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ABSTRACT: The dynamical behavior of a model for body fluids in response to an external electric 
field is computationally investigated for communication frequencies. The effect of an applied potential 
difference between two electrodes in a saline solution containing a rodlike macromolecule is studied by 
solving the Poisson and ion continuity equations simultaneously using the finite element method (FEM). 
Examples of such macromolecules are stiff fragments of DNA or actin filaments. The electric field of 
66 Vm-1 is considered to be applied along the symmetry axis of the system with a frequency of 1 GHz. 
For times larger than a few microseconds, the aggregation of the counter ions around the macromolecule 
decreases. This result is consistent with the experimental evidence reported in the literature. In order 
to reach sufficient accuracy of the model, the effect of the electroosmotic flow is investigated on the 
counter ion number density and on the permittivity of the system, which shows negligible effect. The 
real and imaginary parts of effective complex permittivity are obtained as 73.43 and 3.61, respectively, 
which is in agreement with the experimental limits obtained for protein solution. It is notable that the 
analysis is applicable to the Global System for Mobile communications (GSM) which operates in the 
GHz frequency band.
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1- Introduction
Currently, the biological effects of nonionizing 
electromagnetic fields (EMFs) from radio to microwave 
frequencies have been the subject of numerous experimental 
and theoretical studies. For many years, hyperthermia 
and the related radiometry have been a major subject of 
interest in investigating biological effects of microwaves 
[1-5]. More recently, however, other subjects have received 
much attention, in particular electromagnetic (EM) energy 
absorption in human bodies. For instance, one can indicate 
interaction of microwaves with the nervous system [6], 
influence of the fields of mobile phones on membrane 
channels [7] and molecular effects [8].
Electromagnetic fields are able to influence the solutions 
containing proteins or may interact directly or indirectly 
with the protein macromolecule. For instance, the firefly 
luciferase is a protein which its emission spectrum is sensitive 
to its structure as well as the environmental conditions. It has 
been shown that the EMF exposure of luciferase results in 
its enhanced activity, possibly due to reduced aggregation 
of counter-ions [9]. In fact, the counter ion cloud around 
the macromolecule (Polyelectrolyte) might be perturbed, 
following which the possibility of conformational changes 
in the structure of the proteins cannot be neglected by EMF 
exposure [10]. A theoretical study of this effect is consequently 
necessary in order to understand related mechanisms. As 
regards the present study, we anticipate that the applied 
electric field can lead to the decrease of Debye shielding in 
the environment of the protein.
The influence of external electric fields on polyelectrolytes 

has been studied by various experimental and theoretical 
methods [11-16]. A typical dielectric spectrum has been 
obtained by merging dielectric spectra measured for DNA 
aqueous solutions in the range from 1 kHz to 70 GHz by [17] 
and the Mandel group [18]. In this paper, a time-dependent 
potential difference is applied between two parallel-plate 
capacitive coupling electrodes. The effect of the potential 
difference on the response in a saline solution containing a 
rod-like macromolecule is studied using the FEM. It is notable 
that the finite element analysis of any problem involves 
four steps [19]: discretization of the region of interest into 
a number of elements, derivation of equations for a typical 
element, assembling  all elements in the region and finally 
solving the set of equations. The sinusoidal electric field is 
applied in the z direction with an intensity of 66 Vm-1 at the 
frequency of 1 GHz. This field intensity can be plausibly 
produced by a mobile phone working in GSM-900 frequency 
band and at a standard specific absorption rate (SAR) of 1.6 
W/kg. It is notable that the analysis is applicable to the Global 
System for Mobile communications (GSM) which operates 
in the GHz frequency band. As the intensity of the electric 
field is not large enough, the dielectric constant behaves 
linearly, which means that it is independent of the intensity of 
the electric field. In other words, the dielectric coefficient can 
be properly considered to act in the linear regime. Without 
loss of generality, the computations are made for a geometry 
including one macromolecule. Considering a macromolecule 
means that the other molecules are far from the macromolecule 
so that their presence or absence has not influence on the 
charge distribution of that macromolecule. In the other words, 
good agreement is expected to the experimental results only Corresponding author, E-mail: hnoshad@aut.ac.ir



