تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,287,972 |
تعداد دریافت فایل اصل مقاله | 4,882,720 |
حل عددی انتقال حرارت نانوسیالات در میکروکانال موجیشکل به روش پخش | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 13، دوره 51، شماره 4، مهر و آبان 1398، صفحه 121-130 اصل مقاله (752.79 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2018.13019.5499 | ||
نویسندگان | ||
جواد رستمی* 1؛ عباس عباسی2؛ مجید صفار اول2 | ||
1دانشکده فنی و مهندسی، دانشگاه رازی، کرمانشاه، ایران | ||
2دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران، ایران | ||
چکیده | ||
در این مقاله انتقال حرارت مزدوج نانوسیالات در میکروکانال های موجیشکل با استفاده از مدل تکفازی به روش پخش و مدل دوفازی به روش اویلری-لاگرانژی بصورت عددی مطالعه شده است. سیال پایه آب و نانوذرات از دو جنس مختلف اکسید آلومینیوم و مس می باشند. غلظت حجمی نانوذرات تا 2% و قطر آنها از 100 تا 150 نانومتر تغئیر میکند. معادلات سه بعدی حاکم شامل پیوستگی، ممنتوم و انرژی در سیال از دیدگاه اویلری و به روش حجم کنترل (سیمپل) حل شده اند. معادلات حاکم بر حرکت و انرژی ذرات نیز به روش لاگرانژی جداسازی و به روش رنگ-کوتای مرتبه 4 حل شده اند. از آنجا که در روش لاگرانژی معادلات حرکت در سه بعد و معادله انرژی برای تک تک ذرات حل می شود، از روش پردازش موازی و با استفاده از ابرکامپیوتر این معادلات حل شده اند. معادلات حاکم در روش پخش از تئوری محیط متخلخل استخراج شده اند. عدم توزیع یکنواخت ذرات در ناحیه حل باعث اختلاف نتایج روش تکفازی و دوفازی می شود. این اختلاف در روش پخش با انطباق نتایج حاصل از آن با نتایج دوفازی تاحد زیادی کاهش مییابد. در پایان برای هر دونوع نانوسیال روابطی جهت محاسبه ضریب هدایت حرارتی ارائه شده است. | ||
کلیدواژهها | ||
نانوسیال؛ مدل تکفازی؛ روش پخش؛ مدل دوفازی؛ روش اویلری-لاگرانژی | ||
عنوان مقاله [English] | ||
Numerical Heat Transfer by Nanofluids in a wavy walls Microchannel using Dispersion Method | ||
نویسندگان [English] | ||
Javad Rostami1؛ Abbas Abbassi2؛ Majid Saffar-Avval2 | ||
1Department of Mechanical Engineering, Razi University | ||
2Department of mechanical engineering, Amirkabir University of Technology | ||
چکیده [English] | ||
In this paper, conjugate heat transfer in wavy microchannels filled with nanofluid is studied numerically. To simulate the nanofluids, dispersion and homogeneous methods in single-phase model and Eulerian-Lagrangian method in two-phase model are used. Homogeneous method underestimates the experimental results. Then, nanofluid simulated by two-phase model using an Eulerian-Lagrangian approach. Then its results are used to find the unknown parameter in the conduction relation of nanofluid in dispersion method. Nanofluids are water-Cu or water-Al2O3 suspensions with a particle diameter of 100-150nm and a volume fraction of up to 2%. The three-dimensional governing equations including continuity, Navier-Stokes and energy equations are solved by the well-known SIMPLE method. The governing equations for particles are solved by a 4th order Runge-Kutta algorithm. due to the 3-D governing equation four equations includinf velocity components and energy should be solved for all particles. The computer program has been written in parallel processing method (MPI). Then a super computer with several CPU,s should be used. Using dispersion method is as simple as homogeneous method but has accuracy as two-phase Eulerian-Lagrangian method. | ||
کلیدواژهها [English] | ||
"Nanofluid", "one phase model", "dispersion method", "two-phase model", "Eulerian-Lagrangian" | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
