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ABSTRACT: Many researchers have controlled and analyzed biped robots that walk in the sagittal 
plane. These robots require the capability of walking merely laterally when they are faced with the 
obstacles such as a wall. In this field of study, both nonlinearity of the dynamic equations and also having 
a tracking system cause an effective control has to be utilized to address these problems. Therefore, this 
paper presents a nonlinear fuzzy tracking control for the walking robots that step in the lateral plane on a 
slopes. When fuzzy control is utilized to track the desired trajectories of the joints, there has to be a trade-
off between tracking errors and control efforts. Consequently, a particle swarm optimization algorithm is 
used to obtain the Pareto front of these non-commensurable objective functions to determine the fuzzy 
control parameters. In this paper, normalized summation of angle errors and normalized summation of 
control efforts are considered as the objective functions. These objective functions have to be minimized 
simultaneously. A vector which contains the control parameters is considered as the vector of selective 
parameters with positive constant values. The obtained Pareto front by the proposed multi-objective 
algorithm is compared with three prominent algorithms, modified NSGAII, Sigma method and MATLAB 
Toolbox MOGA. The result dramatizes the superiority of innovative particle swarm optimization over 
the algorithms.
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1- Introduction
The challenging walking robot field has attracted the interest 
of many researchers for several decades. The dynamic of this 
sort of robot is extremely nonlinear and difficult to control 
since researchers confront with a heavy nonlinearity in the 
dynamic equations which must track the desired trajectory. 
Lately, fuzzy control has been utilized by researchers as an 
effective control to satisfy criteria for nonlinearity of dynamic 
equation and tracking system. Liu et al. [1] illustrated that 
the fuzzy control could be utilized to control the walking 
robots. Li et al. [2] considered a robot walking in the sagittal 
plane in its desired ZMP and utilized a fuzzy motion control 
based on reinforcement learning and Lagrange polynomial 
interpolation for gait synthesis of walking robots. The most 
appropriate stability criterion is Zero Moment Point (ZMP). 
This criterion does take dynamic forces, as well as static 
forces, into consideration. Goswami et al. [3] computed 
ZMP by an approximation-based method and they optimized 
walking parameters such as step-length, bending-height, etc. 
Some studies introduced the concept of combined trajectory 
paths, Naseradin mousavi et al. [4] illustrated that hip height 
plays an important role in both the stability and optimum 
actuator torques of the joints. All the above-mentioned works 
have studied walking robots that walk in the sagittal plane, 
but they did not study walking in the lateral plane. Ito et al. 
[5] proposed a static balance control based on the feedback 
of ZMP positions and extended these methods to the walking 
in-place lateral stepping motion; however, they did not study 
the walking of the robot in that plane.
Taher Khorsandi et al. [6] introduced the motion of the 

walking robot in the lateral plane and linearized the 
dynamical equations of the robot in the trajectory and utilized 
linear quadratic tracking control to control them. Their work 
would be developed by the present study. They linearized the 
dynamical equation to control the robots; however, in this 
study a nonlinear fuzzy tracking control is used to control 
them and linearization would be relaxed.  They considered 
a flat surface while in this paper, the robot walks on slope. 
Furthermore, an innovative optimization method is utilized 
to optimize the control parameters. 
The parameters of fuzzy tracking control have to be 
determined and they are usually identified by trial-and-error 
process. One proper way to choose these factors is using an 
evolutionary algorithm such as particle swarm optimization, 
genetic algorithm and etc. Shook et al. [7] used genetic 
algorithm to optimize fuzzy logic controllers which were 
designed to manage two 20 kN magnetorheological dampers 
for mitigation of seismic loads. Shayeghi et al. [8] proposed 
a multi-stage fuzzy controller for solution of the load 
frequency control which operated under deregulation and 
also the membership functions were designed automatically 
by particle swarm optimization (PSO). Bingul [9] controlled 
a 2-DOF planer robot by fuzzy logic controller, and particle 
swarm optimization was utilized to tune fuzzy parameters. A 
PID controller was also tuned by particle swarm optimization 
to contrast with the fuzzy controller. Therefore, an innovative 
particle swarm optimization presented in this paper is utilized 
to eliminate the boring and repetitive trial-and-error process 
and to find the fuzzy parameters.
PSO, as one of the most recent modern heuristic algorithms, 
was primarily presented by Kennedy and Eberhart [10]. Corresponding author, E-mail: Mahmoodabadi@sirjantech.ac.ir 
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It was developed through simulation of simplified social 
systems, and has been found to be robust in solving nonlinear 
optimization problems [11]. The PSO technique can generate 
a high quality solution with short calculation time and a 
more stable convergence characteristic compared to other 
evolutionary methods [12,13]. In this paper, for increasing 
the convergence of the population and to avoid local minima, 
PSO is merged with convergence and divergence operators. 
In the recent years, several approaches have been proposed 
to extend the PSO algorithm to deal with multi-objective 
optimization problems. For instance, dynamic neighborhood 
PSO [14], dominated tree [15], Sigma method [16], and 
vector evaluated PSO [17] have been proposed to solve the 
multi-objective optimization problems. 
This research paper develops considerably the authors’ 
previous study [6] in the aspect of proposing the fuzzy 
tracking control optimized by multi-objective particle 
swarm optimization as an effectual controller for a walking 
robot that walks merely on the lateral plane of a slope. As 
a noteworthy development, optimal fuzzy tracking control 
based upon particle swarm optimization is proposed here 
to control effectively the walking of the biped robot in the 
lateral plane of a slope.