Sh. Nikzad et al., AUT J. Elec. Eng., 50(2) (2018) 121-128, DOI: 10.22060/eej.2018.13703.5181

122

for the dilute solution of protein in this work. Furthermore, in 
this model it is assumed that the macromolecule is rod-like. 
Examples of such macromolecules are stiff fragments of DNA 
or actin filaments [20], but the obtained qualitative behavior 
can be generalized to many kinds of macromolecules. 
Moreover, the wavelength is considered large, compared to 
the dimensions of the system. Therefore, quasi-static EMF 
theory can be properly applied.
It is worth noting that in the paper [21], the time-dependent 
development of electric double-layers (ionic sheaths) in 
saline solutions is studied by solving the sodium and chlorine 
ion continuity equations, coupled with Poisson’s equation 
in one dimension. The time scales have been predicted for 
the formation of double-layers. In this paper, the effect of 
an applied potential difference between two electrodes in a 
saline solution containing a rod-like macromolecule is studied 
by solving simultaneously the Poisson and ion continuity 
equations in two dimensions using the finite element method 
(FEM). As a result, the time evolution of the charge density 
distribution is computed around the macromolecule.
Furthermore, in the paper [22] it was indicated that 
electroosmotic flow might play an important role in the 
intracellular transport of biomolecules. The effect of the 
electroosmotic flow was denoted to be quite substantial so 
that the flux of the messenger proteins increases onto the 
nucleus up to 4fold relative to pure diffusion. In this work, in 
order to reach sufficient accuracy of the model we study its 
influence on the number density of the counter ions around 
the macromolecule as well as the permittivity of the system. 
As far as we know, the results obtained in this work have not 
been reported in the literature previously.
This article is organized as follows. First, the theory 
describing the model is explained. Afterwards, the obtained 
numerical results are presented. Finally, the paper is ended 
by a conclusion. 

2- Theoretical description and model
2- 1- Continuity equation for time dependent behavior
In this study, it has been assumed that the electrolyte consists 
of two types of ions with opposite polarities. The potential 
difference is applied between two electrodes. When an ionic 
material is dissolved in a liquid of high dielectric constant, 
the ions are dissociated and they can move in opposite 
directions due to the external electric field. By applying a 
voltage difference to the electrodes, the counter ions move 
near the electrodes, whereas the co-ions will be repelled from 
the electrodes. As the ions cannot penetrate the electrode 
surface, concentration of the accumulated counter ions in the 
vicinity of electrodes will be high in comparison with that 
of the other parts in the liquid. This movement results in 
the formation of an ion electric double-layer (EDL) with a 
steeply rising electric field as the ion approaches the electrode 
surface [23]. A similar phenomenon occurs around a charged 
macromolecule. 
To obtain time dependent distributions of the ion densities, the 
individual continuity equations for positive and negative ions 
coupled with Poisson’s equation are simultaneously solved, 
using a small time step. For stability of the computations, 
the time step is limited by the Courant–Friedrics–Levy 
condition [24]. The Poisson and continuity equations are used 
for computing the potential and density distributions of the 
positive and negative ions, respectively. 
It is worth noting that by obtaining the scalar and vector 

retarded potentials, the time dependent electric and 
magnetic fields can be generally calculated by considering 
the retardation effect. These fields are well known to the 
Jefimenko’s equations [25, 26]. For the systems with the 
dimensions much smaller than the wavelength, i.e. l λ  the 
electric and magnetic fields are reduced to the quasi-static 
fields. 
For the distribution of the considered electrical charge with 
the nanometer dimensions, we have

910 m 0.3 mcl
ν

−⇒ 

where c is the speed of light and ν  shows the frequency of our 
problem that is equal to 1 GHz. In other words, wavelength is 
considered large, compared to the dimensions of the system. 
As a conclusion, the retarded effects and the electromagnetic 
radiation can be fully ignored. Therefore, quasi-static EMF 
theory can be properly applied and we have

