تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,287,971 |
تعداد دریافت فایل اصل مقاله | 4,882,718 |
مدلسازی و بهینهسازی جذب رنگزای کاتیونی کریستال بنفش در راکتور ناپیوسته | ||
نشریه مهندسی عمران امیرکبیر | ||
مقاله 15، دوره 51، شماره 3، مرداد و شهریور 1398، صفحه 575-584 اصل مقاله (1.25 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/ceej.2018.13445.5410 | ||
نویسندگان | ||
حبیب کولیوند1؛ افسانه شهبازی* 2 | ||
1گروه فناوری محیط زیست، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران | ||
2عضو هیات علمی دانشگاه شهید بهشتی | ||
چکیده | ||
نانوصفحات گرافن ا کساید به روش اصالح شده هامر سنتز و با استفاده از آنالیزهایمیکروسکوپ الکترونی روبشی (SEM ،)طیف سنجی پراش پرتو ایکس (XRD )و طیف سنجی تبدیل فوریه مادون قرمز (FTIR )شناسایی شد. روش نانوصفحات گرافن ا کساید استفاده شد. فا کتورهای موثر بر فرآیند جذب شامل pH( 4-9 ،)دوز جاذب )0/4-0/05 گرم بر ِ آماری پاسخ سطحی (RSM )برای بهینهسازی فا کتورهای موثر بر فرآیند جذب رنگزای کاتیونی کریستال بنفش بوسیله لیتر(، غلظت اولیه رنگزا )400-50 میلیگرم بر لیتر( و دما )40-10 درجه سلسیوس( در را کتور جذب ناپیوسته مطالعه شدند. براساس پیشبینی مدل رگرسیون چندجملهای، ظرفیت جذب گرافنا کساید و راندمان حذف کریستال بنفش در شرایط بهینه )4/7pH ،=دوز جاذب 0/19 گرم برلیتر، غلظت اولیه 100 میلیگرم بر لیتر و دمای 30/4 درجه سلسیوس( به ترتیب 474 میلیگرم بر گرم و 90 درصد به دست آمد. از بین عوامل موثر ، غلظت اولیه رنگزا و دوز جاذب به ترتیب با 51/6 و 41/7 درصد، بیشترین اثرگذاری را بر فرآیند جذب نشان دادند. سینتیک فرآیند جذب با استفاده از مدلهای سینتیکی شبه مرتبه اول، شبه مرتبه دوم و نفوذ درونذرهای و ایزوترم جذب با استفاده از مدلهای ایزوترمی النگمیر و فرندلیچ مدلسازی و تحلیل شد. نتایج به دست آمده همبستگی بسیار باالی سینتیک جذب با مدل شبه مرتبه دوم و ایزوترم جذب با مدل النگمیر را نشان داد. مطالعات ترمودینامیکی نشان داد که فرآیند جذب گرما گیر و خودبه خودی فرآیند جذب بود. | ||
کلیدواژهها | ||
گرافناکساید؛ جذب ناپیوسته؛ رنگزای کاتیونی کریستال بنفش؛ بهینهسازی؛ RSM | ||
موضوعات | ||
آلودگی آب ، فاضلاب؛ کیفیت آب؛ کیفیت منابع آب | ||
عنوان مقاله [English] | ||
Adsorption modeling and optimization of crystal violet a cationic dye in batch reactor | ||
نویسندگان [English] | ||
Habib Koulivand1؛ afsaneh shahbazi2 | ||
1deportment of environmental technology, environmental science research institute, shahid beheshti university, Tehran, Iran | ||
2Prof., Environmental Sciences Research Institute, Shahid Beheshti University, G.C., Tehran, Iran | ||
چکیده [English] | ||
Graphene oxide nano-sheets were synthesized using modified Hummer’s method and characterized using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Fourier Transform Infra-Red (FTIR) analyses. Response surface methodology (RSM) was used to optimize the effects of the effective factors including pH (4-9), adsorbent dosage (0.05-0.4 g/L), initial dye concentration (50-400 mg/L), and temperature (10-40 C°) in batch adsorption reactor. The adsorption capacity of graphene oxide and removal percentage of crystal violet in the optimum condition (pH of 7.4, the adsorbent dosage of 0.19 g/L, the initial concentration of 100 mg/L, and temperature of 30.4 C°) were predicted by the polynomial regression model to be 474 mg/g and 90%, respectively. Dye initial concentration and the adsorbent dosage with 51.6 and 41.7% respectively, showed the most percentage of contribution among the effective factors. Adsorption kinetic was investigated using pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models. Adsorption isotherm also was studied using Freundlich and Langmuir isotherm models. Results demonstrated the high correlation of adsorption kinetic and isotherm with pseudo-second order and Langmuir models respectively. In addition, the thermodynamic study indicated the endothermic and spontaneous nature of adsorption. | ||
کلیدواژهها [English] | ||