2- The model of the walking robot
A three link planar model in the lateral plane is used to model 
the robot [6]. The first link is anchored to the ground surface 
while the third link moves freely along lateral plane and the 
second link represents the head, arms and trunk. Each link is 
defined by four characteristics, that are mass, length, inertia 
and the center of gravity. The variable joints for this robot 
are regarded as θ1, θ 2 and θ 3. The numerical values of the 
related parameters are exactly considered same as those in 
[18]. The dynamical equations of the robot’s motion can be 
derived by using the Newton-Euler or the Lagrange-Euler 
formalisms as those in [6].

3- Fuzzy tracking control of walking robot
The proposed fuzzy tracking control is based on the closed-
loop fuzzy system. The stages of the control method was 
designed and constructed step by step as follows. To 
control the system, the state variable vector is chosen as 
[ ]1 2 3 4 5 6 1 1 2 2 3 3, , , , , , , , , ,x x x x x x θ θ θ θ θ θ =  

   . The errors could be 
defined as follows.
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Then, a membership function is constructed by Fig. 1 
illustrated by Table 1. In the Fig. 1, the inference result 

o
if of the consequent variable if  should be calculated by 

the product-sum gravity method [19] via the following 
formulation.
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where iy  is the center of an output membership function and 
iµ  is an input membership function.

Finally, the control efforts are obtained by the following 
equation.

1 1 1 2 2u w f w f= +

2 3 3 4 4u w f w f= +                                                                                                                   (4)

3 5 5 6 6u w f w f= +

In this equation, 1 2 3 4 5 6, , , , , and w w w w w w  are weight constants 
and these parameters are usually identified by trial-and-error 
process. One proper way to choose these factors is using 
evolutionary algorithms. Therefore, an innovative particle 
swarm optimization presented in this paper is utilized to 
eliminate the boring and repetitive trial-and-error process and 
to find fuzzy parameters ( )1,2,3,4,5,6iw i = .

4- Single objective optimization algorithm
4- 1- Particle swarm optimization
Particle swam optimization is a population-based 
evolutionary algorithm and is similar to other population 
based evolutionary algorithms. PSO is motivated by the 
simulation of social behavior instead of survival of the fittest 
[10]. Although originally adopted for balancing weights 
in neural networks [20], PSO soon became a very popular 
global optimizer, mainly in problems in which the decision 
variables are real numbers [21].
 In PSO, each candidate solution is associated with a velocity. 
The candidate solutions are called particles and the position of 
each particle is changed according to its own experience and 
that of its neighbors (velocity). It is expected that the particles 
will move towards better solution areas. Mathematically, 
the particles are manipulated according to the following 
equations,

1 1i i ix ( t ) x ( t ) v ( t ),
→ → →

+ = + +
			          (5)

1 1 2 21 ipbest gbesti i i iv ( t ) W v ( t ) C r ( x x ( t )) C r ( x x ( t )),
→ → → → → →

+ = + − + −                 (6)

where )(txi

→

 and )(tvi

→
denote the position and velocity of 

Fig. 1. Membership function

Table 1. Rule modules for each input item.

