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ABSTRACT: Here, a natural extension of Sobolev spaces is defined for a Finsler
structure F and it is shown that the set of all real C∞ functions with compact
support on a forward geodesically complete Finsler manifold (M,F ), is dense in the
extended Sobolev space Hp

1 (M). As a consequence, the weak solutions u of the
Dirichlet equation ∆u = f can be approximated by C∞ functions with compact
support on M . Moreover, let W ⊂ M be a regular domain with the Cr boundary
∂W , then the set of all real functions in Cr(W ) ∩ C0(W ) is dense in Hp

k (W ), where
k ≤ r. Finally, several examples are illustrated and sharpness of the inequality k ≤ r
is shown.
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1. Introduction

A Sobolev space is a vector space of functions endowed with a norm which is a combination of Lp−norm
of the function itself and its derivatives up to a certain order. Its objectives are to deal with some basic PDE
problems on manifolds equipped with Riemannian metrics. For instance, the Yamabe problem asserts that for
any compact Riemannian manifold (M, g) of dimension n ≥ 3, there always exists a metric with constant scalar
curvature. Clearly, solutions of Yamabe elliptic equation on Riemannian manifolds are laying in the Sobolev space
H2

1 (M), see for instance [3]. Currently, the question of elliptic equations on some natural extensions of Riemannian
spaces, particularly on Finsler manifolds are extensively studied, see for instance [4, 9, 13, 14, 15]. Another natural
question is to wonder whether a function can be approximated by another one with better properties. Density
problems permit to investigate this question and find conditions under which a function on a Sobolev space can be
approximated by smooth functions with compact support.

Historically, one of the significant density theorems is proved by S. B. Myers [17] in 1954 for compact Riemannian
manifolds and then in 1959 by M. Nakai for finite-dimensional Riemannian manifolds. Next, in 1976, T. Aubin has
investigated density theorems on Riemannian manifolds, cf. [3]. Y. Ge and Z. Shen [11] defined a canonical energy
functional on Sobolev spaces and investigated the eigenvalues and eigenfunctions related to this functional, on a
compact reversible Finsler manifold. Next, Y. Yang has defined a Sobolev space on a reversible Finsler manifold
(M,F ) by using the osculating Riemannian metric and the corresponding Levi-Civita connection on the underlying
manifold M , cf., [21]. In 2011 the Myers-Nakai theorem is extended to the Finsler manifolds of class Ck, where
k ∈ N ∪ {∞}, cf., [13]. Lately, S. Ohta has studied many Sobolev inequalities in Finsler spaces, see [18].

Recently the present authors have studied some natural extensions of Riemannian results, more or less linked
to this question see for instance [7, 8, 10].

In the present work, a natural extension of Riemannian metrics is considered, and solutions to the above questions
are studied. More intuitively, a Sobolev space is defined by considering a Riemannian metric on the sphere bundle

*Corresponding author.
E-mail addresses: bidabad@aut.ac.ir, alirezashahi@aut.ac.ir

37



Behroz Bidabad et al., AUT J. Math. Com., 1(1) (2020) 37-45, DOI:10.22060/ajmc.2018.3039

SM , rather than the manifold M , and following Theorems are proved. Denote by D(M) the set of all real C∞

functions with compact support on M and let
◦
Hp

1 (M) be the closure of D(M) in Hp
1 (M), where (M,F ) is an

n−dimensional C∞ Finsler manifold, p ≥ 1 a real number, k a non-negative integer and Hp
k (M) certain Sobolev

space determined by the Finsler structure F .

Theorem 1.1. Let (M,F ) be a forward (or backward) geodesically complete Finsler manifold, then
◦
Hp

1 (M) =

Hp
1 (M).

As an application for a real function f : M −→ IR on a compact C∞, reversible Finsler manifold for which∫
M
fdvF = 0, the weak solutions u of the Dirichlet equation ∆u = f can be approximated by C∞ functions with

compact support on M .
We provide also some examples.
Let W ⊂M be an s-dimensional regular domain with Cr boundary ∂W , then (W,F ) is called a Finsler manifold

with Cr boundary.

