0.5c = , 

0.33s = , 1 3 4 1c c c= = = , 0.01ρ = , 1 1.5r = , 2 1r = . For 
further analysis, we use these values to compute equilibrium 
points of the model and also estimate the domain of attraction 
of a specific point which is described in the next section.
3- a procedure to estimate domain of attraction of non-
polynomial perturbed systems 
To explain the proposed method, first, the required 
preliminaries and problem formulation will be introduced 
[14].
3- 1- Preliminaries
In this paper we consider a non-polynomial perturbed system 
that is a nonlinear system in the form of
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Where ( ) ( ) ( )1 , ,
T n

nx t x t x t = … ∈    is the state, the initial 
condition is n

initx ∈ , the polynomial terms of the system 
are 1, , , : n n

rf h h… →   which { }1, , 1, ,ra a n… ∈ …  are indices, 
and the functions :iξ →   are non-polynomial terms in the 
system. As we explain above, ( ) 1, 2 3,

T
g x g g g =    is considered 

as perturbation in the system with a specific upper limit.
The first step in stability analysis is to find the equilibrium 
points of the above nonlinear system and to determine 
which one is stable and which one is not. As shown in [16], 
without loss of generality, it is assumed that the origin is the 
asymptotic equilibrium point of the system (4). The second 
step is to find a region around the asymptotically stable point 
(the origin) in which if the initial conditions stand in this 
domain, the states asymptotically converge to the origin. This 
domain is called the domain of attraction of the system (4), 
and it is indicated by

(5)
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Next, we tend to introduce a method of estimating of such 
domain [14] as in the presence of a specific perturbation, the 
stable point will not change and neither will the region of 
attraction of the origin. This method is based on a theorem 
which is using Lyapunov function to estimate the DA of the 
origin by solving a polynomial optimization via LMIs.
3- 2- Method of Estimating of Domain of Attraction 
Let us first recall the following theorem from Lyapunov 
stability theory which is the basis of our estimation method 
[15]. 

Theorem 1. Let : nv →   be a continuously differentiable, 
positive definite and radially unbounded function and 
suppose that v  is a Lyapunov function for the origin in (4) 
then the subset

(6){ }cxvRxcv n ≤∈= )(:)(

is an estimate of DA if
(7)).(0)( cvxxv ∈∀<

Using this theorem, for a chosen LF the largest estimate of 
DA is where c  is maximum and the equation (7) holds. As a 
result for the better estimation we should solve an optimization 
problem in which the cost function is c  and its condition 
is equation (7). It is known that if the LF is a polynomial 
function and the state equations are also polynomials then 
the optimization problem appears as an LMI problem and 
by solving it we can estimate the domain of attraction. So, 
in order to use this theorem for system (4), first we should 
select a specific polynomial LF and then we should find a 
way to change the non-polynomial terms in the state equation 
to polynomial ones.
One type of polynomial Lyapunov function that satisfies the 
conditions of the above theorem is the quadratic one used in 
different methods of estimating DA as shown in [11-13],[16]. 
It is known that by selecting the quadratic form of LF, the 
estimation of DA will be a good one. Let us consider this 
function in the usual form of ( ) Tv x x Px= ; it is clear that this 
type of function is positive definite if and only if P is positive 
definite [15]. One way to select an appropriate matrix P is by 
solving Laypunov equation as follow

(8)0 , 0TA P PA Q P Q+ + = >

Where P and Q are positive definite matrices and A is the 
matrix of the linearized system around asymptotic stable 
equilibrium point that here is the origin, so that by choosing 
a positive definite matrix Q  and solving equation (8) we 
determine the appropriate Lyapunov function. The question 
is which kind of Q  shall we choose? To answer this question 
we recall one of our goals that is estimating the domain of 
attraction of a perturbed non-polynomial system. It is proved 
in [15] that for a nonlinear system such as (4), a perturbation 
with upper limit as (2) and a quadratic LF ( ) Tv x x Px= , the 
system can tolerate the perturbation with upper limit as: 

(9))(2)( maxmin PQ λλγ <
It is also proved in [15] that if matrix Q  is chosen as the 
unit matrix, the above upper limit will be maximum. So 
considering system (4) with perturbation (2) by choosing 
Q I=  and solving Lyapunov equation (8) we assure that the 
system can tolerate maximum perturbation of this type, which 
will be caused by modeling error, aging or uncertainties. 