( , ) 0.t× =E r∇
which leads to

( , ) ( , ).t t= − ΦE r r∇
Hence, the Poisson’s equation is fully suitable for the analysis 
of the problem obtaining ( , )tΦ r .
The Poisson equation is formulated as follows [26]

(1)( )2

r 0

,Na Cl
e ρ ρ

ε ε
∇ Φ = − −

where rε denotes the relative dielectric constant. 
The continuity equation is derived from the zeroth velocity 
moment of the Boltzmann equation.
The continuity equations are formulated for the ion density 
distributions, which can be presented for sodium and chlorine 
ions as follows [21] 

(2)

where ( ) E Na
r Na Na Na r NaD

r
ρρ µ ∂

Γ = −
∂

and ( ) E .Na
z Na Na Na z NaD
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ρρ µ ∂
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where ( ) E Cl
r Cl Cl Cl r ClD

r
ρρ µ ∂

Γ = −
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 and ( ) E .Cl
z Cl Cl Cl z ClD

z
ρρ µ ∂

Γ = −
∂

 
In the aforementioned equations, ρ, Γ, μ and D specify the 
electric charge density, the current density, the ion mobility 
and diffusion coefficients, respectively. Furthermore, 
standard values for sodium and chlorine ion mobility and 
diffusion coefficients are [27, 28]:

8 2 1 1 9 2 1
Na Na

8 2 1 1 9 2 1
Cl Cl

5.19 10 m V s , 1.33 10 m s ,
7.91 10 m V s , 2.03 10 m s .

D
D

µ

µ

− − − − −

− − − − −

= × = ×

= × = ×

It is worth noting that rE and zE can be computed as
,

,

r

z

E
r

E
z

∂
= − Φ

∂
∂

= − Φ
∂

where Φ  satisfies the Poisson equation ( )2
Na Cl

r

e ρ ρ
ε ε

∇ Φ = − −


. 
Moreover, Φ  is obtained by solving the Poisson and continuity 
equations coupled with the Navier-Stokes equation in the 
next section simultaneously. Therefore, first it is not assumed 
that Φ is definite.
It should be noted that the presence of the external potential 
is considered through the application of the boundary 
condition on the unit cell. In this paper, a time-dependent 
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potential difference is applied between two parallel-plate 
capacitive coupling electrodes. The electric field of 66 Vm-1 
is considered to be applied along the symmetry axis of the 
system with a frequency of 1 GHz.
In the Poisson equation for the boundaries far enough from 
the macromolecule, the following boundary condition is valid

(4)0,• =n D
where D denotes the electric displacement vector [26]. 
A schematic view of the considered system is shown in fig. 
1. The model considers a rod-like macromolecule associated 
with a coaxial unit cell. The z axis is selected as the common 
axis of the charged macromolecule and the unit cell. The 
inside of the unit cell includes the counter ions equivalent to 
the charges on the macromolecule. Therefore, the unit cell is 
electrically neutral. 

The radius and height of the macromolecule are selected as 
0.5 nm and 12 nm [29], respectively, with the surface charge 
density [30]. Therefore, on the surface of the macromolecule, 
the following boundary condition has been used: 

(5)1 2( ) ,σ• − =n D D
where n is normal unit vector to the surface from the region 
2 to region 1. Furthermore, 1D  and 2D  denote the electric 
displacements for the inside as well as outside of the 
macromolecule, respectively. Moreover, σ shows the surface 
charge density of the macromolecule. The dielectric constant 
of the macromolecule is usually taken to be approximately 3 
[31]. Moreover, an ion-exclusion region, the so-called Stern 
layer, is often added outside the molecular interior in order 
to mimic the effect of finite ion size. This region is supposed 
to contain water, and therefore has a high dielectric constant. 
To model the ion-exclusion effect for this region, the charge 
density in this region is set to be zero. The reason is that the 
ions are not able to approach the molecule closely due to the 
van der Waals repulsion between the ions and the biomolecule 
surface. However, molecular dynamics simulations indicate 
that ions can approach the biomolecule by their roughly 