Theorem 1.2. Let (W,F ) be a compact Finsler manifold with Cr boundary. Then Cr(W ) is dense in Hp
k (W ),

for k ≤ r.

Next, using a counterexample we show that the assumption k ≤ r, in Theorem 1.2 is sharp and can not be
omitted. As a consequence of the above density theorems, we can approximate solutions of partial differential
equations on a Sobolev space determined by F , with C∞ or Cr functions on (M,F ) and hence study some recent
problems on Finsler geometry, for instance, Ricci flow, Yamabe flow, etc.

It should be recalled that the new definition of Sobolev space in Finsler geometry introduced in the present
work, is a more general definition and has the following advantages.

• This definition of Sobolev space, reduces to that of Ge and Shen, in the case k = 1 and p = 2, provided the
underlying manifold is closed and the Finsler structure is reversible.

• In this approach, the reversibility condition on the Finslerian structure is not required.

• The present definition applies also to the geometric objects defined on TM .

• This approach makes possible to study the Sobolev norms of horizontal curvature tensor and its covariant
derivatives up to the certain order k.

• This approach permits to generalize Theorem1.1 for Hp
k (M), where k ≥ 2.

We adopt here the notations and terminologies of [2, 5], and [19] and recall that all the Finsler manifolds in the
present work are assumed to satisfy in Remark 3.1.

2. Preliminaries and terminologies

Let M be a connected differentiable manifold of dimension n. Denote the bundle of tangent vectors of M by
π1 : TM −→ M , the fiber bundle of non-zero tangent vectors of M by π : TM0 −→ M and the pulled-back
tangent bundle by π∗TM . A point of TM0 is denoted by z = (x, y), where x = πz ∈ M and y ∈ TπzM . Let
(x, U) be a local chart on M and (xi, yi) the induced local coordinates on π−1(U), where y = yi ∂

∂xi ∈ TπzM , and
i running over the range 1, 2, ..., n. A (globally defined) Finsler structure on M is a function F : TM −→ [0,∞)
with the following properties; F is C∞ on the entire slit tangent bundle TM\0; F (x, λy) = λF (x, y) ∀λ > 0; the
n × n Hessian matrix (gij) = 1

2 ([F 2]yiyj ) is positive-definite at every point of TM0. The pair (M,F ) is called a
Finsler manifold. Given the induced coordinates (xi, yi) on TM , coefficients of spray vector field are defined by

Gi = 1/4gih( ∂2F 2

∂yh∂xj
yj − ∂F 2

∂xh
). One can observe that the pair {δ/δxi, ∂/∂yi} forms a horizontal and vertical frame

for TTM , where δ
δxi := ∂

∂xi −G
j
i
∂
∂yj , Gji := ∂Gj

∂yi . Denote by SM the sphere bundle, where SM :=
⋃
x∈M

SxM and

SxM := {y ∈ TxM |F (y) = 1}. The Sasakian metric on SM is defined by

ĝ = δabw
a ⊗ wb + δαβw

n+α ⊗ wn+β , (2.1)
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where a, b = 1, .., n and α, β = 1, ..., n− 1, and {wa, wn+α} is an ordered orthonormal coframe on SM , cf., [6] The
volume element dVSM of SM with respect to the Sasakian metric ĝ is

dVSM = w1 ∧ ... ∧ w2n−1

=
√

det(gij)dx
1 ∧ ... ∧ dxn ∧ wn+1 ∧ ... ∧ w2n−1.

This volume element can be rewritten as follows,

dVSM = Ωdτ ∧ dx, (2.2)

where, Ω = det(
gij
F ), dτ =

n∑
k=1

(−1)k−1ykdy1 ∧ ... ˆdyk ∧ ... ∧ dyn and dx is the n-form dx = dx1 ∧ ... ∧ dxn, cf. [12].

