@

AUT JOURNAL OF
MECHANICAL
ENCINEERING

AUT Journal of Mechanical Engineering

AUT J. Mech. Eng., 3(2) (2019) 187-196
DOI: 10.22060/ajme.2018.14135.5706

On the Flow and Heat Transfer Analysis of Pipe Conveying Johnson-Segalman Fluid:

Analytical Solution and Parametric Studies

M. G. Sobamowo”

Department of Mechanical Engineering, University of Lagos, Lagos, Nigeria

ABSTRACT: In this study, Galerkin’s method of weighted residual is used to present simple approximate
analytical solutions to flow and heat transfer characteristics in a pipe conveying Johnson-Segalman fluid.
The developed approximate analytical solutions are verified with the results in literature. Thereafter, the
solutions are used to investigate the effects of the pertinent parameters such as relaxation time parameter,

viscosity parameter and Brinkman number on the fluid velocity and the temperature distributions of the
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pipe flow. From the results, it shows that the fluid velocity and temperature increase with the relaxation

time parameter and Brinkman number. It is also established that relaxation time parameter increases with
increase in the velocity of the fluid but decreases with increase in the fluid temperature. It is found that
the relaxation parameter effect on the velocity distribution are not significant as the viscosity parameter
approaches unity and when it is greater than unity. It is hope that the study will provide more physical

insight into the flow phenomena.
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1- Introduction

The growing recognitions and the use of various fluids in
industrial, biological and engineering applications have
shown that many fluids do not obey Newton’s law of
viscosity. Consequently, in recent times, many research
interests have been invoked on the study of the fluids
under various conditions. These fluids such as gels, melts
and paints, lubricants containing polymer additives, blood,
honey, synovial fluid, molten plastics, polymer solutions,
tomato sauce, slurries, pastes etc. are often referred to as
non-Newtonian fluids [1, 2] as they do not obey Newton’s
law of viscosity. Also, the limitations and inadequacies of
the classical Navier—Stokes equations to effectively describe
rheological behaviors of complex fluids used in industrial
processing, have led to the formulations of non-Newtonian
and non-Navier-Stokes models which could predict the flow
of such fluids under various conditions. Therefore, in the
past few decades, different types of new models for non-
Newtonian fluids such as second-order fluid, third-order
fluid, fourth-order fluid, upper-convected Maxwell fluid and
Oldroyd-B fluid have been put forward. These classes of non-
Newtonian fluids show constant viscosity. However, in reality,
at a given temperature and pressure, the viscosity of a non-
Newtonian fluid varies with the rate of shear or the previous
kinematic history of the fluid [3]. Therefore, it is established
that a single constitutive relation cannot be used to describe
and predict all non-Newtonian behaviors. Consequently,
different rate-type fluids models have been developed to
explain the flow behavior of these fluids. Among many
fluids of the rate-type models, Johnson—Segalman (J-S) fluid
model, a viscoelastic fluid model was developed to allow
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for non-affine deformations. It is a fluid model that takes
into account elastic and memory effects exhibited by most
polymeric and biological fluids [4-6]. In recent times, the
fluid model has gained a special status among many fluids
of the rate type models, as it includes special cases such as
the classical Newtonian fluid, Navier-Stokes fluid, Maxwell
fluid and Oldroyd-B fluid [6-21]. Unlike most other fluid
models, the J-S fluid allows a non-monotone relationship
between the shear stress and velocity gradient in simple shear
flows for a certain range of material parameters resulting in
solutions with discontinuous velocity gradients for planar
and cylindrical Poiseuille flow. The model has been used to
successfully explain the phenomenon “spurt” which has been
used for the description of large increase in the volume to a
small increase in the driving pressure gradient [6-21].

Due to the generic nature and the importance of the fluid
model in the study of flow behaviors of non-Newtonian
fluids, many studies have been carried to describe the non-
Newtonian fluid behaviors using the fluid model [6-21].
The evolved non-linear models in the past studies have been
solved using different techniques. Although, in some studies,
numerical techniques were adopted, the loss of convergence
of numerical iterative algorithms for solving the flow of
viscoelastic fluids at moderate values of the Deborah number
has been a subject of debate over the past decades. Also,
Howell [20] pointed out that the numerical simulation of
viscoelastic fluid flow becomes more difficult as a physical
parameter, the Weissenberg number, increases. Specifically,
at a Weissenberg number larger than a critical value, the
iterative nonlinear solver fails to converge. Therefore, Hayat
et al. [21] applied Homotopy Analysis Method (HAM) to
provide approximate solutions to the heat transfer in pipe
flow of Johnson-Segalman fluid. The advantages of the
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homotopy analysis method has been pointed out in another

work by Hayat [22].