van der Waals’ radius. As a result, the thickness of the Stern 
layer can be attributed to the van der Waals’ radius of the 
largest counter ion in a solution, which is considered to be 
as 0.3 nm in our calculations [29]. The exterior region with 
a charge distribution represents the free ions in a solution. 
The continuity equations for the positive and negative 
ions coupled with Poisson’s equation in this region are 
simultaneously solved.
In the continuity equation, the Dirichlet boundary condition 
has been used for the unit cell. Moreover, the continuity of the 
normal component of the electric current density is applied in 
the interface of the macromolecule and its surrounding.
For the convergence test and to achieve sufficient accuracy, 
the selected triangular mesh in FEM should be sufficiently 
small. The number of equations to be solved in this study 
is equal to 17889. In our simulations, the mesh consists of 
1511 nodes and 2942 elements. Furthermore, the number of 
boundary elements is 206. Besides, the time steps are selected 
small enough so that considering smaller time steps does not 
change the final results noticeably. For more details, the time 
steps are taken as 0.1T, where T is the time period of the 
external field.
2- 2- Navier-Stokes equation for fluid dynamics
To take into account the electroosmotic flow, incompressible 
fluid flow is described by the Navier-Stokes and continuity 
equations, which are shown by eqs. (6) and (7), respectively 
[22]. 

(6)2. ( )
Na Cl

v p v
t

ρ η ρ ρ+ −

∂ = − + ∇ − − Φ ∂ 
v + v∇ ∇ ∇

(7). 0.=v∇
The sodium and chlorine ion densities as well as the electric 
potential are obtained by solving the Poisson, continuity and 
Navier-Stokes equations simoultaneously. In other words,

Naρ , Clρ  and Φ  are the output of the equations in the sections 
2.1 and 2.2.
In the aforementioned equation v, p, 0.002Pa.sη = and 

31000 mkg/ρ = are velocity, pressure, viscosity and density, 
respectively [22]. The assumption of incompressibility is not 
generally applicable to all microfluidic systems. Anyway, 
as most electroosmotic flows tend to involve a single phase 
liquid, this assumption can be made without loss of generality. 
The Navier-Stokes equation makes a mathematical model of 
the motion of a fluid which is important in the study of fluid 
dynamics. 
It is worth mentioning that the solution of equations (6) and 
(7) can result in the velocity. This velocity is relevant to the 
water i.e. fluid. In fact, the opposite charges are adsorbed to 
the surface of the macromolecule due to its intrinsic surface 
charge. These charges make a layer of the net charge in the 
vicinity of the macromolecule. It is notable that due to the 
motion of the net charge, the pressure is created in the fluid, 
the so-called the electroosmotic flow. 
The last term in eq. (6) denotes the electroosmotic body force, 
and it is equal to the product of the net charge density in the 
EDL, multiplied by the gradient of the total potential, Φ . The 
potential of EDL and the net charge density are related by the 
Poisson equation, namely eq. (1). Moreover, the continuity 
equations are presented for sodium and chlorine ions as eqs. 
(2) and (3). The no-slip boundary condition as 0v =  has been 
used in this analysis for the macromolecule and the unit cell. 

Fig. 1. The model considers a rod-like macromolecule 
associated with a coaxial unit cell
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It is notable that the number of equations to be solved in this 
study is considered as 31326. 
2- 3- Verification of the model 
The response of a material to an electromagnetic wave is 
described by the frequency dependent complex permittivity 

iε ε ε′ ′′= − for which the imaginary part is proportional to the 
spectral absorption power [32]. Both Debye and Cole–Cole 
models have been used to describe the dielectric behavior of 
NaCl solutions. It has been found that the Debye expression 
becomes more appropriate for NaCl solutions with low 
concentration, namely less than 0.5 mol/L, while for higher 
concentrations the Cole-Cole model is preferred [33]. 
The complex dielectric constant ( )ε ω∗

 
is usually written as 

[34]