We have a volume form on (M,F )

dVF = (
1

cn−1

∫
SxM

Ωdτ)dx, (2.3)

where cn−1 denotes the volume of the unit Euclidean sphere Sn−1, cf. [12].

Let σ : [a, b] −→ M a piecewise C∞ curve with the velocity dσ
dt = dσi

dt
∂
∂xi ∈ Tσ(t)(M). Its integral length is

defined by L(σ) =
∫ b
a
F (σ, dσdt )dt. For x1, x2 ∈ M denote by Γ(x1, x2) the collection of all piecewise C∞ curves

σ : [a, b] −→M with σ(a) = x1 and σ(b) = x2 and by d(x1, x2) the metric distance from x1 to x2,

d(x1, x2) = inf
Γ(x1,x2)

L(σ). (2.4)

Lemma 2.1. [5] Let (M,F) be a Finsler manifold. At any point x ∈ M , there exists a local coordinate system

(φ,U) such that the closure of U is compact, φ : U −→ IRn, φ(x) = 0 and φ maps U diffeomorphically onto an open

ball of IRn.

A Finsler manifold is said to be forward (resp. backward) geodesically complete if every geodesic γ(t), a ≤ t < b,
parameterized to have constant Finslerian speed, can be extended to a geodesic on a ≤ t <∞. (resp. −∞ < t ≤ b).
If the Finsler structure F is reversible, then d is symmetric. In this case, forward completeness is equivalent to
backward completeness. Compact Finsler manifolds at the same time are both forward and backward complete,
whether d is symmetric or not.

3. A Sobolev space on Finsler manifolds

Let (M,F ) be a C∞ Finsler manifold. For any real function u on M, we denote again u ◦ π by u. The jth
covariant derivative of u is denoted by ∇ju, where ∇ is a horizontal covariant derivative of Cartan connection, j is
a nonnegative integer, hence ∇0u = u. Let us denote the inner scalar product on SM with respect to the Sasakian
metric (2.1) by (., .) and |∇ju|2 = (∇ju,∇ju). We denote by Cpk(M) the space of smooth functions u ∈ C∞(M)
such that |∇ju| ∈ Lp(SM) for any j run over the range 0, 1, ..., k and p ≥ 1, that is

Cpk(M) = {u ∈ C∞(M) : ∀j = 0, 1, ..., k,∫
SM

[(∇ju,∇ju)]
p
2 dVSM <∞}.

Remark 3.1. It is well known that Sn−1 is diffeomorphic to the SxM , where x ∈ M . Let A be the radial

projection from SxM = {(yi) ∈ IRn : F (x, yi ∂
∂xi ) = 1} ⊂ IRn onto the unit sphere Sn−1 ⊂ IRn and (det J(A))

determinant of its Jacobian. Everywhere in this paper, we assume that there exists a positive real number R > 0

such that (detJ(A))
√

det gij ≥ R
cn−1

, where cn−1 is the volume of Sn−1. Due to the dependence of Cartan covariant

derivatives to the direction on Finsler cases we have to consider the above inequality. Note that every compact

Finsler manifold satisfies the preceding inequality, due to the compactness of SM .

Proposition 3.1. [16] Let (x,Ω) be a local coordinate chart on M and f : SM ⊂ TM0 → IR an integrable function

with support in π−1(Ω). Then we have∫
SM

f(x, y)dVSM =

∫
Ω

(

∫
Sn−1

f(x,
y

F
)
det(gij)

Fn
dσ)dx, (3.1)
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where dσ is the standard volume form on Sn−1, dx = dx1 ∧ .... ∧ dxn, y = y(x, θ) for (x, θ) ∈ Ω × Sn−1 and

θ = (θ1, ..., θn) are local coordinate on Sn−1.