Graphene oxide, batch adsorption, crystal violet, optimization, RSM | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its re- moval from aqueous solution by adsorption: a review, Advances in colloid and interface science, 209 (2014) 172-184. [2] C. Li, T. Lou, X. Yan, Y.-z. Long, G. Cui, X. Wang, Fabrica- tion of pure chitosan nanofibrous membranes as effective absor- bent for dye removal, International Journal of Biological Macro- molecules, (2017). [3] X. Xiao, F. Zhang, Z. Feng, S. Deng, Y. Wang, Adsorptive removal and kinetics of methylene blue from aqueous solution using NiO/MCM-41 composite, Physica E: Low-dimensional Systems and Nanostructures, 65 (2015) 4-12. [4] A. Mittal, J. Mittal, A. Malviya, D. Kaur, V. Gupta, Adsorp- tion of hazardous dye crystal violet from wastewater by waste materials, Journal of Colloid and Interface Science, 343(2) (2010) 463-473. [5] J.J. Jones, J.O. Falkinham, Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria, An- timicrobial agents and chemotherapy, 47(7) (2003) 2323-2326. [6] K.P. Singh, S. Gupta, A.K. Singh, S. Sinha, Optimizing ad- sorption of crystal violet dye from water by magnetic nanocom- posite using response surface modeling approach, Journal of Hazardous Materials, 186(2) (2011) 1462-1473. [7] A.M. Donia, A.A. Atia, W.A. Al-amrani, A.M. El-Nahas, Ef- fect of structural properties of acid dyes on their adsorption be- haviour from aqueous solutions by amine modified silica, Journal of hazardous materials, 161(2) (2009) 1544-1550. [8] J.-H. Deng, X.-R. Zhang, G.-M. Zeng, J.-L. Gong, Q.-Y. Niu, J. Liang, Simultaneous removal of Cd (II) and ionic dyes from aque- ous solution using magnetic graphene oxide nanocomposite as an adsorbent, Chemical Engineering Journal, 226 (2013) 189-200. [9] A. Elsagh, O. Moradi, A. Fakhri, F. Najafi, R. Alizadeh, V. Haddadi, Evaluation of the potential cationic dye removal using adsorption on graphene and carbon nanotubes, Arabian Journal of Chemistry, (2013). [10] B. Hameed, I. Tan, A. Ahmad, Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology, Journal of hazardous materials, 158(2) (2008) 324-332. [11] K. Ravikumar, S. Ramalingam, S. Krishnan, K. Balu, Appli- cation of response surface methodology to optimize the process variables for reactive red and acid brown dye removal using a novel adsorbent, Dyes and pigments, 70(1) (2006) 18-26. [12] M. Arulkumar, P. Sathishkumar, T. Palvannan, Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology, Journal of hazardous materials, 186(1) (2011) 827-834. [13] A. Fakhri, Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: Ki- netics, thermodynamics and mechanism studies, Journal of Saudi Chemical Society, (2013). [14] S. Debnath, A. Maity, K. Pillay, Impact of process param- eters on removal of Congo red by graphene oxide from aqueous solution, Journal of Environmental Chemical Engineering, 2(1) (2014) 260-272. [15]R. Kumar, R. Ahmad, Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW), De-salination, 265(1) (2011) 112-118. [16] P.D. Saha, S. Chakraborty, S. Chowdhury, Batch and contin- uous (fixed-bed column) biosorption of crystal violet by Artocar- pus heterophyllus (jackfruit) leaf powder, Colloids and Surfaces B: Biointerfaces, 92 (2012) 262-270. [17]R. Sen, T. Swaminathan, Response surface modeling and op- timization to elucidate and analyze the effects of inoculum age and size on surfactin production, Biochemical Engineering Jour- nal, 21(2) (2004) 141-148. [18]H.-L. Liu, Y.-W. Lan, Y.-C. Cheng, Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology, Process Biochemistry, 39(12) (2004) 1953-1961. [19] Y. Bulut, H. Aydın, A kinetics and thermodynamics study of methylene blue adsorption on wheat shells, Desalination, 194(1) (2006) 259-267. [20] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination, 280(1) (2011) 1-13. [21]S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of mal- achite green onto chemically modified rice husk, Desalination, 265(1) (2011) 159-168. [22] P. Wang, M. Cao, C. Wang, Y. Ao, J. Hou, J. Qian, Kinet- ics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite, Applied Surface Science, 290 (2014) 116-124. [23]R.-S. Juang, F.-C. Wu, R.-L. Tseng, Mechanism of adsorp- tion of dyes and phenols from water using activated carbons pre- pared from plum kernels, Journal of colloid and interface science, 227(2) (2000) 437-444. [24] K. Vijayaraghavan, T. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel (II) ions onto Sargassum wightii: appli- cation of two-parameter and three-parameter isotherm models, Journal of Hazardous Materials, 133(1) (2006) 304-308. [25] L. Eskandarian, M. Arami, E. Pajootan, Evaluation of ad- sorption characteristics of multiwalled carbon nanotubes modi- fied by a poly (propylene imine) dendrimer in single and multiple dye solutions: Isotherms, kinetics, and thermodynamics, Journal of Chemical & Engineering Data, 59(2) (2014) 444-454. | ||
آمار تعداد مشاهده مقاله: 669 تعداد دریافت فایل اصل مقاله: 1,095 |