(8)( ) ( ) ( )
0

,
i
σ ω

ε ω ε ω
ε ω

∗ ′= +

where ω , ( )ε ω′  and ( )σ ω  are the angular frequency, the real 
part of the complex dielectric constant and the conductivity, 
respectively. The dielectric loss ( ) 0/σ ω ε ω  consists of two 
components. One is due to the dielectric process ε”(ω), whereas 
the other one is related to the dc electrical conductivity 0σ , 
i.e. the low-frequency limit of ( )σ ω . The general expression 
of eq. (8) is then

(9)( ) ( ) ( ) 0

0

.i σε ω ε ω ε ω
ε ω

∗  
′ ′′= − + 

 
The dielectric loss ε” has been ignored in our model due to the 
negligible dispersion of the medium for 1 GHz. The current 
density due to the free charges is specified by [26]

(10),c iσ=J E

where σi denotes the ionic conductivity as follows:

(11).i Na Na Cl Cl
e eσ ρ µ ρ µ+ + − −= +

The displacement current density is described by

(12)0 ,d r t
ε ε ∂′=

∂
EJ

where ε’
r  specifies the relative dielectric constant of the water.

Therefore, the total current density is approximated in the 
phasor form as follows

(13)

The total current is defined by

(14)

Afterward, we can compute the admittance as follows [26]

(15)( )0
0

1   /   . ,i effec
r effec Na Cl

AY I V i
i d V
σ

ωε ε ρ ρ
ωε

 
′= = + + − 

 
∫ v ds

where 
0

i effec
r effec i

σ
ε

ωε
 
′ + 

 
 stands for the effective complex permittivity. 

Besides, d and A are the distance between two electrodes 
and the surface of the electrode, respectively. Moreover, a 
sinusoidal electric potential is applied to the electrodes 

(16)max sin (2 )V V f tπ=

First, the admittance was computed according to eqs. (14), 
(15) and (16). Afterwards, the effective complex permittivity 
was obtained. As a conclusion, the real and imaginary 
parts of the effective complex permittivity were calculated 
73.43 and 3.61, respectively. We draw a conclusion that 
the complex permittivity is smaller in comparison with the 
experimental limits obtained for protein solution [33]. This 
conclusion is true because, on the one hand, the presence of 
the macromolecule can decrease the complex permittivity of 
the saline solution [35]. On the other hand, the dielectric loss 
has been ignored in this work, whereas it has been considered 
in [33]. It is notable that our computations show that the order 
of magnitude for ( )Na Clρ ρ− v  is 10-10 compared to the term

which its order is 10-5. Therefore, this result demonstrates 
that the electroosmotic flow has negligible influence on the 
counter ion number density. 
It is notable that Poisson-Boltzmann equation (PBE) gives 
adequate descriptions regarding the steady-state electrostatic 
solutions [36-38]. In order to show that the FEM programming 
is working properly, the solution of the PBE with one variable 
in saline solution for a large plate by FEM is compared 
with the corresponding Gouy-Chapman solution. The PBE 
governing the steady state behavior of the electric potential in 
the saline solution is as follows [39, 40]:

(17)2 0

r 0 B B

exp ( ) exp ( ) , (17)e e e
k T k T

ρ
ε ε

 Φ Φ
∇ Φ = − − − + 

 

where 0ρ  is the average density of both sodium and chlorine 
ions in the solution. In general, this potential depends on the 
distance from the surface which is denoted by x.
An analytical solution of eq. (17) for a large plate 
corresponding to the surface of lipid droplets in saline 
as well as cell phospholipid bilayer membrane is found in 
the literature. The solution, the so-called Gouy–Chapman 
formula, is defined by [39]

(18)B2 1ln , (18)
1

kx

kx

k T e
e e

γ
γ

−

−

 +
Φ =  − 

where

(19)0

B

tanh (19)
4
e
k T

γ
 Φ

=  
 

and

(20)
2

0

r 0 B

2 . (20)ek
k T
ρ

ε ε
=

Moreover, Grahame derived the following relationship 
between surface charge density σ and the surface potential 

0Φ  based on the Gouy–Chapman theory [39].