Definition 3.1. The Sobolev space Hp
k (M) is the completion of Cpk(M) with respect to the norm

‖ u ‖Hpk (M)=
k∑
j=0

(

∫
SM

[(∇ju,∇ju)]
p
2 dVSM )

1
p ,

where p ≥ 1 is a real number.

Let f : M → IR be a real function, then using the volume form dVF defined by (2.3) we can consider the space
of Lp−norm as follows

Lp(M) = {f : M → IR is measurable :

∫
M

fpdVF <∞}. (3.2)

Lemma 3.1. The Finslerian Sobolev space Hp
k (M) is a subspace of Lp(M).

Proof. For all u ∈ Hp
k (M), by Definition 3.1 we have

∫
SM
|u|pdVSM < ∞. An appropriate choice of {Ωi}∞i=1,

together with Proposition 3.1 and relations (2.2) and (2.3) leads to∫
SM

|u|pdVSM =
∞∑
i=1

∫
π−1(Ωi)

|u|pdVSM

=
∞∑
i=1

∫
Ωi

∫
Sn−1

|u|p det(gij)
Fn

dσdx

=
∞∑
i=1

∫
Ωi

∫
SxM

|u|p det(gij)
Fn

(det J(A))

dVSxMdx

=
∞∑
i=1

∫
Ωi

∫
SxM

|u|p det(gij)
Fn

(det J(A))√
det gijdτdx.

By assumption, there exists R > 0 such that (det J(A))
√

det gij ≥ R
cn−1

, hence

∞∑
i=1

∫
Ωi

∫
SxM

|u|p det(gij)
Fn

(det J(A))
√

det gijdτdx

≥ R
∞∑
i=1

∫
Ωi

|u|p( 1

cn−1

∫
SxM

Ωdτ)dx

= R

∞∑
i=1

∫
Ωi

|u|pdVF

= R

∫
M

|u|pdVF .

Therefore, u ∈ Lp(M) and the proof is complete. �
The following example shows that the assumption (detJ(A))

√
det gij ≥ R

cn−1
is essential and can not be

dropped.

Example 1. Let M = IR2, hence SM ' IR2 × S1. Consider the function f : IR2 → IR defined by

f(x, y) =

{
1 0 < y < 1

0 o.w.
.

Choose a metric on M , such that the fibers S(x,y)M of SM have the radius rx = e−x
2

. Let U = IR × (0, 1) which
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leads to ∫
SM

fdVSM =

∫
U×S(x,y)M

dθdxdy =

∫
U

(

∫
S(x,y)M

dθ)dxdy

=

∫ 1

0

∫ +∞

−∞
(2πe−x

2

)dxdy <∞.

On the other hand ∫
M

fdµ =

∫ 1

0

∫ +∞

−∞
1dxdy =∞.

Therefore f /∈ L1(IR2).

Remark 3.2. Ge and Shen in [11], defined a norm of Sobolev spaces on a closed reversible Finsler manifold, for

k = 1 and p = 2 as follows

‖ u ‖
GS

= (

∫
M

u2dVF )
1
2 + (

∫
M

(F (∇u))2dVF )
1
2 , (3.3)

where (∇u)(x) is the gradient of u in x ∈ M . A similar argument as in the proof of Lemma 3.1, shows that the

definition of Sobolev space given in the present work, reduces to that of [11], for k = 1 and p = 2, on a closed

reversible Finsler manifold.

Remark 3.3. In Definition 3.1 we use an inner product on SM to define a Sobolev space and naturally it has

a structure of vector space, while the definition given in [11] is not a vector space on complete Finsler manifolds

in general. In fact, Kristály and Rudas show that on (Bn(1), F ), where Bn(1) is an n−dimensional unit ball of

IRn and F is a Funk metric, the Sobolev space defined in [11] has no more structure of a vector space, due to the

irreversibility of F , cf., [14].