( ) 1, 2,3, 4,5,6ix i =
Antecedent Variables

( )1, 2,3, 4,5,6if i =
Consequent Variables

Negative Big -1.0
Zero 0.0

Positive Big 1.0
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particle i, at time step t. ]1,0[r,r 21 ∈ are random values. 1C  
is the cognitive learning factor and represents the attraction 
that a particle has toward its own success. 2C  is the social 
learning factor and represents the attraction that a particle 
has toward the success of the entire swarm. W is the inertia 
weight which is employed to control the impact of the 
previous history of velocities on the current velocity of a 
given particle. The personal best position of the particle i is

ipbestx
→

, and gbestx
→

 is the position of the best particle of the entire 
swarm. Inertia weight is used to balance the global and local 
search ability. 
The characteristics of the inertia weight are similar to those 
of the temperature parameter in the simulated annealing 
algorithm [12]. A large inertia weight facilitates a global 
search while a small inertia weight facilitates a local search. 
By changing the inertia weight dynamically, the search ability 
is dynamically adjusted. Experimental results indicated that 
the linearly decreasing inertia weight over the iterations 
improve the performance of PSO [21]. With a large value of  

1C   and a small value of 2C , particles are allowed to move 
around their personal best position ( ipbestx

→
). With a small 

value of  1C   and a large value of  
2C , particles converge to the best particle of the entire swarm 

( gbestx
→

). From the results, it was observed that best solutions 
were determined when 1C  is linearly decreased and 2C  is 
linearly increased over the iterations [22]. Hence, in this 
paper, the following linear formulation for inertia weight and 
learning factors are used.

( )1 1 2 ,
 

tW W W W
maximumiteration

 = − − × 
 

                     (7)

( )1 1 1 1 ,
 i i f

tC C C C
maximumiteration

 = − − × 
 

                  (8)

( )2 2 2 2 ,
 i i f

tC C C C
maximumiteration

 = − − × 
 

                 (9)

where 1W  and 2W  are the initial and final values of the inertia 
weight, respectively. 1  iC and 2iC  are the initial values of the 
learning factors 1C  and 2C , respectively. 1 fC  and 2 fC  are the 
final values of the learning factors 1C  and 2C , respectively. t  
is the current iteration number and  maximumiteration  is the 
maximum number of allowable iterations.

4- 2- Convergence operator
A novel convergence formula that contains four parent 
particles has been proposed in [23,24]. Let [ ] 0,1ρ ∈  be a 
random number. If  ConvergencePρ ≤  ( ConvergenceP  is convergence 
probability), then, one of the following operators shall be 
performed to generate the new particle position ( )1ix t +  
from the old particle position ( )ix t :
If fitness ( )ix t  is smaller than fitness ( )jx t   and fitness 

( )kx t  then:

( ) ( ) ( ) ( ) ( )( )11 2gbest
i gbest i j k

i
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x t x x t x t x t

x t
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 
+ = + − −  

 



    



         (10)

If fitness ( )jx t  smaller than fitness ( )ix t

  and fitness ( )kx t  
then:

( ) ( ) ( ) ( ) ( )( )21 2gbest
i gbest j i k

i

x
x t x x t x t x t

x t
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 
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    



        (11)

If fitness ( )kx t  is smaller than fitness ( )jx t   and fitness 
( )ix t  then:

( ) ( ) ( ) ( ) ( )( )31 2gbest
i gbest k j i

i

x
x t x x t x t x t

x t
σ

 
+ = + − −  

 



    



          (12)

where particles ( )jx t  and ( )kx t  are selected from swarm 
by uniformly selection method. 1σ , 2σ , and 3σ  are random 
numbers selected from [ ]0,1  and gbestx is the position of 
the best particle of the entire swarm. After calculating the 
convergence phase, the superior member between ( )ix t  
and ( )1ix t +  should be selected. If  ConvergencePρ ≥ , then no 
convergence operation is performed for ( )ix t .

4- 3- Divergence Operator
This operator, that was proposed in [23,24], provides a 
possible leap on some chosen particles . Let [ ] 0,1ϑ∈  be a 
random number. If DivergencePϑ ≤ , ( DivergenceP  is divergence 
probability) and particle  ( )ix t  was not enhanced by 
convergence operator, then the following divergence operator 
is performed to generate a new particle.