Although, the analysis of flow and heat transfer of Johnson-
Segalman fluid have been studied with the aids of difference
analytical and numerical methods, many of the approximate
analytical methods present complex mathematical analysis

that results in analytic expression with large numbers of

terms and when such expressions are routinely implemented,
they can sometimes lead to erroneous results [23, 24].
Consequently, there is continuous quest for simple yet accurate
solution method to solve the non-linear differential equations.
In this regard, methods of weighted residual have shown to
be promising tools due to their simplicity and high accuracy.

The use of Weighted Residual Methods (WRMs) suggests a

handy mathematical formulation [25] and they can handle
a wide variety of nonlinear Ordinary Differential Equations
(ODESs) despite of their orders and natures. Although,
there are different types of WRM depending on the weight
functions, among all these methods of weighted residual, the
Galerkin Method (GM) has shown to be the most accurate
[26]. Apart from its high accuracy in prediction, the method
avoids the search and the use of variational formulations
[27]. Therefore, in this study, Galerkin’s method of weighted
residual is adopted to present simple approximate analytical
solutions to flow and heat transfer characteristics in a pipe
conveying Johnson-Segalman fluid. Also, the influences
of pertinent parameters such as relaxation time parameter,
viscosity parameter and Brinkman number on the fluid
velocity and the temperature distributions of the pipe flow
are analyzed and discussed.

2- Model Formulation

Consider a steady state pipe flow of incompressible Johnson-
Segalman fluid which is induced by pressure gradient in the
z-direction (axis of flow) in a circular pipe of radius 7, shown
in Fig. 1.

T=T,
— >
L. :
P
—_— L
0 . p < 0
—— ;
- 5
T=T,

Fig. 1. Schematic of the problem

As the fluid is incompressible, it can undergo only isochoric
motions. Therefore, with an appropriate choice of the kernel
function and the time constants, the governing equations are

Continuity equation

V=0 (M
Momentum equation
p(z—Z+WﬁJ=V.G 2)
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Energy equation

oT

o. Y +kV’T = pc,— (3)
where

o=-pl+r @)
r=2uD+S ©)

S+§{66—f+vVS+S(W—aD)+(W—aD)’S}:277D (6)

where uis the velocity, p is the pressure, p is the density, ¢ is time,
o represents the Cauchy stress tensor, -p/ is the indeterminate
part of the stress due to the constraint of incompressibility,
S is an extra stress tensor, 7 is the temperature, ¢ is the
. . .. P
specific heat, and £ is the thermal conductivity, x and 7 are
the dynamic viscosities, is ¢ the relaxation time and « is the
slip parameter. D is a symmetric part of the velocity gradient
and W is the skew symmetric part of the velocity gradient,
respectively and defined as [6, 11, 21]

1 ' 1 ’

D 2(Y+Y) w 2(Y ') (7
where () represents the matrix transpose. It is be noted that
this model includes the Oldroyd-B fluid model for a=I.
When a=1, =0 the Johnson—Segalman fluid model reduces
to the Maxwell fluid model, when & = 0 the model reduces to
the classical Navier—Stokes fluid model and when ¢=0, x=0
the model reduces to the classical Newtonian fluid model. It
should be noted that the bracketed term on the left-hand side
of Eq. (6) is an objective time derivative.

The governing equations of motion in cylindrical coordinates
give

@ _1d g Sy &
or rdr r
P _
20 (8b)
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au
Srr - dr_ 2 (loa)
1+§(1—a2)(d”j
dr

—é(l—a)n[d_]

"
d
S, = : — (10b)
1+§(1—a2)()
dr
S, =0 (10¢)

In the above equations, u is the variable viscosity, # is the
dynamic viscosity, « is the slip parameter ¢ is the relaxation
time and, r represents the radial direction and S,S., and S ”
are stresses for the Johnson-Segalman fluid.

