

AUT Journal of Mathematics and Computing

AUT J. Math. Com., 1(1) (2020) 17-25 DOI: 10.22060/ajmc.2018.3040

The bimodal standard normal density and kurtosis

Javad Behboodian^a, Maryam Sharafi^a, Zahra Sajjadnia^{*a}, Mazyar Zarepour^b

^aDepartments of Statistics, Shiraz University, Shiraz, Iran

^bDepartment of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran

ABSTRACT: In this article, first a density by the name "The bimodal standard normal density" is introduced and denoted by $\mathbf{b}\phi(z)$. Then, a definition for the kurtosis of bimodal densities relative to $\mathbf{b}\phi(z)$ is presented. Finally, to illustrate the introduced kurtosis, a few examples are provided and a real data set is studied, too.

Review History:

Received:15 March 2018 Revised:08 July 2018 Accepted:21 July 2018 Available Online:1 February 2020

Keywords:

Normal density Mixed normal density Bimodal standard normal density Kurtosis of a bimodal density

1. Introduction

It is well-known that the kurtosis for a unimodal density f(x), of a random variable X, is $\frac{\mu_4}{\sigma^4}$, where $\mu = E(X), \sigma^2 = E(X - \mu)^2$, and $\mu_4 = E(X - \mu)^4$. This parameter was introduced by K. Pearson in a 1905 Biometrika paper, only for unimodal densities. It is supposed to measure the peakedness or flatness of a density relative to the standard normal density $\phi(z)$. The primary aim of this article is to suggest a kurtosis measure for a continuous bimodal density relative to a bimodal normal density called "the bimodal standard normal density" denoted by $\mathbf{b}\phi(z)$. The article is organized in the following manner. In Section 2, we consider a bimodal symmetric normal density. The bimodal standard normal density $\mathbf{b}\phi(z)$ is introduced in Section 3. In Section 4, the modes of $\mathbf{b}\phi(z)$ are found. Section 5 is devoted to a definition of kurtosis. In addition, a few examples are considered.

2. A bimodal symmetric normal density

Consider the following normal densities, with d > 0,

$$g(x \pm d) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x \pm d)^2},$$
(2.1)

and the symmetric mixed normal density

$$m(x;d) = \frac{1}{2}g(x+d) + \frac{1}{2}g(x-d).$$
(2.2)

*Corresponding author.

 $E-mail\ addresses:\ behboodian@susc.ac.ir,\ mshara@shirazu.ac.ir,\ sajjadnia@shirazu.ac.ir,\ mazyar_z@hotmail.com$

Figure 1: Graphs of m(x; d) for d = 0.5, 1, 1.5, 2.

Theorem 2.1. Density (2.2) is unimodal if $d \le 1$ and bimodal if d > 1.

Proof: By taking the first and second derivatives from (2.1), we have

$$g'(x \pm d) = -(x \pm d)g(x \pm d),,$$
(2.3)

$$g''(x \pm d) = [(x \pm d)^2 - 1]g(x \pm d).$$
(2.4)

Now, using (2.2), (2.3) and (2.9), we obtain

$$m'(x;d) = \frac{1}{2}[-(x+d)g(x+d)] + \frac{1}{2}[-(x-d)g(x-d)],$$

$$m''(x;d) = \frac{1}{2}[(x+d)^2 - 1]g(x+d) + \frac{1}{2}[(x-d)^2 - 1]g(x-d).$$

The only root of m'(x; d) = 0 is x = 0 and $m''(0, d) = g(d)(d^2 - 1) < 0$ when d < 1. If d=1, then m''(0, 1) = 0, but $m^{(4)}(0, 1) < 0$. Hence, m(x; d) is unimodal with mode (abscissa of maximum point) zero, when $d \le 1$. Now, suppose that d > 1. Since m''(0, d) > 0, zero, minimizes the symmetric continuous function m(x; d), satisfying

 $\lim_{x\to\pm\infty} m(x;d) = 0$. Therefore, m(x;d) is bimodal with two modes and one demode (abscissa of minimum point) zero (see Figure 1).