Let J be a nonnegative, real-valued function, in the space of C∞ functions with compact support on IRn, denoted
by C∞0 (IRn) and having properties :
(i)J(x) = 0 if |x| ≥ 1.
(ii)
∫
IRn

J(x)dx = 1.
Consider the function Jε(x) = ε−nJ(xε ) which is nonnegative in C∞0 (IRn) and satisfies :
(i) Jε(x) = 0 if |x| ≥ ε,
(ii)

∫
IRn

Jε(x)dx = 1.
Jε is called a mollifier and the convolution Jε ∗ u(x) :=

∫
IRn

Jε(x− y)u(y)dy, defined for the function u is called a
regularization of u.

Lemma 3.2. [1] Let u be a function defined on Ω ⊂ IRn and vanishes identically outside the domain Ω :

(a) If u ∈ L1
Loc(Ω) then Jε ∗ u ∈ C∞0 (IRn).

(b) If supp(u) ⊂ Ω, then Jε ∗ u ∈ C∞0 (Ω) provided ε < dist(supp(u), ∂Ω).

(c) If u ∈ Lp(Ω) where 1 ≤ p <∞ then Jε ∗ u ∈ Lp(Ω). Moreover,

‖ Jε ∗ u ‖p≤‖ u ‖p and lim
ε→0+

‖ Jε ∗ u− u ‖p= 0

Lemma 3.3. [1] Let u ∈ Hp
k (Ω) and 1 ≤ p <∞. If Ω′ ⊂⊂ Ω ⊂ IRn, that is Ω′ ⊂ Ω and Ω′ is a compact subset of

IRn, then lim
ε→o+

Jε ∗ u = u in Hp
k (Ω′).

4. Density theorems on Finsler manifolds

In the previous section, we set necessary tools on SM which permits to use Aubin’s techniques in Finsler
geometry, cf. [3]. Let (M,F ) be a Finsler manifold and D(M) the space of C∞ functions with compact support on
M . In this section, we use Hopf-Rinow’s theorem to introduce the first density theorem on boundaryless Finsler
manifolds and investigate another density theorem for Finslerian manifolds with Cr boundary.
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4.1. Case of manifolds without boundary

Proposition 4.1. Let (M,F ) be a forward geodesically complete Finsler manifold, then any function φ ∈ Hp
1 (M)

can be approximated by functions with compact support on M .

Proof. Let φ ∈ Hp
1 (M), then by Lemma 3.1 we have φ ∈ Lp(M) and hence it can be approximated by C∞

functions. Therefore C∞(M) ∩ Hp
1 (M) is dense in Hp

1 (M). To prove Proposition 4.1 it suffices to show the
assertion for φ ∈ C∞(M) ∩Hp

1 (M). Let φ ∈ C∞(M) ∩Hp
1 (M) and fix a point x0 ∈M . By Hopf-Rinow’s theorem

for forward geodesically complete Finsler manifolds, every pair of points in M , containing x0 can be joined by a
minimizing geodesic emanating from x0. Let us consider the Finslerian distance function (2.4), and the sequence
of functions φj(x) = φ(x)f(d(x0, x)− j), where f : IR −→ IR is defined by

f(t) =

 1 t ≤ 0
1− t 0 < t < 1
0 t ≥ 1

. (4.1)

Clearly, f is a continuous and decreasing function and it is differentiable almost everywhere on IR. We should
prove, each φj(x) has a compact support. If d(x0, x) ≤ j then d(xo, x) − j ≤ 0 or f(d(xo, x) − j) = 1 hence
φj(x) = φ(x). If d(x0, x) ≥ j + 1 then d(xo, x) − j ≥ 1 or φj(x) = 0. Thus each φj has a compact support and
obviously lim

j→∞
φj(x) = φ(x). This completes the proof . �

Proposition 4.2. Let (M,F ) be a forward geodesically complete Finsler manifold, then any function φ ∈ Hp
1 (M)

can be approximated by functions with compact support in Hp
1 (M).

