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The bimodal standard normal density and kurtosis
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ABSTRACT: In this article, first a density by the name ”The bimodal standard
normal density” is introduced and denoted by bφφφ(z). Then, a definition for the
kurtosis of bimodal densities relative to bφφφ(z) is presented. Finally, to illustrate the
introduced kurtosis, a few examples are provided and a real data set is studied, too.
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1. Introduction

It is well-known that the kurtosis for a unimodal density f(x), of a random variable X, is µ4

σ4 , where µ =
E(X), σ2 = E(X − µ)2, and µ4 = E(X − µ)4. This parameter was introduced by K. Pearson in a 1905 Biometrika
paper, only for unimodal densities. It is supposed to measure the peakedness or flatness of a density relative to the
standard normal density φ(z). The primary aim of this article is to suggest a kurtosis measure for a continuous
bimodal density relative to a bimodal normal density called ”the bimodal standard normal density” denoted by
bφφφ(z). The article is organized in the following manner. In Section 2, we consider a bimodal symmetric normal
density. The bimodal standard normal density bφφφ(z) is introduced in Section 3. In Section 4, the modes of bφφφ(z)
are found. Section 5 is devoted to a definition of kurtosis. In addition, a few examples are considered.

2. A bimodal symmetric normal density

Consider the following normal densities, with d > 0,

g(x± d) =
1√
2π
e−

1
2 (x±d)2 , (2.1)

and the symmetric mixed normal density

m(x; d) =
1

2
g(x+ d) +

1

2
g(x− d). (2.2)
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Figure 1: Graphs of m(x; d) for d = 0.5, 1, 1.5, 2.

Theorem 2.1. Density (2.2) is unimodal if d ≤ 1 and bimodal if d > 1.

Proof: By taking the first and second derivatives from (2.1), we have

g′(x± d) = −(x± d)g(x± d), , (2.3)

g′′(x± d) = [(x± d)2 − 1]g(x± d). (2.4)

Now, using (2.2), (2.3) and (2.9), we obtain

m′(x; d) =
1

2
[−(x+ d)g(x+ d)] +

1

2
[−(x− d)g(x− d)],

m′′(x; d) =
1

2
[(x+ d)2 − 1]g(x+ d) +

1

2
[(x− d)2 − 1]g(x− d).

The only root of m′(x; d) = 0 is x = 0 and m′′(0, d) = g(d)(d2 − 1) < 0 when d < 1. If d=1, then m′′(0, 1) = 0, but
m(4)(0, 1) < 0. Hence, m(x; d) is unimodal with mode (abscissa of maximum point) zero, when d ≤ 1.
Now, suppose that d > 1. Since m′′(0, d) > 0, zero, minimizes the symmetric continuous function m(x; d), satisfying
limx→±∞m(x; d) = 0. Therefore, m(x; d) is bimodal with two modes and one demode (abscissa of minimum point)
zero (see Figure 1).

3. The standard bimodal normal density

In this section, we try to standardized m(x; d), d > 1, given in Section 2. Let X ∼ m(x; d), d > 1. It is clear
that E(X) = 0 and var(X) = E(X2) = 1 + d2 = σ2. The density of the standard random variable Y = (X − 0)/σ
is

f(y; d) =
σ

2
g(σy + d) +

σ

2
g(σy − d),

where g(y ± d) is given by (2.10). We denote the modes of f(y; d) by ±M , (M > 0) and demode by m = 0.
For the standard normal density φ(0) = 1/

√
2π = 0.3990. Now, we find d such that we also have f(M ; d) = 1/

√
2π.

In the next section, by using Newton method, which is written by the Maple program, we find d = 1.7260,
σ =

√
(1 + d2) = 1.9947 and M = 0.8607. Thus, we obtain the bimodal standard normal density and we denote it

by

bφφφ(z) =
σ

2
√

2π
e−(σz+d)2/2 +

σ

2
√

2π
e−(σz−d)2/2.

18



Javad Behboodian et al., AUT J. Math. Com., 1(1) (2020) 17-25, DOI:10.22060/ajmc.2018.3040

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

z

bφ(z)
φ(z)

Figure 2: The graphs of φ(z) and bφφφ(z).