3. The standard bimodal normal density

In this section, we try to standardized m(x;d), d > 1, given in Section 2. Let $X \sim m(x;d)$, d > 1. It is clear that E(X) = 0 and $var(X) = E(X^2) = 1 + d^2 = \sigma^2$. The density of the standard random variable $Y = (X - 0)/\sigma$ is

$$f(y;d) = \frac{\sigma}{2}g(\sigma y + d) + \frac{\sigma}{2}g(\sigma y - d),$$

where $g(y \pm d)$ is given by (2.10). We denote the modes of f(y;d) by $\pm M$, (M > 0) and demode by m = 0. For the standard normal density $\phi(0) = 1/\sqrt{2\pi} = 0.3990$. Now, we find d such that we also have $f(M;d) = 1/\sqrt{2\pi}$. In the next section, by using Newton method, which is written by the Maple program, we find d = 1.7260, $\sigma = \sqrt{(1+d^2)} = 1.9947$ and M = 0.8607. Thus, we obtain the bimodal standard normal density and we denote it by

$$\mathbf{b}\phi(z) = \frac{\sigma}{2\sqrt{2\pi}} e^{-(\sigma z + d)^2/2} + \frac{\sigma}{2\sqrt{2\pi}} e^{-(\sigma z - d)^2/2}.$$

Figure 2: The graphs of $\phi(z)$ and $\mathbf{b}\phi(z)$.

Figure 2 shows the graph of $\mathbf{b}\boldsymbol{\phi}(z)$ versus the graph of $\boldsymbol{\phi}(z)$.

4. Computation of the modes of $b\phi(z)$

In this section, we find d and M for $\mathbf{b}\phi(z)$, by a system of two equations with two unknowns. In summary, if $Z \sim \mathbf{b}\phi(z)$, Table 1 contains the numerical features of $\mathbf{b}\phi(z)$. The nonzero roots of derivative of $\mathbf{b}\phi(z)$ are the two modes $\pm M$. Since $\mathbf{b}\phi(\pm M) = 1/\sqrt{2\pi}$, by some simple algebra, we obtain the following equation

$$e^{-\frac{1}{2}(\sigma M+d)^2} + e^{-\frac{1}{2}(\sigma M-d)^2} = 2/\sigma,$$
(4.1)

where $\sigma = \sqrt{1+d^2}$ and d > 1. On the other hand, from the derivative of $\mathbf{b}\boldsymbol{\phi}(z)$ at $\pm M$, we have

$$\frac{d + \sigma M}{d - \sigma M} = e^{2d\sigma M}.$$
(4.2)

Solving (4.1) and (4.2) by Maple Program, we obtain d = 1.7260, M = 0.8607 (after 20 iterations), $\mathbf{b}\phi(\pm M) = 1/\sqrt{2\pi} = 0.3990$ and $\mathbf{b}\phi(0) = 0.1794$.

Table 1: Numerical features of $\mathbf{b}\boldsymbol{\phi}(z)$.

d=1.7260	mode factor
$\sigma = 1.9947$	scale
$M = \pm 0.8607$	modes
m = 0	demode
$\mathbf{b}\phi(\pm M) = 1/\sqrt{2\pi} = 0.3990$	ordinate of modes
$\mathbf{b}\phi(0) = 0.1794$	ordinate of demode
E(Z) = 0	expectation
var(Z) = 1	variance
$\kappa = 0.2892$	kurtosis for $\mathbf{b}\boldsymbol{\phi}(z)$

Figure 3: Graph of $f_1(x; 1.5)$ and $\mathbf{b}\boldsymbol{\phi}(z)$.

5. A definition for kurtosis of bimodal densities

Let f(x) be a bimodal continuous density, for which f'(x) and f''(x) exist, with modes $M_1 < M_2$ and demode (abscissa of the minimum point of f(x)) m.

Definition of kurtosis:

The left kurtosis of f(x) is defined by $L = [f(M_1) + f(m)]/2$ and the right by $R = [f(M_2) + f(m)]/2$. This is a plausible definition, even for unimodal densities. Because of the fact that for $M_1 = M_2 = m = M$, f(x) becomes close to a unimodal density and L = R = [f(M) + f(m)]/2 = f(m). For $\mathbf{b}\phi(z)$, which is symmetric, we obtain (see Table 1)

$$L = R = \frac{\mathbf{b}\phi(M) + \mathbf{b}\phi(0)}{2} = \frac{0.3990 + 0.1794}{2} = 0.2892$$

Therefore, the kurtosis for $\mathbf{b}\boldsymbol{\phi}(z)$ is the constant $\boldsymbol{\kappa} = 0.2892$.