( ) ( )( )1  , .i i Dx t Normrand x t S+ =
                                      (13)

( )( ) ,i DNormrand x t S  generates random numbers from the 
normal distribution with mean parameter ( )ix t  and standard 
deviation parameter DS  ( DS  is a positive constant). If 

DivergencePϑ ≥  or particle ( )ix t  was enhanced by convergence 
operator, no divergence operation is performed.

4- 4- Hybrid of PSO, Convergence, and Divergence Operators
It is now possible to present a novel PSO which is improved 
by utilizing the convergence and divergence operators to 
update the particle positions. Initially, particles forming the 
population are randomly generated. Then, convergence and 
divergence probabilities, the inertia weight and the learning 
factors are selected. In each iteration, after calculation of the 
fitness values of all particles, 

ipbestx and gbestx are determined. 
Then, for each particle a random number [ ]0,1ρ ∈  would 
be allocated. If a particle has CPρ ≤ , a new particle will 
be produced by the convergence operator. For each particle 
that is not chosen for convergence operation another random 
number [ ] 0,1ϑ∈  would be allocated. If  DPϑ ≤  then the 
divergence operator generates a new particle. Other particles 
that are not selected for convergence or divergence operation 
will be enhanced by PSO. This cycle should be repeated until 
the user-defined stopping criterion is satisfied [23,24].

Table 2. Optimization benchmark test functions

Name Formula Comment Search 
range

Noise ( ) [ )4

1

0,1
n

i
i

f x ix randdom
=

= +∑
 

Unimodal [ ]1.28,1.28 n−  

Quadric ( ) 2

1 1

( )
n i

j
i j

f x x
= =

=∑ ∑
 

Unimodal [ ]100,100 n−  

Schwefel ( )
1 1

n n

i i
i i

f x x x
= =

= +∑ ∏
 

Unimodal [ ]10,10 n−  

Griewank ( ) 2

1 1

1 cos( ) 1
4000

n n
i

i
i i

xf x x
i= =

= − +∑ ∏
 

Multimodal [ ]600,600 n−  

Ackley ( ) ( )( )2

1

10cos 2 10  
n

i i
i

f x x xπ
=

= − +∑
 

Multimodal [ ]32,32 n−  
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4- 5- Evaluation of single objective optimization algorithm 
To evaluate the accuracy of the proposed method, three 
renowned PSO algorithms are used for comparison, (HPSO-
TVAC [22], DMS-PSO [25], and APSO [26]). Moreover, 
five nonlinear benchmark functions introduced in Table 2 
are performed. These test functions should be minimized. 
In all the tests, the inertia weight W  is linearly decreased 
from 1 0.9W =  to 2 0.4W = , 1C  is linearly decreased from 

1 2.5iC =  to 1 0.5fC =  while 2C  is linearly increased from 
2 0.5iC =  to 2 2.5fC =  over time. The related variables used in 

convergence and divergence operators are: 0.02ConvergenceP =  
and 0.02DivergenceP = . Furthermore, the term ( )iv t  is limited 
to the range [ ],ave avev v− +  which 

2
max min

ave
x xv −= . While the 

velocity violates this range, it will be multiplied by a random 
number between [ ]0,1 . 
The mean and standard deviation fitness of the best particle 
for thirty runs are summarized in Table 3. The population 
size, maximum iteration and dimension are set at 20, 10000 
and 30, respectively. It can be observed from this table that 
the incorporation of the convergence and the divergence 
operators can greatly change the performance of PSO. 
From the results given in Table 3, it can be seen that the 
proposed method outperforms other three algorithms for 
different complex functions. Obviously, the technique of 
combination of PSO, convergence and divergence operators 
improves PSO and make the swarm easily escape from the 
local minima and converge to the global minimum, robustly.

5- Multi-objective optimization algorithm
Moore and Chapman proposed the first extension of the 
PSO strategy for solving multi-objective problems in an 
unpublished manuscript in 1999 [27]. After this early attempt, 
a great interest to extend PSO arose among researchers, but 
interestingly, the next proposal was not published until 2002. 
Nevertheless, there are currently different proposals of multi-
objective PSOs reported in the specialized literature [28].