Proof. Let φ ∈ Hp
1 (M) ∩ C∞(M) be an arbitrary function and {φj}∞j=1 the sequence of related functions given

in the proof of Proposition 4.1. We show that ‖ φj − φ ‖Hp1 (M) tends to zero as j → ∞. Since φ is a C∞ real

function on M and φ(x) ∈ Hp
1 (M), (∇φ)(x,y) exists and bounded almost everywhere on (x, y) ∈ SM . It is well

known on forward geodesically complete Finsler manifolds, the Finslerian distance function d is C∞ out of a small
neighborhood of x0 and it is C1 in a punctured neighborhood of x0 cf. [20]. By definition of φj , |φj(x)| ≤ |φ(x)|,
where φ(x) is a C∞ function lying in Lp(SM). Therefore by the Lebesgue dominated convergence theorem φj and
φj − φ are also in Lp(SM). Recall that

‖ φj − φ ‖Hp1 (M)

=
1∑
k=0

(
∫
SM

[(∇k(φj − φ),∇k(φj − φ))]
p
2 dVSM )

1
p .

(4.2)

We show that equation (4.2) tends to zero as j tends to infinity. First, assume support of φj − φ is contained in a
local chart (x,Ω) , then by Proposition 3.1 we have∫

SM
|φj − φ|pdVSM

=
∫

Ω
(
∫
Sn−1 |φj − φ|p(x, yF )

det(gij)
Fn dσ)dx.

Consider forward metric ball B+
x0

(j) = {x ∈ Ω : d(x0, x) < j}, we have∫
SM

|φj − φ|pdVSM (4.3)

≤
∫
B+
x0

(j)

(

∫
Sn−1

|φj − φ|p(x, yF )

det(gij)

Fn
dσ)dx+

∫
Ω\B+

x0
(j)

(

∫
Sn−1

|φj − φ|p(x, yF )

det(gij)

Fn
dσ)dx.

When j tends to infinity Ω \B+
x0

(j) = ∅, therefore

∫
SM

|φj − φ|pdVSM

≤
∫
B+
x0

(j)

(

∫
Sn−1

|φj − φ|p(x, yF )

det(gij)

Fn
dσ)dx.

42



Behroz Bidabad et al., AUT J. Math. Com., 1(1) (2020) 37-45, DOI:10.22060/ajmc.2018.3039

On B+
x0

(j) we have d(x0, x) < j or φj(x) = φ(x), hence

‖ φj − φ ‖p≤ (

∫
SM

|φj − φ|pdVSM )
1
p −→ 0. (4.4)

Next if the support of φj − φ is not contained in a local chart, then similar to the proof of Lemma 3.1 by an
appropriate choice of sequence {Ωi}∞i=1 we can show that ‖ φj − φ ‖p→ 0. We prove ‖ φj − φ ‖Hp1 (M) converges
to zero. To this end, it suffices to show that ‖ ∇φj − ∇φ ‖p or ‖ ∇(φj − φ) ‖p converges to zero. By means of
Leibnitz’s formula for φj(x) = φ(x)f(d(x0, x)− j), and triangle inequality we obtain

|∇φj | ≤ |∇φ|+ |φ| sup
t∈[0,1]

|f ′(t)|. (4.5)

Again with Lebesgue dominated theorem, we have |∇φj | ∈ Lp(SM) and hence φj(x) ∈ Hp
1 (M). Repeating above

steps for |∇(φj − φ)| instead of |(φj − φ)| leads to

‖ ∇φj −∇φ ‖p
=‖ ∇(φj − φ) ‖p≤ (

∫
SM
|∇(φj − φ)|pdVSM )

1
p −→ 0.

(4.6)

Therefore, by the relations (4.4) and (4.6), we obtain

‖ φj − φ ‖Hp1 (M)=‖ φj − φ ‖p + ‖ ∇(φj − φ) ‖p−→ 0.

Thus φj converges to φ in Hp
1 (M).