If for a bimodal density f(x), $L < \kappa = 0.2892 (> \kappa = 0.2892)$, the left side is flat (peaked) relative to $\mathbf{b}\boldsymbol{\phi}(z)$. Similarly, if $R < \kappa = 0.2892 (> \kappa = 0.2892)$, the right side is flat (peaked) relative to $\mathbf{b}\boldsymbol{\phi}(z)$. Now, we look at a few examples.

Example 1: We consider a symmetric mixture of two Cauchy densities

$$f_1(x;\alpha) = \frac{1}{2} \frac{1}{\pi (1 + (x + \alpha)^2)} + \frac{1}{2} \frac{1}{\pi (1 + (x - \alpha)^2)}$$

This density is bimodal if $\alpha = 1.5$ and the features of the density are given in Table 2.

Table 2: Numerical features of a symmetric mixture of two Cauchy densities.

M_1	M_2	m
-1.4691	1.4691	0
$f_1(M_1; 1.5)$	$f_1(M_2; 1.5)$	$f_1(m; 1.5)$
0.1752	0.1752	0.0979

Since $L = R = 0.2365 < \kappa = 0.2892$, therefore, $f_1(x; 1.5)$ is flat relative to $\mathbf{b}\phi(z)$.(See Figure 3)

Figure 4: Graph of $f_2(x; 2.5)$ and $\mathbf{b}\boldsymbol{\phi}(z)$.

Example 2: In this example, we consider a non-symmetric mixture of two Cauchy densities

$$f_2(x;\alpha) = \frac{5}{8} \frac{1}{\pi(1+(x+\alpha)^2)} + \frac{3}{8} \frac{1}{\pi(1+(x-\alpha)^2)}.$$

 $f_2(x; 2.5)$ is bimodal with some features given in Table 3.

For this density L = 0.1232 and R = 0.0849. Since $L < \kappa = 0.2892$ and $R < \kappa = 0.2892$, hence left and right

M_1	M_2	m
-2.4955	2.4875	0.2606
$f_2(M_1; 2.5)$	$f_2(M_2; 2.5)$	$f_2(m; 2.5)$
0.2035	0.1270	0.0429

Table 3: Numerical features of a non-symmetric mixture of two Cauchy densities.

kurtosis are flat relative to $\mathbf{b}\boldsymbol{\phi}(z)$ (see Figure 4). **Example 3**: This is about Alpha-Skew-normal density, given by Elal Olivero (2010),

$$f_3(x;\alpha) = \frac{1 + (1 - \alpha x)^2}{2 + \alpha^2} \phi(x), \quad x \in \mathbb{R}, \quad \alpha \in \mathbb{R}.$$

For $\alpha = 3$, this density is bimodal with features in Table 4.

For this density L = 0.2128 and R = 0.0952. Since $L < \kappa = 0.2892$ and $R < \kappa = 0.2892$, therefore, left and right kurtosis are flat relative to $\mathbf{b}\boldsymbol{\phi}(z)$. (See Figure. 5)

Table 4: Numerical features of an Alpha-Skew-Normal density with $\alpha=3$.

M_1	M_2	m
-1.2263	1.5399	0.3530
$f_3(M_1;3)$	$f_3(M_2;3)$	$f_3(m;3)$
0.3914	0.1562	0.0341

Figure 5: Graph of $f_3(x;3)$ and $\mathbf{b}\boldsymbol{\phi}(z)$.

Example 4: This is about location-scale Generalized Alpha-Skew-normal density, given by Sharafi et al. (2017),

$$f_4(x;\boldsymbol{\theta}) = \frac{(1-\alpha(\frac{x-\mu}{\sigma}))^2 + 1}{\sigma C(\alpha,\lambda)} \phi(\frac{x-\mu}{\sigma}) \Phi(\lambda \frac{x-\mu}{\sigma}) \quad \alpha, \lambda, \mu \in \mathbb{R}, \sigma > 0,$$
(5.1)

where $\boldsymbol{\theta} = (\mu, \sigma, \alpha, \lambda)^T$, $C(\alpha, \lambda) = 1 - \alpha b \delta + \frac{\alpha^2}{2}$, $b = \sqrt{\frac{2}{\pi}}$ and $\delta = \frac{\lambda}{\sqrt{1+\lambda^2}}$. Now, we study this density for the following situations.

a: For $\boldsymbol{\theta} = \boldsymbol{\theta}_0 = (0, 0.8, 2, 0.01)$, this density is bimodal with features in Table 5. For this density L = 0.2906 and R = 0.1052. Since $L > \boldsymbol{\kappa} = 0.2892$ and $R < \boldsymbol{\kappa} = 0.2892$, therefore, left kurtosis is

Table 5: Numerical features of a location-scale Generalized Alpha-Skew-Normal density with $\theta_0 = (0, 0.8, 2, 0.01)$.