It should be noted that while Eqgs. (8c) and (9) can be used
to find the velocity and temperature distributions in the pipe,
Eq. (8a) can be adopted to find the pressure distribution in
the pipe. However, our major focus in this work is to find
velocity and temperature distributions in the pipe.

From Egs. (8c) and (10a), we have

3

du NE:
(ﬂ+ﬂ)5+§ﬂ(1—a )(drj

a_p =li E (11)
oz rdr o du
1+&(1-a”)| —
dr
The boundary condition are given as
r=0, du =0, ar =0
dr dr
(12)
r=r, u=0, T=T,

where T is the wall temperature.

On non-dimensionalizing Egs. (9), (11) and (12) using the
following dimensionless quantities, where T is the wall
temperature.

2
5(1 az)(gpj
R:L’ u= # 175 ﬂ: 2 - 02
R
oz )°
oo (13)
“(2)
a:(1+lJ, H—T_Tw, = 0z
H T,-T, kT,
we have
3
J QZ;J”I(ZZJ
iR LR (14)
u
1+ —
(i)

d*0 1do a0 (duY
—+——+RA—| —
dR> R dR dr*\ dr
2 2 4
+lﬁ(d—uj + RaB, (ﬁj +RAB, (d_uj =0
dr\ d d

r r r

(15)

Eq. (14) can be further simplify after integration of both side
with respect to R as

3 2
24 d_uj +2ad—u—Rl @ -R=0 (16)
dr dR dr

3- Method of Solution: Galerkin’s Method of Weighted
Residual

Due to the nonlinearities in Egs. (15) and (16), Galerkin’s
method of weighted residual is used. The procedure of the
method is described as follows:

Representing the governing equations by

Lw)=0 in Q (17)
LO)=0 in Q (18)
And

u=

¢.N.(R) (19)

-

i

0~ Z¢,-N,- (R) (20)

Substitution of the above Egs. (19) and (20) into Egs. (17)
and (18) results in

Lu)#0 o1
=R (u) (residue)

L(6)=0 -
=R, (0) (residue) (22)

The method of weighted residual requires that the parameters
¢, 0,..0 and ¢, ¢, . .4 be determined by satisfying

[w, (RR()dR with i=12, ..., n (23)
Q

[wo(RIR,(O)AR with =12, ..., n (24)
Q

where the functions w(R) are the n arbitrary weighting
functions. There are an infinite number of choices for w(R)
but four particular functions are most often used.

Since a simple but highly accurate solution is sought, a
quadratic trial solution shown in Egs. (25) and (26) was
adopted in this work.
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u(R) =B, + BR+ B,R’ 25 s L 32, 3

( ) ﬂo ﬂl ﬂZ ( ) ﬁZ 4ﬂ2+4ﬂ,ﬁ2 161 (35)
OR) =y, +y,R+y,R’ (26) 2B, (222 +<)
Ganji [28] pointed out that GM with second degree’s trial ’ 3{1 n 4 p) ﬂz} (36)
function converges to result with a good accuracy. Bert :
[29] had earlier pointed that additional terms should not be
necessary in most instances and further refinement should not Following the Descartes’ rule of polynomial, which states
be necessary. that the number of change of sign in a polynomial is equal
Thus, the trial function that satisfies the boundary conditions to the number of positive roots of the polynomial. The
of the momentum and energy Egs. (16) and (15) could be above cubic equation in Eq. (35) changes sign three times.
written as This implies that the cubic equation has three positive roots

i.e. all the three roots of the cubic equation are positive.

u=-p,(1-R?) (27) Consequently, it is expected that for all the positive roots of

f,, the dimensionless velocity has negative values and the
dimensionless temperature has positive values.
On solving the cubic equation, we have the following roots

0=—y,(1-R) (28)

And the corresponding the weight functions are B,y =2y=Qcos (?) (37a)

N,(R)=1-R? (29)

N (R =1- R . =20 cos{ 3+ 27[ } (37b)
i -

The Galerkin’s formulation of the momentum equation is

=2,- cos{ 19+47z} (37¢)
jN (R){Ll( )+2 ﬂ—m[d”j R}m:o 31)
dar dR

dr where
And that of energy equation is { M J
-1 -
9 =cos
_Q3
Lo, 140, o du)
‘ dR* RdR dR*\ dr A—54a+162
[N, (®) dR=0 (32) =—
o dé ( du dit du 17282
+1— [—j +RaBr[ ) +RAB, ( ]
dR\ dr dr dr 0= 36aa—4
1442