5- 1- Definitions of multi-objective optimization problem
A multi-objective optimization problem is of the following 
form, 

Minimize )](),...,(),([:)( 21

→→→→→

= xfxfxfxf k                          (14)

where T
nxxxx ],...,,[ 21=

→
is the vector of decision variables, 

kiRRf n
i ,...,1,: =→  are the objective functions. To 

describe the concept of optimality, some definitions should 
be introduced.

Definition 1. Given two vectors kRyx ∈
→→

, , we say that 

→→

≤ yx  if ii yx
→→

≤  for  ni ,...,1=  and that 
→

x  dominates 
→

y  
(denoted by 

→→

yx  ) if 
→→

≤ yx  and 
→→

≠ yx  [29].

Definition 2. A vector of decision variables nRx ⊂∈
→

χ  
is non-dominated with respect to χ , if there does not exist 
another χ∈′

→

x  such that )()(
→→→→

′ xfxf 

 [29].

Definition 3. A vector of decision variables nRFx ⊂∈
→
∗  (F 

is the feasible region) is Pareto-optimal if it is non-dominated 
with respect to F [29].

Definition 4. The Pareto optimal set ∗p is defined by [29]:

{  }p x F | x is Pareto optimal
→ →

∗ = ∈                                                       (15)
Definition 5. The Pareto front pF ∗

 is defined by [29]:

{ ( ) | }kpF f x R x p
→ → →

∗ ∗= ∈ ∈                                                                             (16)

Thus, determination of the Pareto optimal set from the set F 
of all the decision variable vectors is desired [29]. 

5- 2- Multi-objective CDPSO
When solving single-objective optimization problems by 
PSO approach, gbestx

→
 is used as a leader to update particles 

position. However, in the case of multi-objective optimization 
problems, each particle might have a set of different leaders 
(each non-dominated solution could be selected as a leader) 
which only one of them can be selected in order to update 
its position. In this paper, we describe a leader selection 
technique that is based on the density measures. For this 
purpose, a neighborhood radius neighborhoodR  is defined for 
leaders. Two leaders are neighbors if their Euclidean distance 
(measured in the objective domain) is less than neighborhoodR . 
Using this definition, the number of neighbors of each leader 
is calculated in the objective function domain. The particle 
which has fewer neighbors is preferred as leader. However, 
after several iterations, the leader position and its density will 
change. Thus, leader selection operation should be repeated 
and a new leader must be identified. Therefore, the maximum 
iteration is divided into several equal periods, and each period 
has the same iteration  T . The relationship of maximum 
iteration, number of periods and T  satisfies the following 
equation.

maximum iteration number of periods T= ×                                          (17)

In each period, the leader selection operation could be done 
and the non-dominated solution which has fewer neighbors 
is preferred as leader. Also, in the start of each iteration of 
a period, if a particle dominates the leader, then this particle 
will be considered as the new leader. This algorithm is named 
periodic multi-objective optimization. The proposed multi-
objective method allows us to independently select inertia 
weight and learning factors in each period. The following 
equations are suggested to select the inertia weight and 
learning factors in each period.

( )1 2 1
1

T T
t tW W W W fix − = + − −   

  
                                 (18)

( )1 1 1 1
1

T Ti f i
t tC C C C fix − = + − −   

  
                                  (19)

( )2 2 2 2
1

T Ti f i
t tC C C C fix − = + − −   

  
                             (20)

Table 3. Comparison results on  accuracy of algorithms

Function HPSO-
TVAC DMS-PSO APSO Proposed 

method

Noise Mean
Std. Dev

5.54×10-2

2.08×10-2
1.11×10-2

3.94×10-3
4.66×10-3

1.74×10-3
5.76×10-4

3.53×10-4

Quadric Mean
Std. Dev.

2.89×10-7

2.97×10-7
4.75×101

5.64×101
1.00×10-10

2.13×10-10
3.56×10-111

1.95×10-110

Schwefel Mean
Std. Dev.

6.90×10-23

6.89×10-23
2.61×10-29

6.60×10-29
5.15×10-84

1.44×10-83
3.51×10-262

0

Griewank Mean
Std. Dev.

1.07×10-2

1.14×10-2
1.31×10-2

1.73×10-2
1.67×10-2

2.41×10-2
3.29×10-4

1.80×10-3

Ackley Mean
Std. Dev.