(21)0
0 r 0 B

B

8 sinh .
2
ek T
k T

σ ρ ε ε
 Φ

=  
 

We use eq. (21) in order to obtain the potential of the 
macromolecule surface 0Φ with a defined surface charge 
density σ [29, 30]. 
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Finally, the above flowchart can be considered to make 
the computation mechanism easier to follow and 
understand.
It is notable that the computation mechanism can be 
summarized in the following steps for more clearance.
Step 1: The boundary conditions are specified in the Poisson 
equation as equation (4) for the boundaries far enough from 
the macromolecule and equation (5) on the surface of the 
macromolecule. 
Step 2: The boundary conditions in the sodium and chlorine 
ion continuity equations are defined as the Dirichlet 
boundary condition for the unit cell. Furthermore, the normal 
component of the electric current density must be continuous 
in the interface of the macromolecule and its surrounding.
Step 3: The boundary conditions are specified in the Navier-
Stokes equation in the form of the no-slip boundary condition 
as 0v =  for the macromolecule and the unit cell.
Step 4: The Poisson, continuity and Navier-Stokes equations 
are solved simultaneously for obtaining the electric potential, 
the sodium and chlorine ion densities and the velocity, 
respectively.
Step 5: The ionic conductivity is computed via equation (11) 
by substituting sodium and chlorine ion densities as well as 
the mobility coefficients.
Step 6: The total current density is computed through 

equation (13) by substituting the ionic conductivity, sodium 
and chlorine ion densities, electric field and velocity.
Step 7: The total current is computed by using equation (14).
Step 8: The admittance is computed via equation (15) by 
considering a sinusoidal electric potential applied to the 
electrodes. 
Step 9: The effective complex permittivity of a saline solution 
containing a macromolecule is computed by ignoring the 
dielectric loss at frequency of 1 GHz.
Step 10: The electric potential is computed by using the 
PBE i.e. equation (17) with one variable in saline solution 
for a large plate based on FEM by considering the average 
density of both sodium and chlorine ions in the solution, the 
Boltzmann constant and temperature.
Step 11: The electric potential is computed through the 
Gouy-Chapman solution i.e. equation (18) by substituting the 
surface charge density σ and the defined parameters in the 
step 10. 
Step 12: The FEM programming is verified by using the 
comparison between the solution of the PBE in the step 10 as 
well as the Gouy-Chapman solution in the step 11.

3- Numerical results and discussion
As presented in fig. 2, our numerical results are compared 
with the analytical solution of a PBE with one variable in 
saline solution. This case corresponds with a plate with a 
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homogeneously distributed electric surface charge density [41, 
42], which is in contact with a saline solution. The analytical 
solution corresponds to the Gouy–Chapman solution, namely 
eq. (18), and an excellent agreement is found. 
As stated in section 2.3, the electroosmotic flow has an 
insignificant effect on the behavior of the counter ion number 
density. Therefore, the density of the counter ions was 
computed with no electroosmotic flow. Figure 3 presents the 
density of the counter ions as a function of time at r = 4 nm 
and z = 0. 
It should be noted that the counter ion density can be 
computed based on the steps 1, 2, 3 and 4. It is obvious  

Fig. 2. The electrostatic potential obtained from the Gouy-
Chapman solution [39] compared with our numerical method 
for a large plate, in the saline solution, which corresponds to one 

variable PBE.