�
Proof of Theorem 1.1 is an application of Propositions 4.1 and 4.2, similar to that in Riemannian geometry.

Proof of Theorem 1.1. To prove Theorem 1.1, by means of Propositions 4.1 and 4.2, it remains to approximate
each φj by functions in D(M). Let j be a fixed index for which φj has a compact support. Let K be the compact
support of φj and {Vi}mi=1 a finite covering of K such that by means of Lemma 2.1, for fix index i, Vi is homeomorphic
to the open unit ball B of IRn. Let (Vi, ψi) be the corresponding chart, we complete the proof by means of partition
of unity. More intuitively, let {αi} be a partition of unity subordinate to the covering {Vi}mi=1. For approximating
φj by C∞ functions with compact support in Hp

1 (M), it remains to approximate each αiφj for 1 ≤ i ≤ m. For fixed
i, ψi is a homeomorphic map between Vi and the unit ball B. Consider the functions (αiφj) ◦ψ−1

i which have their
support in B. Let us denote u := (αiφj) ◦ ψ−1

i to be consistent with notations of Lemmas 3.2 and 3.3. Consider
the convolution Jε ∗ u with lim

ε→o+
Jε ∗ u = u. Let h′ε := Jε ∗ u ∈ C∞(IRn), then h′ε has a compact support, that is

h′ε ∈ D(B). We approximate u by hk := h′ε
k

. More precisely

lim
k→∞

hk = lim
k→∞

h′ε
k

= lim
ε→o+

h′ε = u = (αiφj) ◦ ψ−1
i .

Moreover, hk is C∞. Hence hk converges to u in Hp
1 (B). Now hk◦ψi converges to αiφj in Hp

1 (Vi) and hk◦ψi ∈ D(Vi).
Thus we have approximated each αiφj by functions in D(Vi). This completes the proof. �

Similar proof can be repeated for backward geodesically complete spaces.

Example 2. Let (M,F ) be a Compact Finsler manifold. It is forward geodesically complete, hence by Theorem

1.1, D(M) is dense in Hp
1 (M).

Corollary 4.1. Let (M,F ) be a compact, connected, C∞, reversible Finsler manifold and f : M −→ IR a real

function for which
∫
M
fdvF = 0, then the weak solution u of the Dirichlet equation ∆u = f can be approximated

by C∞ functions with compact support on M .

Proof. Theorem 1.1 can be used to approximate weak solutions of Dirichlet problem on Finsler manifolds. Indeed
in complete Finsler manifolds with certain conditions the Dirichlet problem ∆u = f has a unique solution which lies
in Sobolev space H2

1 (M), for similar proof one can refer to [3] and [21]. Hence by Theorem 1.1 we can approximate
these weak solutions by C∞ functions with compact support on M . �
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4.2. Case of manifolds with Cr boundary

In proof of Theorem 1.2 we use the technic applied in proof of the following theorem on half-spaces on IRn.

Theorem 4.1. [3] C∞(E) is dense in Hp
k (E), where E is a half-space E = {x ∈ IRn : x1 < 0} and C∞(E) is the

set of functions that are restriction to E of C∞ functions on IRn.

Proof of Theorem 1.2. Let φ be a real C∞ function on the Sobolev space Hp
k (W ), that is, φ ∈ C∞(W )∩Hp

k (W ).
Here we approximate φ by the functions in Cr(W ). Since W is compact, we can consider (Vi, ψi), i = 1, · · · , N as a
finite Cr atlas on W. Each Vi depending on Vi ⊂W or Vi has intersection with ∂W, is homeomorphic either to the
unit ball of IRn or a half-ball D = B∩E, respectively, where E = {x ∈ IRn : x1 < 0}. Let {αi} be a C∞ partition of
unity subordinate to the finite covering {Vi}mi=1 of W . By properties of partition of unity, it remains to show that
each αiφ, supported in Vi, can be approximated by functions in Cr(Vi). Each Vi is homeomorphic either to the unit
ball B or a half-ball D. First, let Vi be homeomorphic to B, then by the relation Vi ⊂ W we have αiφ ∈ C∞(Vi),
therefore αiφ ∈ Cr(Vi).
Now let Vi be homeomorphic to D = B ∩E and ψi a homeomorphism between Vi and D. Consider the sequence of
functions hm as restricted to D of ((αiφ) ◦ψ−1