M_1	M_2	m
-0.8955	1.2443	0.4575
$f_4(M_1; \boldsymbol{\theta}_0)$	$f_4(M_2; \boldsymbol{\theta}_0)$	$f_4(m; \boldsymbol{\theta}_0)$
0.5085	0.1376	0.0727

peaked and right kurtosis is flat relative to $\mathbf{b}\boldsymbol{\phi}(z)$. (see Figure 6)

b: For $\theta = \theta_1 = (0, 0.25, 2, 1)$, this density is bimodal with features in Table 6. For this density L = 0.8406 and

Table 6: Numerical features of a location-scale Generalized Alpha-Skew-Normal density with $\theta_1 = (0, 0.25, 2, 1)$.

M_1	M_2	m
-0.1211	0.4028	0.1246
$f_4(M_1; \boldsymbol{\theta}_1)$	$f_4(M_2; \boldsymbol{\theta}_1)$	$f_4(m; \boldsymbol{\theta}_1)$
1.1611	1.3087	0.5202

R = 0.9145. Since $L > \kappa = 0.2892$ and $R > \kappa = 0.2892$, therefore, left and right kurtosis are peaked relative to $\mathbf{b}\phi(z)$. (See Figure 7)

Figure 6: Graph of $f_4(x; \boldsymbol{\theta}_0)$ and $\mathbf{b}\boldsymbol{\phi}(z)$.

Figure 7: Graph of $f_4(x; \boldsymbol{\theta}_1)$ and $\mathbf{b}\boldsymbol{\phi}(z)$.

Histogram of x

Figure 8: Histogram and fitted density of the real data and the density of $\mathbf{b}\boldsymbol{\phi}(z)$.

6. Application

To illustrate the application of kurtosis criteria for bimodal densities that have been introduced in this paper, we use a real data set. The set of data is the variable N-Cream available in the database Creaminess of cream cheese, which was studied by Arrue et al. (2015).

Arrue et al. (2015) introduced an extended skew-normal-Cauchy distribution with parameter $\theta = (\mu, \sigma, \alpha, \beta)$ (ESNC(θ)). One of the features of ESNC is uni-bimodality, which is controlled by parameter α . When $\alpha > 1$, the density is bimodal and is unimodal, if $\alpha < 1$.

Arrue et al. (2015) showed that $\text{ESNC}(\hat{\theta})$ with $\hat{\theta} = (6.717, 1.781, 1.8631, 1.062)$ is better fitted on the data set. Since $\hat{\alpha} = 1.86 > 1$, the data are bimodal.

To calculate the left and right kurtosis values of the data, first, the data is centered by subtracting the $\hat{\mu} = 6.717$. Then by some calculation, we obtain L = 0.1394275 and R = 0.1986749. Since L and R are smaller than $\kappa = 0.2892$, therefore, left and right kurtosis of the data are flat relative to $\mathbf{b}\boldsymbol{\phi}(z)$. Figure 8 indicates this conclusion.

References

- J. Arrue, H. W. Gomez, H. S. Salinas, H. Bolfarine, A new class of Skew-Normal-Cauchy distribution, SORT-Statistics and Operations Research Transactions, 39(1), (2015) 35-50.
- [2] D. Elal-Olivero, Alpha-skew-normal distribution, Proyectiones Journal of Mathematics, 29(3) (2010), 224-240.
- [3] K. Pearson, Das Fehlergesetz und seine Verallgemeinerungen Durch Fechner und Pearson, A Rejoinder. Biometrika, 4, (1905) 169-212.
- [4] M. Sharafi, Z. Sajjadnia, J. Behboodian, A new generalization of alpha-skew-normal distribution, Communication in Statistics, Theory and Method, 46, (2017), 6098–6111.
- [5] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Spring Verlag, New York, 1991.

Please cite this article using:

Javad Behboodian, Maryam Sharafi, Zahra Sajjadnia^{*}, Mazyar Zarepour, The bimodal standard normal density and kurtosis, AUT J. Math. Com., 1(1) (2020) 17-25 DOI: 10.22060/ajmc.2018.3040