Fig. 3. The density of counter ions as a function of time at 
r = 4 nm and z = 0 after applying external electric field with the 

amplitude of 66 Vm-1 and the frequency of 1 GHz

that for the times larger than 2.7 μs, the aggregation of the 
counter ions decreases. In fact, the external field makes a 
reduced aggregation of the ion atmosphere. Following this 
decrement, the mobility of the counter ions along the field 
gradient increases [29]. This observation can be considered as 
the cause of the Debye-Falkenhagen effect. This conclusion 
is in agreement with the experimental result reported in 
the literature [9], so that the EMF exposure of a luciferase 
molecule results in its reduced aggregation. This can be due 
to the real and imaginary parts of the permittivity before and 
after exposure. The real part of the permittivity reduces in 
low frequency and increases in high frequency after exposure. 
The status is inverse in the case of the imaginary part of the 
permittivity so that the imaginary part of the permittivity 
reduces in high frequency and increases in low frequency 
after exposure. Since ionic content is decisive in the case of 
the imaginary part in the low-frequency, some ions become 
free of the protein structure and are added to the system. 
It should be noted that the bound ions to the system create 
the real part. Therefore, when the bound ions are released, 
a component of the polarization is reduced. As a result, the 
ions around the protein are reduced. In fig. 3, the steep slope 
of the density is up to 0.1 μs due to the formation of the 

counter ion cloud around the macromolecule. Afterwards, 
up to 2.7 μs, the slope of the density changes slower. This 
behavior can be explained by the effect of the repulsive force 
among the accumulated counter ions located at the end of the 
macromolecule. From 2.7 μs, the effect of the field is quite 
obvious. In other words, due to the application of the field, 
the opposite ions move along the field and are accumulated 
around the cylindrical bases (macromolecule). Therefore, 
the sum of surface charges associated with opposite ions 
decreases around the macromolecule on its lateral surface.
Moreover, in the case of fig. 3, it can be probably concluded 
that, due to the nonlinear processes (a set of the nonlinear 
equations) as well as the inertia of the charges, the variations 
of the charge distribution do not follow the velocity of 
the electric field. One can see that the charge distribution 
indicates the slower dynamics rather than the electric field as 
the order of microseconds.
Figure 4 shows the density of the counter ions at the distance 
4 nm from the axis of the macromolecule for nine time 
instants. One can observe that concentration of the counter 
ions becomes larger near the center of the macromolecule as 
time elapses. For t = 1.5 μs, the broadening of the distribution 
is smaller than the computed one for other time instants. 
However, the maximum of the distributions corresponds with 
the center of the macromolecule for all the times computed in 
this analysis. As shown, for the times larger than 2.7 μs, the 
distribution of the counter ions decreases. It should be noted 
that this analysis is able to predict how the ion atmosphere 
can be affected by the electric fields. It is notable that the 
ion distribution is perturbed by the applied electric field. 
Consequently, the local conductivity can be influenced by 
the external electric field, and hence, the equation governing 
the Ohm’s law is no longer linear. Therefore, the continuity 
equations, coupled with the Poisson’s equation analyzed in 
this work, constitute a set of the nonlinear equations, whereas 
the dielectric coefficient behaves linearly.

4- Conclusion
In this work, the time evolution of the charge density 
distribution was obtained in a saline solution containing 
a rodlike macromolecule. The charge density was 
simultaneously computed by solving ion continuity 
equations coupled with Poisson’s equation based on the 
FEM. It was concluded that as time elapsed, the counter ions 
accumulated near the center of the macromolecule, namely 
z = 0. The external field made a reduced aggregation of the 
ion atmosphere for the times larger than 2.7 μs. Our result 
showed a satisfactory consistency with the experimental one 
[9] so that the aggregation of the ion atmosphere was reduced 
by the external electric field. Besides, our results were in 
excellent agreement with the analytical solution for one 
dimensional PBE. Furthermore, the real and imaginary parts 
of the effective complex permittivity were computed as 73.43 
and 3.61 by considering electroosmotic flow, respectively. 
It is worth noting that the obtained data were in agreement 
with the experimental limits [33]. In fact, the presence of 
the macromolecule could decrease the complex permittivity 
of the saline solution [35]. Furthermore, it was concluded 
that the electroosmotic flow could not affect the density of 
counter ions significantly, and hence it could be neglected. It 
is notable that the study of the effects of time varying electric 
fields in the biological tissue is applicable for the protein 
aggregation disorders.
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