Figure 2 shows the graph of bφφφ(z) versus the graph of φ(z).

4. Computation of the modes of bφφφ(z)

In this section, we find d and M for bφφφ(z), by a system of two equations with two unknowns.
In summary, if Z ∼ bφφφ(z), Table 1 contains the numerical features of bφφφ(z).
The nonzero roots of derivative of bφφφ(z) are the two modes ±M . Since bφφφ(±M) = 1/

√
2π, by some simple algebra,

we obtain the following equation

e−
1
2 (σM+d)2 + e−

1
2 (σM−d)2 = 2/σ, (4.1)

where σ =
√

1 + d2 and d > 1. On the other hand, from the derivative of bφφφ(z) at ±M , we have

d+ σM

d− σM
= e2dσM . (4.2)

Solving (4.1) and (4.2) by Maple Program, we obtain d = 1.7260, M = 0.8607 (after 20 iterations), bφφφ(±M) =
1/
√

2π = 0.3990 and bφφφ(0) = 0.1794.

Table 1: Numerical features of bφφφ(z).

d=1.7260 mode factor
σ = 1.9947 scale
M = ±0.8607 modes
m = 0 demode

bφφφ(±M) = 1/
√

2π = 0.3990 ordinate of modes
bφφφ(0) = 0.1794 ordinate of demode
E(Z) = 0 expectation
var(Z) = 1 variance
κκκ = 0.2892 kurtosis for bφφφ(z)
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Figure 3: Graph of f1(x; 1.5) and bφφφ(z).

5. A definition for kurtosis of bimodal densities

Let f(x) be a bimodal continuous density, for which f ′(x) and f ′′(x) exist, with modes M1 < M2 and demode
(abscissa of the minimum point of f(x)) m.

Definition of kurtosis:
The left kurtosis of f(x) is defined by L = [f(M1) + f(m)]/2 and the right by R = [f(M2) + f(m)]/2.
This is a plausible definition, even for unimodal densities. Because of the fact that for M1 = M2 = m = M , f(x)
becomes close to a unimodal density and L = R = [f(M) + f(m)]/2 = f(m).
For bφφφ(z), which is symmetric, we obtain (see Table 1)

L = R =
bφφφ(M) + bφφφ(0)

2
=

0.3990 + 0.1794

2
= 0.2892.

Therefore, the kurtosis for bφφφ(z) is the constant κκκ = 0.2892.
If for a bimodal density f(x), L < κκκ = 0.2892(> κκκ = 0.2892), the left side is flat (peaked) relative to bφφφ(z).
Similarly,if R < κκκ = 0.2892(> κκκ = 0.2892), the right side is flat (peaked) relative to bφφφ(z). Now, we look at a few
examples.

Example 1: We consider a symmetric mixture of two Cauchy densities

f1(x;α) =
1

2

1

π(1 + (x+ α)2)
+

1

2

1

π(1 + (x− α)2)
.

This density is bimodal if α = 1.5 and the features of the density are given in Table 2.

Table 2: Numerical features of a symmetric mixture of two Cauchy densities.

M1 M2 m
-1.4691 1.4691 0

f1(M1; 1.5) f1(M2; 1.5) f1(m; 1.5)
0.1752 0.1752 0.0979

Since L = R = 0.2365 < κκκ = 0.2892, therefore, f1(x; 1.5) is flat relative to bφφφ(z).(See Figure 3)
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Figure 4: Graph of f2(x; 2.5) and bφφφ(z).

Example 2: In this example, we consider a non-symmetric mixture of two Cauchy densities

f2(x;α) =
5

8

1

π(1 + (x+ α)2)
+

3

8

1

π(1 + (x− α)2)
.

f2(x; 2.5) is bimodal with some features given in Table 3.
For this density L = 0.1232 and R = 0.0849. Since L < κκκ = 0.2892 and R < κκκ = 0.2892, hence left and right

Table 3: Numerical features of a non-symmetric mixture of two Cauchy densities.