2.06×10-10

9.45×10-10
8.52×10-15

1.79×10-15
1.11×10-14

3.55×10-15
8.88×10-16

0
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W1 and W2 are the boundary values of the inertia weight in 
each period, respectively. 1iC , 1 fC , 2iC  and 2 fC  are the 
initial and final values of the cognitive and social learning 
factors in each period, respectively. t  is the current iteration 
number and T  is the number of iterations in a period. 

1
T

tfix − 
 
 

 is a function that rounds 1
T

t − 
 
 

 to the nearest integer 
in the direction of zero.
In the multi-objective optimization problems, the set of 
leaders is usually stored in a place different from the swarm 
that is called archive. However, if all non-dominated solutions 
are retained in the archive, the size of the archive increases 
very quickly. This is an important issue because the archive 
has to be updated in each iteration. Thus, this update may 
become very expensive computationally. Therefore, archive 
tends to be bounded, which makes the using of an additional 
criterion necessary in order to decide which non-dominated 
solutions should be kept. In this paper, an adaptive elimination ε
technique is used to prune the archive. In this approach, 
each particle in the archive has an elimination radius equal 
to elimination ε , and if Euclidean distance (in the objective 
function space) between two particles is less than elimination ε
, one of them will be omitted. Here, the following equation is 
introduced to determine the value of elimination ε  that is named 
adaptive elimination ε :

elimination  
iteration

maximumiteration
ε

ζ
=

×
,                                       (21)

where ζ is a positive constant and iteration  is the current 
iteration number, and  maximumiteration  is the maximum 
number of allowable iterations [23,24].

6- Pareto design of the proposed fuzzy tracking control
In fuzzy tracking control, the heuristic fuzzy parameters  

( )1,2,3,4,5,6iw i =  are required to be chosen properly. 
Therefore, the proposed multi-objective particle swarm 
optimization introduced in the previous sections is used to 
determine the proper parameters and to eliminate the tedious 
and repetitive trial-and-error process. 
The performance of a controlled closed loop system is 
usually evaluated by a variety of goals [30,31]. In this paper, 
normalized summation of angles errors and normalized 
summation of control efforts are considered as the objective 
functions. These objective functions have to be minimized 
simultaneously.
The vector [ 1 2 3 4 5 6, , , , , w w w w w w ] is the vector of selective 
parameters of fuzzy control, and all the elements of the 
vector are positive constants. The normalized summation of 
angles errors and normalized summation of control efforts are 
functions of this vector. This means that by selecting various 
values for the selective parameters, we can make changes in 
the normalized summation of angles errors and normalized 
summation of control efforts. Clearly, this is an optimization 
problem with two objective functions (normalized summation 
of angles errors and normalized summation of control efforts) 
and six decision variables ( 1 2 3 4 5 6, , , , , w w w w w w ). The regions 
of the selective parameters are given by

1 3 5100 , , 1000w w w≤ ≤

2 4 610 , , 100w w w≤ ≤ .     			                             (22)

The parameters of proposed multi-objective algorithm are 
chosen as it follows. In each period, the inertia weight W is 
linearly decreased from 1 0.9W =  to 2 0.4W = , 1C  is linearly 

decreased from 1 2.5iC =  to 1 0.5fC = , and 2C  is linearly 
increased from 2 0.5iC =  to 2 2.5fC =  over time. The related 
variables used in the convergence and divergence operators 
are: 0.1ConvergenceP = , 0.1DivergenceP = , and  

2
max min

D
x xS −= . 

The term ( )iv t  is limited to the range [ ],ave avev v− +  in 
which 

2
max min

ave
x xv −= . While the velocity violates this range, 

it will be multiplied by a random number between [ ]0,1 . 
Furthermore, the positive constant for elimination ε  is given by 