1-Maiga, S., E., B., Nguyen, C., T., Galanis, N., Roy, G., Mare, T., Coqueux, M., 2006, “Heat Transfer Enhancement in Turbulent Tube Flow Using Al2O3 Nanoparticle Suspension”, International Journal of Numerical Method for Heat and Fluid Flow, 16 (3), pp. 275-292. 2-Patel, H., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N. and Das, S. K., 2005, “A Micro-convection Model for Thermal Conductivity of Nanofluids”, Journal of Physics, 65 (5), pp. 863-869. 3-Brinkman, H. C., 1952, “The Viscosity of Concentrated Suspension and Solution”, the Journal of Chemical Physics, 20, pp. 571-581. 4-Chon, C., Kihm, K., Lee, S., Choi, S., 2005, “Empirical correlation finding the role of temperature and particle size for nanofluid Al2O3 thermal conductivity enhancement”, Applied Physics Letter 87. 5-Corcione, M., 2011, “Empirical Correlating equations for predictiong the effective thermal conductivity and dynamic viscosity of nanofluids”, Energy Conversion and Management, 52, pp. 789-793. 6-Mirzaei, M., Saffar-Avval, M., Naderan, H., 2014, “Heat Transfer Investigation of Laminar Developing Flow of Nanofluids in a Microchannel Based on Eulerian-Lagrangian Approach”, The Canadian Journal of Chemical Engineering, 92, pp. 1139-1149. 7-Bianco, V., Chiacchio, F., Manca, O., Nardini, S., 2009, “Numerical Investigation of Nanofluids Forced Convection in Circular Tubes”, Applied Thermal Engineering, 29, pp. 3632-3642. 8-Wen, D., Zhang, L., He, Y., 2009, “Flow and Migration of Nanoparticle in a Single Channel”, Heat and Mass Transfer, 45, 1061-1067. 9-He, Y., Men, Y., Zhao, Y., Lu, H., Ding, Y., 2009, “Numerical Investigation into the Convective Heat Transfer of TiO2 Nanofluids Flowing through a Straight Tube Under the Laminar Flow Conditions”, Applied Thermal Engineering, 29, 1965-1972. 10-Rostami, J., and Abbassi, A., 2016, “Conjugate heat transfer in a wavy microchannel using nanofluid by two-phase Eulerian–Lagrangian method”, Advanced Powder Technology, 27, 9-18. 11- Heris, S. Z., Nasr Esfahani, M., Etemad, G., 2007, “Numerical Investigation of Nanofluid Laminar Convective Heat Transfer through a Circular Tube”, Numerical Hear Transfer, Part A, 52, pp. 1043-1058 12-Mokmeli, A., Saffar-Avval, M., 2010, “Prediction of Nanofluid Convective Heat Transfer Using the Dispersion Model”, International Journal of Thermal Sciences, 49, pp. 471-478. 13-Ranjbar, A. A., Kashani, S., Hosseinizadeh, S. F., 2011, “Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material”, Thermal Sciences, 15 (1), pp. 169-181. 14- Rahimi, M., Ranjbar, A. A., Hosseini, M. J., Abdollahzadeh, M., 2012, “Natural convection of nanoparticle–water mixture near its density inversion in a rectangular enclosure”, International Communications in Heat and Mass Transfer, 39, pp. 131-137. 15-Tolentino, F. O., Mendez, R. R., Guerrero, A. H. and Palomares, B. G., 2008, “Experimental Study of Fluid Flow in the Entrance of a Sinusoidal Channel”, International Journal of Heat and Fluid Flow, 29, 1233-1239. 16-Rostami, J., Abbassi, A., Saffar-Avval, M., 2015, “Optimization of Conjugate Heat Transfer in Wavy Walls Microchannels”, Applied Thermal Engineering, 82, 318-328. 17-Saffman, P. G., 1959, “A Theory of Dispersion in a Porous Medium”, Journal of Fluid Mechanics, 6, pp. 321-349. 18-Raisee, M., 1999, “Computation of Flow and Heat Transfer Through Two- and Three-Dimensional Rib-Roughed Passages, PhD Thesis, Department of Mechanical Engineering, University of Manchester (UMIST). 19-Patankar, S. V., and Spalding, D. B., 1972, “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat and Mass Transfer, 15, pp. 1787-1806. 20-Spalding, D. B., 1972, “A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives”, Journal of Numerical Methods for Engineering, 4, pp. 551-559. 21-Rhie, C. M., Chow, W. L., 1983, “Numerical Study of the Turbulent Flow Past an Airfoil with Trading Edge Separation”, AIAA Journal, 21 (11), 1525-1535. | ||
آمار تعداد مشاهده مقاله: 915 تعداد دریافت فایل اصل مقاله: 789 |