M1 M2 m
-2.4955 2.4875 0.2606

f2(M1; 2.5) f2(M2; 2.5) f2(m; 2.5)
0.2035 0.1270 0.0429

kurtosis are flat relative to bφφφ(z) (see Figure 4). Example 3: This is about Alpha-Skew-normal density, given by
Elal Olivero (2010),

f3(x;α) =
1 + (1− αx)2

2 + α2
φ(x), x ∈ R, α ∈ R.

For α = 3, this density is bimodal with features in Table 4.
For this density L = 0.2128 and R = 0.0952. Since L < κκκ = 0.2892 and R < κκκ = 0.2892, therefore, left and right
kurtosis are flat relative to bφφφ(z). (See Figure. 5)

Table 4: Numerical features of an Alpha-Skew-Normal density with α = 3 .

M1 M2 m
-1.2263 1.5399 0.3530
f3(M1; 3) f3(M2; 3) f3(m; 3)

0.3914 0.1562 0.0341
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Figure 5: Graph of f3(x; 3) and bφφφ(z).

Example 4: This is about location-scale Generalized Alpha-Skew-normal density, given by Sharafi et al. (2017),

f4(x;θθθ) =
(1−α( x−µσ ))2+1

σC(α,λ) φ(x−µσ )Φ(λx−µσ ) α, λ, µ ∈ R, σ > 0, (5.1)

where θθθ = (µ, σ, α, λ)T , C(α, λ) = 1 − αbδ + α2

2 , b =
√

2
π and δ = λ√

1+λ2
. Now, we study this density for the

following situations.

a: For θθθ = θθθ0 = (0, 0.8, 2, 0.01), this density is bimodal with features in Table 5.
For this density L = 0.2906 and R = 0.1052. Since L > κκκ = 0.2892 and R < κκκ = 0.2892, therefore, left kurtosis is

Table 5: Numerical features of a location-scale Generalized Alpha-Skew-Normal density with θθθ0 = (0, 0.8, 2, 0.01).

M1 M2 m
-0.8955 1.2443 0.4575

f4(M1;θθθ0) f4(M2;θθθ0) f4(m;θθθ0)
0.5085 0.1376 0.0727

peaked and right kurtosis is flat relative to bφφφ(z). (see Figure 6)

b: For θθθ = θθθ1 = (0, 0.25, 2, 1), this density is bimodal with features in Table 6. For this density L = 0.8406 and

Table 6: Numerical features of a location-scale Generalized Alpha-Skew-Normal density with θθθ1 = (0, 0.25, 2, 1).

M1 M2 m
-0.1211 0.4028 0.1246

f4(M1;θθθ1) f4(M2;θθθ1) f4(m;θθθ1)
1.1611 1.3087 0.5202

R = 0.9145. Since L > κκκ = 0.2892 and R > κκκ = 0.2892, therefore, left and right kurtosis are peaked relative to
bφφφ(z). (See Figure 7)
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Figure 6: Graph of f4(x;θθθ0) and bφφφ(z).
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Figure 7: Graph of f4(x;θθθ1) and bφφφ(z).
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Figure 8: Histogram and fitted density of the real data and the density of bφφφ(z).

6. Application

To illustrate the application of kurtosis criteria for bimodal densities that have been introduced in this paper,
we use a real data set. The set of data is the variable N-Cream available in the database Creaminess of cream
cheese, which was studied by Arrue et al. (2015).
Arrue et al. (2015) introduced an extended skew-normal-Cauchy distribution with parameter θ = (µ, σ, α, β)
(ESNC(θ)). One of the features of ESNC is uni-bimodality, which is controlled by parameter α. When α > 1, the
density is bimodal and is unimodal, if α < 1.
Arrue et al. (2015) showed that ESNC(θ̂) with θ̂ = (6.717, 1.781, 1.8631, 1.062) is better fitted on the data set.
Since α̂ = 1.86 > 1, the data are bimodal.
To calculate the left and right kurtosis values of the data, first, the data is centered by subtracting the µ̂ = 6.717.
Then by some calculation, we obtain L = 0.1394275 and R = 0.1986749. Since L and R are smaller than κκκ = 0.2892,
therefore, left and right kurtosis of the data are flat relative to bφφφ(z). Figure 8 indicates this conclusion.
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