تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,209 |
تعداد دریافت فایل اصل مقاله | 4,882,948 |
بررسی مکانیک شکست پانل بتنی لایهای تابعی مقاوم در برابر بارگذاری ضربه | ||
نشریه مهندسی عمران امیرکبیر | ||
مقاله 2، دوره 51، شماره 6، بهمن و اسفند 1398، صفحه 1111-1128 اصل مقاله (1.62 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/ceej.2018.14226.5618 | ||
نویسندگان | ||
صفا پیمان* 1؛ پویا حیدری دیگهسرا2 | ||
1گروه عمران | ||
2دانشکده مهندسی عمران، پردیس دانشکدههای فنی دانشگاه تهران، تهران، ایران | ||
چکیده | ||
در این تحقیق مطالعات عددی مکانیک شکست مربوط به رشد ترک یک ماده بتنی لایهای تابعی مقاوم در برابر بارگذاری ضربه گلوله شامل بتن معمولی،مسلح الیافی و سنگدانههای سفت به وسیله مدلسازی آزمایش خمش سه نقطهای در حضور ترک اولیه ارائه شده است. از مدل ناحیه چسبنده دو خطی برای بتن معمولی و بتن با سنگدانههای سفت و سه خطی برای بتن مسلح الیافی به منظور رفتار شکست در ناحیه فرآیند استفاده شده و روش محاسباتی المان محدودتوسعه یافته ( XFEM ) برای آنالیز عددی به کار گرفته شده است. نتایج حاصل از مدلسازی عددی آزمایش خمش سه نقطهای به وسیله منحنی بار-بازشدگی نوک ترک( P-CMOD ) مورد بررسی و مقایسه قرار گرفته است. نمونه لایهای تابعی در مقایسه با نمونههای همگن بتن معمولی، مسلح الیافی و سنگدانههای سفت موردبررسی قرار گرفته و نتایج نشان دادکه نمونه مسلح الیافی همگن رفتار شکست به مراتب بهتریازنمونههای دیگر داردونمونه لایهای تابعی نیزبه دلیل دارا بودن الیه مسلح الیافی در لایه انتهایی در مقایسه با نمونههای بتن معمولی و بتن با سنگدانههای سفت دچار شکست ناگهانی نمیشود.همچنین اثرات هر یک از لایهها و تغییر ضخامت آنها موردارزیابی قرار گرفته و مشاهده گردید که لایه مسلح الیافی با توجه به انرژی شکست زیاد ناشی از پلبندی الیافها نسبت به سایر لایهها، تاثیر مفیدی بر رفتار شکست نمونه داردوبا اتخاذموقعیتو ضخامت مناسب برای این لایه میتوان ضمن تامین کارایی مناسب دررفتار شکست،هزینه مصالح را نیزبه میزان قابل توجهی کاهش داد. | ||
کلیدواژهها | ||
مکانیک شکست؛ ماده بتنی لایهای تابعی؛ مدل آزمایش خمش سه نقطهای؛ مدل ناحیه چسبنده؛ منحنی بار-بازشدگی نوک ترک | ||
عنوان مقاله [English] | ||
Investigation of crack propagation behavior of impact-resistant functionally graded concrete | ||
نویسندگان [English] | ||
safa peyman1؛ pouya heydari digesara2 | ||
1دانشگاه جامع امام حسین (ع)/ تهران | ||
2School of Civil Engineering, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
This paper conducted research on numerical studies of fracture mechanics related to crack propagation of projectile impact-resistant functionally graded concrete consisting of plain, fiber reinforced and tough aggregate concrete layers, which are presented by modeling a three-point bending test in presence of initial notch. To consider fracture behavior in process zone, a bilinear softening model for plain and tough aggregate concrete and a trilinear softening model obtained from traction-separation relationship of cohesive zone model is used. Extended finite element method is utilized for numerical analysis. result of numerical modeling of three-point bending test have been investigated and compared using loading versus crack mouth opening displacement (P-CMOD) curves. Functionally graded model has been studied in comparison with homogeneous plain, fiber reinforced and tough aggregate concrete models, and the results showed that homogeneous fiber reinforced concrete model has a better fracture behavior than others models. The functionally graded model has not been subjected to sudden failure in comparison with plain and tough aggregate concrete models due to the fiber reinforced in end layer. Also, effect of each layer and their thickness change in the functionally graded model are evaluated and it was observed that fiber reinforced layer due to high fracture energy created by fiber bridging has a beneficial effect on the fracture behavior related to other layers. In this way, by considering proper position and thickness for this layer, in addition to providing appropriate performance in the fracture behavior, cost of materials also be significantly reduced. | ||
کلیدواژهها [English] | ||