In the above explanation we say that the system can 
tolerate a perturbation which means that in the presence 
of such perturbation with specific upper limit, the stable 
equilibrium point of the system that is the origin will not 
change. In other words, by choosing an intelligent LF we 
assure that the stable equilibrium point will not change in the 
presence of perturbation and so on we may be sure that the 
region of attraction of this point will not change neither. After 
choosing a polynomial LF as explained above we are going to 
introduce the basic method of estimating the DA. 
Using theorem 1, if we could replace the non-polynomial terms 
of system (4) with polynomial ones then the optimization 
problem will be changed to an LMI problem because both 
the equation and also the Lyapunov function are polynomials. 
Considering system (4), it is clear that the non-polynomial 
terms are ( )ii axξ . In the following, we assume that the first δ 
derivatives of ( )ii axξ  are continuous on 

(10){ })(:)( cvxRxcv
ii aa ∈∈=

Considering the above assumption, one way to estimate a 
non-polynomial term with a polynomial one is to use Taylor 
expansion. Let us rewrite iξ  via a Taylor expansion of degree 
k  where k δ≤ .
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And iω  is a parameter to be selected. Considering the specific 
Lyapunov function and using Taylor series and replacing 
the polynomial estimation in the optimization problem of 
theorem 1, we attain a new theorem as follow [14].

Theorem 2. Let kc  be the solution of the polynomial 
optimization 
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where 
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As explained before theorem 2 is equal to theorem 1 when 
we use Taylor expansion to change non-polynomial terms. It 
is important to know that by using Taylor series, we should 
also consider the effect of truncated terms into the estimation. 
Theorem 2 imports these truncated terms and consider an 
upper and lower bound for them as a rectangular in (17) 
which is used directly in the optimization problem (13). This 
theorem is proved in [14]. 
So, using appropriate Lyapunov function and theorem 2, 
we can estimate the domain of attraction of the nonlinear 
system with non-polynomial terms and limited perturbation 
as explained above. In the next section, we use this method 
to estimate the domain of attraction of free tumor equilibrium 
point of the perturbed tumor model (1) which is described in 
the second section.
4- domain of attraction of perturbed tumor model
First of all, we should find the equilibrium points of the model. 
This model has five equilibrium points that if the constants 
are considered as explained in section 2, we will have
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From (19) it is clear that in correspondence of the equilibrium 
1E  and 2E , natural cells are not present. In other words in these 

points malignant cells conquer the natural cells and destroy 
them; these points are also unstable ones. We notice them as 
Dead Equilibrium Points. When the system trajectories are 
around the equilibrium 3E  and 4E , the three species of cells 
are all present. We call these points Coexisting Equilibrium 
Points. 3E  is an unstable point of this type and 4E  is a stable 
one. Biologically, in these points the growth of malignant 
cells are stopped and there is coexistence between natural 
cells and tumor cells. Finally the important equilibrium is 5E , 
where in this point tumor cells are all destroyed and there 
exists immune and natural cells in the body. This one is called 
Healthy Equilibrium Point. 
From the clinical point of view 1E , 2E  and 3E  are not 
important because they are all unstable points which means 
that if the initial conditions stand around these points, 
the system acts as an unstable system and the trajectories 

diverge. Even though equilibrium E4 is stable and the 
system’s trajectories converge, in this point malignant cells 
still exist in the body and the disease is not completely cured. 
Biologically, the most important point is 5E  that is a stable 
equilibrium and also the malignant cells are fully destroyed. 
As this point is asymptotically stable, there exists a region 
around this point as the domain of attraction in which if the 
initial condition stands in this domain, the trajectories of the 
system will converge to 5E . This means that the disease is 
completely cured. According to above explanation we are 
going to estimate the domain of attraction of 5E  in model (1) 
using theorem 2. 
Since 5E  is a nonzero equilibrium point, we apply the change 
of variable (20) to move this equilibrium to the origin and the 
change of variable (21) to change the system into analytic 
system