i )(x1− 1
m , x2, x3, · · · , xs). Let φ ∈ Hp

k (W )∩C∞(W ), by appropriate

choice of {Vi} and {αi}, the restriction of ((αiφ) ◦ ψ−1
i )(x1 − 1

m , x2, x3, · · · , xs) to D and its derivative up to order

r converge to ((αiφ) ◦ψ−1
i ) in Hp

k (D), where D has the Euclidean metric. Therefore, by Proposition 3.1, we obtain

(

∫
SM

|∇t(hm ◦ ψi − αiφ)|pdVSM ) =
∞∑
i=1

∫
Vi

(

∫
Sn−1

|∇t(hm ◦ ψi − αiφ)|p
(x, y

F (x,y)
)

det(gij(x, y))

F (x, y)n
dσ)dx→ 0,

where 0 ≤ t ≤ k is an integer. Hence hm ◦ψi −→ αiφ in Hp
k (Vi), k ≤ r, hm ◦ψi ∈ Cr(W ) and proof is complete. �

In the following example, we show that the assumption k ≤ r in Theorem 1.2 is sharp and can not be omitted.

Example 3. Let W = [−1, 1] × [0, 1] be a manifold with boundary of class C0. Denote the points of W by

x = (x1, x2) and the points of Tx(W ) by y = (y1, y2). Let F (x, y) =
√
gx(y, y) be a Finsler structure defined by

g = gij dx
i ⊗ dxj = (dx1)2 + (dx2)2 on W . Define, u ∈ Hp

1 (W ) by u : W → IR and

u(x1, x2) =

{
1 x1 > 0

0 x1 ≤ 0
. (4.7)

We claim that for sufficiently small ε, there is no φ ∈ C1(W ) such that ‖ u − φ ‖Hp1 (W )< ε. Assume for a while

that our assumption is not true and the function φ exists. Let S = {(x1, x2) : −1 ≤ x1 ≤ 0 , 0 ≤ x2 ≤ 1} and

K = {(x1, x2) : 0 < x1 ≤ 1 , 0 < x2 ≤ 1}, then W = S ∪ K. On S, u(x1, x2) = 0, hence ‖ 0 − φ ‖Hp1 (S)< ε or

‖ φ ‖1 + ‖ ∇φ ‖1< ε, therefore ‖ φ ‖1< ε. On K, u(x1, x2) = 1 thus ‖ 1 − φ ‖1< ε or ‖ φ ‖1> 1 − ε. Put

ψ(x1) =
∫ 1

0
φ(x1, x2)dx2, then there exist the real numbers a and b with −1 ≤ a ≤ 0 and 0 < b ≤ 1 such that

ψ(a) < ε and ψ(b) > 1− ε. Thus

1− 2ε < ψ(b)− ψ(a) =

∫ b

a

ψ′(x1)dx1

≤
∫
W

|Dx1φ(x1, x2)|dx1dx2

≤
( ∫

W

1p
′
dx1dx2

) 1
p′
( ∫

W

|Dx1φ(x1, x2)|pdx1dx2
) 1
p

= 2
1
p′ ‖ Dx1φ(x1, x2) ‖Lp(W )< 2

1
p′ ε,

where 1
p + 1

p′ = 1. Hence 1 < (2+2
1
p′ )ε which is not possible for small ε. This contradict our provisional assumption

and prove the statement.

For some other Sobolev inequalities in Finsler geometry one can refer to [18].
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