Substituting the weight function in Egs. (29) and (30) into
Egs. (31) and (32) respectively, we have; Based on the simulation, the third root f,, gives the most

realistic result.
| d d 2 On substituting Eq. (37¢) into Egs. (27) and (28), we have
fa-r" 21(-”) +2a —u—Rﬂ( J ~R|[dR=0 (33)
o dr dR dr

_ /1—3601><
1444
Rd29+iﬁ+md20(@jz (38)
1 2 2 — —
I(I—RZ) dR" R dR dR"\ d dR=0 (34) cos %arccos sda—A-162 +47 |-A-R%)
0

d0/( du di du 36a-2Y
— RaB RAB —
ﬁdR(d j T '(drj TRA (drj 1728/1\/ ( 144, j
On finding the corresponding terms of Egs. (15) and (16)
from Egs. (27) and (28) and into Egs. the same into (34) and

2 2
34), yield 3B 28,5+«
(34), yields g2 ( 23 )(I—Rz) (39)
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where
A-36a
=2, |——x
P \ 1442
5400 — 1 —-162
coss —| arccos +4r

3
17284 |— 36a -4
1444
The volumetric flow rate, O, may be obtained by integrating

the flow through a small element rdrd$ over the cross-
sectional area of the pipe

2r,
0, = j jmdrdcb (40)
00
Using the dimensionless parameter
MO,
Qu (41)

&
0z )°

The dimensionless volumetric flow rate, O, is given as

27 R
Oy = | [urdRd® (42)
00
After substituting Eq. (38) and carry out the double
integration, we have
7 |[A-36a
=—— |——x
Qu =3\ Taaz
(43)

54 —1—162
3
17282, || 362 =4
144

4- Results and Discussion

The numerical results of the developed analytical solutions
of fluid velocity and temperature distributions in the half and
full cylindrical coordinate systems are presented graphically
in Figs. 2 to 27. Effects of pertinent parameters are shown in
the figures. Figs. 2 to 7 show the half cylindrical coordinate
system of the effects of 1 (relaxation time parameter) on
the fluid velocity distribution while Figs. 8 to 10 show the
velocity profile of half cylindrical coordinate system of
the effects of a (viscosity parameter) on the fluid velocity
distribution in the pipe. It should be pointed out that while the
figures show that velocity increases by increasing 4 and a, the
effect of 1 on the velocity distribution is not significant as «
approaches unity and when it is greater than unity as depicted
in Figs. 4to 7.

In order to validate the analytical solutions in this work, the

+4r

COS\—| arccos
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results of the analytical solution of the velocity field using the
Galerkin’s method of weighted residual are compared with
the results of HAM as given by Hayat et al. [20] as shown
in Fig. 11. From the graph, it is depicted that the result as
presented in this paper agreed well with the results given by
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the previous researchers. Therefore, it is established that the
use of second degree’s trial function in the Galerkin’ method
of weighted residual converges to good results with high
accuracies. This fact had been pointed out earlier studies that
additional terms should not be necessary in most instances
and further refinement should not be necessary [28, 29].

1] . . . . . . .
—— =02
| =04 ]
L=06
DM T A=038 i
=
= .06 - i
ko
o
= 008+ ]
-
H
H
= A1 E
‘o
H
£ 012 g
o
ERTIS g
816 g
018 L L L L L L L L L
¢ 01 02 03 04 05 06 07 08 09 1

Damensionless pipe adus, R

Fig. 5. Effect of 2 on the fluid velocity, # when a=1.5

—— =02
o005 T A=04

4 T A=08 4

=

D05 - b

Dimanaloniees valoclty,

d =]
& =2 & & &
E B 8 B =

1 1 1 1 1 1 1 1 1
41 02 03 04 05 06 07 08 09 1
Damensionless pipe radius, R

&
g

Fig. 6. Effect of Z on the fluid velocity, # when a=2.0

[hed \ -
A o
T T
1 1 1

w
T
.