Fracture mechanics, Functionally graded concrete, Three point bending test model, Cohesive zone model, P-CMOD curves | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] A. Neubrand, Functionally graded materials, (2001). [2]S. Mojiri, Numerical analysis of cohesive crack growth using extended finite element method (X-FEM), Master of Science Thesis. Institut de Recherche en Génie Civil et Méchanique, France, (2010). [3] Y. Mohammadi, S. Kaushik, Investigation of mechanical properties of steel fibre reinforced concrete with mixed aspect ratio of fibres, Journal of ferrocement, 33(1) (2003) 1-14. [4] K.B. Broberg, Cracks and fracture, Elsevier, 1999. [5] A.A. Griffith, VI. The phenomena of rupture and flow in solids, Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 221(582-593) (1921) 163-198. [6] D. Motamedi, Nonlinear XFEM modeling of delamination in fiber reinforced composites considering uncertain fracture properties and effect of fiber bridging, University of British Columbia, 2013. [7] A. Hillerborg, M. Modéer, P.-E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and concrete research, 6(6) (1976) 773-781. [8] S.A. Ashour, G.S. Hasanain, F.F. Wafa, Shear behavior of high-strength fiber reinforced concrete beams, Structural Journal, 89(2) (1992) 176-184. [9] S.P. Shah, Do fibers increase the tensile strength of cement-based matrix?, Materials Journal, 88(6) (1992) 595-602. [10]V.C. Li, M. Maalej, Toughening in cement based composites. Part II: Fiber reinforced cementitious composites, Cement and Concrete Composites, 18(4) (1996) 239-249. [11]C.-F.M. Code, 90,(1993) Bulletin d’Information N 213/214, Final version printed by Th, Telford, London,(1993, 460. [12]P.-E. Petersson, Crack growth and development of fracture zones in plain concrete and similar materials, (1981). [13]K. Gylltoft, Fracture mechanics models for fatigue in concrete structures, Luleå tekniska universitet, 1983. [14]P. Nanakorn, H. Horii, S. Matsuoka, A fracture mechanics- based design method for SFRC tunnel linings, Doboku Gakkai Ronbunshu, 1996(532) (1996) 221-233. [15]Y. Kitsutaka, Fracture parameters by polylinear tension- softening analysis, Journal of Engineering Mechanics, 123(5) (1997) 444-450. [16]H. Stang, Evaluation of properties of cementitious fiber composite materials, in: High performance fiber reinforced cement composites, E & FN Spon London, 1992, pp. 388-406. [17]H.W. Reinhardt, Fracture mechanics of an elastic softening material like concrete, HERON, 29 (2), 1984,(1984). [18] H. Cornelissen, D. Hordijk, H. Reinhardt, Experimental determination of crack softening characteristics of normalweight and lightweight, Heron, 31(2) (1986) 45-46. [19]G.I. Barenblatt, The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, Journal of Applied Mathematics and Mechanics, 23(3) (1959) 622-636. [20]G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances in applied mechanics, 7(1) (1962) 55-129. [21]D.S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 8(2) (1960) 100-104. [22]S. Quek, V. Lin, M. Maalej, Development of functionally- graded cementitious panel against high-velocity small projectile impact, International Journal of Impact Engineering, 37(8) (2010) 928-941. [23]J.H. Song, P.M. Areias, T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes, International Journal for Numerical Methods in Engineering, 67(6) (2006) 868-893. [24]G. Abaqus, Abaqus 6.11, Dassault Systemes Simulia Corp Providence, RI, USA, (2011). [25]J. Roesler, G. Paulino, C. Gaedicke, A. Bordelon, K. Park, Fracture behavior of functionally graded concrete materials for rigid pavements, Transportation Research Record, 2037(1) (2007) 40-49. [26]P.P. Camanho, C.G. Davila, M. De Moura, Numerical simulation of mixed-mode progressive delamination in composite materials, Journal of composite materials, 37(16) (2003) 1415-1438. [27]K. Park, H. Choi, G.H. Paulino, Assessment of cohesive traction-separation relationships in ABAQUS: A comparative study, Mechanics Research Communications, 78 (2016) 71-78. [28]A. Needleman, A continuum model for void nucleation by inclusion debonding, (1987). [29]J.G. Van Mier, Fracture processes of concrete, CRC press, 2017. [30]K. Park, G.H. Paulino, J.R. Roesler, Determination of the kink point in the bilinear softening model for concrete, Engineering Fracture Mechanics, 75(13) (2008) 3806-3818. [31]S.P. Shah, S.E. Swartz, C. Ouyang, Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock and other quasi-brittle materials, John Wiley & Sons, 1995. [32]T.-S. Lok, J.-S. Pei, Flexural behavior of steel fiber reinforced concrete, Journal of materials in civil engineering, 10(2) (1998) 86-97. [33]S.-Y. Fu, B. Lauke, Effects of fiber length and fiber orientation distributions on the tensile strength of short- fiber-reinforced polymers, Composites Science and Technology, 56(10) (1996) 1179-1190. [34]V.S. Gopalaratnam, S.P. Shah, Tensile failure of steel fiber-reinforced mortar, Journal of Engineering Mechanics, 113(5) (1987) 635-652. | ||
آمار تعداد مشاهده مقاله: 717 تعداد دریافت فایل اصل مقاله: 993 |