(20)
1 1

2 2

3 3
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= −
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Using these change of variables the model will be changed as
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Now we are going to find the appropriate Lyapunov function 
using Lyapunov equation (8) with linearized matrix A  and 
Q  as follow:

(23)IQA =
















−
−

−
= ,

2.000
01625.00
001

Considering these matrices and quadratic form of LF as     
Tv x Px= , this function is obtained as (24) that will be met 

the maximum tolerance of the system against perturbation as 

Fig. 1. The boundary of domain of attraction of healthy 
equilibrium point with equation 0.5x1

2+3.076x2
2+2.5x3

2-0.744=0. 
In this picture axis x1 representsis represents natural cells, axis x2 
represents malignant cells and axis x3 represents immune cells.
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explained before.

(24)2
3

2
2

2
1 5.2076.35.0 xxxv ++=

After finding an appropriate LF we rewrite the state equation 
into the form of system (4) and use theorem 2 to estimate the 
domain of attraction of origin. To achieve this goal we have

(25)
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Now using Lyapunov function (24), equations (25), (26), 
(27), by solving optimization problem in theorem 2, we 
estimate the domain of attraction of healthy equilibrium point 
of our perturbed tumor model which its boundary equals to

(28)744.05.2076.35.0 2
3

2
2

2
1 =++ xxx

In figure 1, the boundary of domain of attraction of the 
healthy equilibrium point with equation (28) is illustrated. It 
is clear that if the initial condition of the tumor stands in this 
domain, it will converge to the healthy equilibrium point in 
which the number of malignant cells are zero in it. 
Finally, we can tell that we reach our goal in this paper by 
estimating DA of healthy equilibrium point of a nonlinear non-
polynomial perturbed tumor model by using an appropriate 
method of computing LF to tolerate perturbation and an LMI-
based method of estimating the domain of attraction of non-
polynomial systems.
5- conclusions
In this paper, we propose a strategy for estimating the DA of 
equilibrium points for a non-polynomial perturbed system via 
a specific LF and an LMI optimization which is based on the 
usage of Taylor expansions in order to change non-polynomial 
terms into polynomial ones and the parameterization of 
their remainders inside a polytope. Moreover, choosing an 
appropriate Lyapunov function, by means of the linearized 
system so that the system can tolerate limited perturbation, 
is imported into the procedure of estimation. We use this 
technique to estimate DA of the free tumor equilibrium point 
of a perturbed tumor-immune model which is originally 
presented in [5]. 
Considering the healthy equilibrium point of the tumor model 
in which the malignant cells are completely destroyed, this 
method can find a region around this point that if the initial 
condition of disease stands in this domain, the trajectories 
converge to the mentioned equilibrium point. Although 
the dynamics of this model provide a sufficiently accurate 
description of the biological behavior, one could also assume 
that the effects of the mathematical mismatching between 
such model and the real one do not drive the state trajectories 
outside the domain of attraction of the mentioned equilibrium 
point. In order to obtain this goal, a procedure to select an 
appropriate LF is introduced in which this function assures 
that in limited perturbation caused by modeling error, aging 

or uncertainties, the equilibrium point will not change and we 
may be sure that the state trajectories will not diverge. 
It is clear that we can also study this topic from clinical point 
of view. Biologically, we are interested that the tumor’s 
condition stays in a stable point in which the malignant cells 
are completely destroyed. This is the same point as healthy 
equilibrium point. We also want that the tumor’s trajectories 
with initial conditions different from free tumor equilibrium 
point, converge to mentioned point as far as possible. We 
interpret this as finding the domain of attraction of stable 
equilibrium point. Importance of considering perturbation 
from medical point of view is also explained. At last it is good 
to know that this topic can be a good starting point for further 
researches in the field of cancer treatment. 
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