Dirmenslonlens velaclty, u

e
[
T

—+—A=02
—&—AL=04
L=06

—*—L=08

&

45 I I I I I I I
L] 1 02 03 04 05 06 OF 08 09 1

Dimensionless pipe radius, R

Fig. 7. Effect of 4 on the fluid velocity, # when a=3.0

192

—+—a=10
og2| T o=12
w=14
0.4 *— =186 4

=

.06 - B

&
3

&
]

Dimanalonions velosity
&

&
2

&
=

018 ! ! I I I ! I I I
L 01 92 03 04 05 06 0F 08 09 1

Damensionless pipe radius, R

Fig. 8. Effect of a on the fluid velocity, # when 4=0.5

1
.05 - q
41 q
=
o
o 0151+ q
=
-
=
a 02 4
-
=
o
£ 025 q
-
E
=
D3 <
—#— =04
4356 S— =038
w=12
E —_— o= 1_5
04 L L 1 1 1 L 1
0 01 92 03 04 05 06 407 08 09 1

Dimensionless pipe radius, R

Fig. 9. Effect of ¢ on the fluid velocity, # when 4=0.75

1}
405 - q
41 q
=
=
o 015¢ A
o
-
=
s 02 i
-
=
o
= b, q
-
E
=
43 E
—#— =04
435 F— =038
=12
_n_‘ L L 1 1 1 L 1 o= 15
L1} 01 02 03 04 05 06 07 08 09 1

Damensonless pipe radius, R
Fig. 10. Effect of « on the fluid velocity, # when 1=1.0

The velocity profile for the full cylindrical coordinate system
of the effects of 4 and a on the fluid velocity distribution in
the pipe are shown in Figs. 12 and 13. Numerically, it could
be seen that the velocity is maximum at the center of the pipe
with more positive values of 1 and a. This is physically true
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because of the axial symmetrical nature of the flow process
and the fluid-structure interactions at the pipe walls which
lead to the no-slip assumption at the walls. Therefore, the
fluid velocity decreases near the walls of the pipe, increases
toward the center of the pipe and becomes maximum at the
center of the pipe.
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Figs. 14 to 21 show the numerical results of the developed
analytical solutions of fluid temperature distributions
in the half cylindrical coordinate system are presented
graphically in Figs. 2 to 27. In the figures, the effects of 4,
a, and Brinkman number, B, on the temperature profiles are
presented while Figs. 22 to 27 show the temperature profiles
of full cylindrical coordinate system of the effects of 4, a, and
B_on the fluid temperature distribution in the pipe. Although,
different studies have been carried out afterwards with
different techniques, the results of temperature profiles in the
work on the study heat transfer in pipe flow of a Johnson-
Segalman fluid as carried out by Hayat et al. [20] show
some inconsistencies with the thermal boundary conditions
of the developed models. This is because, thermal boundary
conditions are not satisfied as shown in their results. Therefore,
the present work re-examined the previous analysis with the
use of Galerkin’s method of weighted residual and present the
results accordingly.

It could be seen in the figures that the fluid temperature
increases with increase in B for different positive values of
A and a as shown in Figs. 14 and 15. The same trends were
recorded in Figs. 26 and 27 for the temperature profiles of
full cylindrical coordinate system. Figs. 16, 17, 24 and 25
depicts the effects of a on the fluid temperature distributions
for different positive values of B_and 4. The results show that
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different positive values of B, and a lead to increase in fluid
temperature. This might be due to increase in the relaxation
time of the flow.

as a increases, the temperature profile of the fluid decreases.
This is due to the increase in the fluid viscosity. Also, the
effects of A on the fluid temperature are shown in Figs. 18
to 23. From the figures, it is shown that increase in 4 for
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5- Conclusion

In this paper, steady flow and heat transfer behaviors of
Johnson-Segalman in a pipe have been analyzed using
Galerkin’s method of weighted residual. From the results of
the analytical solution developed in the work, it shows that
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the fluid velocity and temperature increase with the relaxation
time parameter and Brinkman number. It was also established
that relaxation time parameter increases with increase in
the velocity of the fluid but decreases with increase in the
fluid temperature. It should be pointed out that the effects
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of relaxation parameters on the velocity distribution are not
significant as the viscosity parameter approaches unity and
when it is greater than unity. It is hope that the study will
provide more physical insight into the flow phenomena.
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