300ζ =  and the neighborhood radius for leader selection 
is as  neighborhood 0.04R = . The number of iterations in the 
period T  is 7; the swarm size  and the maximum iteration 
are 50 and 100, respectively. The Pareto front of this multi-
objective problem is shown in Fig. 2. Also, the feasibility and 
the efficiency of the proposed multi-objective algorithm is 
assessed in comparison with Sigma method [16], modified 
NSGAII [32] and MATLAB (R2010a) Toolbox MOGA.
Although the performances of these algorithms are 
competitively good over this problem, the most interesting 
result is that the proposed algorithm has more uniformity and 
diversity. 
In Fig. 2, points A and C stand for the best normalized 
summation of angles errors and normalized summation of 
control efforts, respectively.  It is clear from this figure that 
all the optimum design points in the Pareto front are non-
dominated and could be chosen by a designer as optimum 
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Fig. 2. The obtained Pareto fronts by using Sigma method [16], 
modified NSGAII [32], MATLAB (R2010a) Toolbox MOGA 
and the proposed algorithm for optimal control design of the 

walking robot

Table 4.  Objective functions and their associated design 
variables for the optimum points in Fig. 2

CBAOptimum design point

17.58 10−×11.93 10−×11.22 10−×
Normalized summation of 

angles errors
12.75 10−×13.96 10−×18.29 10−×

Normalized summation of 
control efforts

29.34 10×29.71 10×29.98 10×Design variable 1w
17.59 10×19.99 10×19.66 10×Design variable 2w
22.55 10×21.84 10×28.51 10×Design variable 3w
13.96 10×15.47 10×19.89 10×Design variable 4w
21.07 10×29.67 10×29.75 10×Design variable 5w
11.04 10×18.83 10×19.15 10×Design variable 6w
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fuzzy tracking controllers. It is also clear that choosing a better 
value for any objective function in the Pareto front would 
cause a worse value for another objective. the corresponding 
values of those objective functions show an undesirable 
situation in comparison with the Pareto front. This implies 
that if any other set of decision variables is chosen, the 
corresponding values of the pair of those objective functions 
will locate a point inferior to that Pareto front. Such inferior 
area in the space of the two objectives is located in fact on the 

top right side of  Fig. 2. 
Clearly, there are some important optimal design facts between 
these two objective functions which have been discovered by 
the Pareto optimum design approach. Such important design 
facts could not have been found without the use of multi-
objective Pareto optimization process. From Fig. 2, point 
B demonstrates such important optimal design fact. Point 
B could be the trade-off optimum choice when considering 
minimum values of both the normalized summation of angles 
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Fig. 8. Control effort u3 for the optimum design points A, B, 
and C shown in the Pareto front
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Fig. 7. Control effort u2 of the optimum design points A, B,  
and C shown in the Pareto front
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Fig. 6. Control effort u1 for the optimum design points A, B, 

and C shown in the Pareto front
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errors and normalized summation of control efforts. Design 
variables and objective functions corresponding to the 
optimum design points A, B, and C are illustrated in Table 4. 
The real tracking trajectory of the optimum design points A, 
B, and C are shown in Figs. 3 to 5. The control effort of the 
optimum design points A, B, and C are also shown in Figs. 
6 to 8.

7- Conclusion
This paper presented fuzzy tracking control for a walking 
robot that stepped purely in the lateral plane of a slope. 
Fuzzy control was utilized as an effective control to satisfy 
criteria for nonlinearity of dynamic equation and tracking 
system. An innovative multi-objective PSO algorithm was 
used to obtain the Pareto front of the non-commensurable 
objective functions in the design of fuzzy tracking controller. 
In the multi-objective optimization method, firstly, PSO 
was combined with convergence and divergence operators 
to modify converging process and also to skip every 
possible local optimum. Then, the periodic multi-objective 
optimization helped particles explore more areas in the 
solution space. Two conflicting objective functions, namely 
the normalized summation of angles errors and normalized 
summation of control efforts, were utilized for optimal 
control design. The Pareto front of innovative PSO was 
compared with the Pareto front of three renowned algorithms, 
namely modified NSGAII, Sigma method and MATLAB 
Toolbox MOGA. The Pareto front of innovative PSO was 
much more scattered than the other three and the points 
spread along adjacent axes. Therefore, the designer has the 
ample opportunity to select the finest point. Three points of 
Pareto front obtained from the innovative PSO were selected 
and the related design variables were used to illustrate the 
time responses of the system states. The result illustrated that 
the first selected point had minimum normalized summation 
of angles errors and maximum normalized summation of 
control efforts. However, the third point was opposite to the 
first one. It had maximum normalized summation of angles 
errors and minimum normalized summation of control 
efforts. The second well-chosen point could be the trade-off 
optimum choice.
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