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ABSTRACT: This paper investigates the problem of controlling a team of quadrotors that cooperatively 
transport a common payload. The main contribution of this study is to propose a cooperative control 
algorithm based on a decentralized algorithm. This strategy is comprised of two main steps: the first 
one is calculating the basic control vectors for each quadrotor using Moore–Penrose theory aiming at 
cooperative transport of an object and the second one is combining these vectors with individual control 
vectors, which are obtained from a closed-loop non-linear robust controller. In this regard, a nonlinear 
robust controller is designed based on Second Order Sliding Mode (SOSMC) approach using Extended 
Kalman-Bucy Filter (EKBF) to estimate the unmeasured states which is capable of facing external 
disturbances. The distinctive features of this approach include robustness against model uncertainties 
along with high flexibility in designing the control parameters to have an optimal solution for the 
nonlinear dynamics of the system. Design of the controller is based on Lyapunov method which can 
provide the stability of the end-effecter during the tracking of the desired trajectory. Finally, simulation 
results are given to illustrate the effectiveness of the proposed method for the cooperative quadrotors to 
transport a common payload in various maneuvers.
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1- Introduction
The cooperative control of multiple vehicle systems despite 
its wide range of practical applications requires tackling 
important theoretical and practical challenges which have 
attracted many researchers in recent years. Formation control 
problems for multiple vehicle systems can be categorized 
with applications to unmanned aerial vehicles (UAVs), 
autonomous underwater vehicles, cooperative transport, 
mobile robots, cooperative role assignment and cooperative 
search. In this paper, we seek to drive a control algorithm 
for cooperation between quadrotors that allow the robots 
to control their position and angles to grasp and transport 
a common payload in various maneuvers. The controller is 
designed to move the object by two or more quadrotors. 
To make a framework for interplay between a group of 
quadrotors and payload, many control schemes have been 
extensively used to solve the problems of creating formation 
control for UAVs. Some of them have focused on centralized 
and leader-follower approach to access interaction between 
cooperative quadrotors and payload [1-7]. Although these 
methods have acceptable results on small robotic systems 
but suffer from several disadvantages including high 
computational complexity of centralized methods in large-
scale systems and possibility of disappearing the group 
formation in leader-follower strategy due to not receiving the 
position of leader by the followers.
In this regard, there is a plethora of research in cooperative 
multi-robot controller design based on decentralized control 
methods which can solve a significant number of problems 
in cooperative control strategies and benefit also from the 

advantages such as decreased number of sensors and fast 
performance. In [8], the problem of cooperation by a team 
of ground robots is addressed under quasi-static assumptions 
based on decentralize controllers considering a unique solution 
to robot and object motion. Also, transporting a payload 
by aerial manipulation using cables based on decentralized 
control is studied in [9,10]. In other research, cooperative 
aerial towing-based decentralized mechanism is studied 
[11]. The authors of [12] employ bilinear matrix inequalities 
to present optimal solutions for decentralized nonlinear 
multi-agent systems. Despite the numerous advantages of 
decentralized methods, there are still some critical issues 
related to the performance of the control system in presence 
of disturbances and uncertainties.
On the other hand, some of the most popular control schemes 
for uncertain nonlinear systems are based on discontinuous 
schemes; in particular, sliding mode controllers (SMC) 
have shown robustness against uncertainties and matched 
disturbances [13-18]. Moreover, the finite-time convergence 
of SMC as well as their simplicity have made them suitable 
for a large variety of applications such as designing a robust 
formation control scheme. A high order sliding mode concept 
can effectively reduce the chattering while keeping the 
invariant characteristics in the sliding mode. Some successful 
implementations of high order (second order) SMC schemes 
in UAVs have been reported in [19,20]. Also, in [21] a robust 
second order sliding mode controller was proposed for the 
attitude stabilization of a four-rotor helicopter. This controller 
was able to overcome the chattering phenomena in classical 
sliding mode control while preserving the invariance 
property of sliding mode. In [22], using an equivalent Corresponding author, E-mai: f.ehyaei@eng.ikiu.ac.ir
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approach, the performance of control system was improved 
by using a second-order sliding mode control (SOSMC) for 
second-order uncertain plants. An adaptive SOSMC with a 
nonlinear sliding surface was introduced in [23] and a linear 
switching surface was proposed for similar underactuated 
systems in [24]. Wind as a disturbance source has also 
been considered in the flight process of the quadrotor to 
demonstrate the robustness of the control algorithm [25,26]. 
So, SOSMC is a suitable method for controlling uncertain 
(and possibly disturbed) nonlinear systems, specially UAVs, 
where the necessity of robust tracking schemes, as well as 
fast convergent algorithms is crucial.
Hence, in this paper, a decentralized robust optimal controller 
is designed for a group of UAVs in a formation which enables 
manipulation of a common payload in three dimensions. Our 
cooperative control algorithm is comprised of two parts. In the 
first part, basic control vectors, which guarantee the optimal 
performance of the coupled system, are determined using 
Moore-Penrose theory. In the second part, individual control 
vectors are designed for each quadrotor which can guarantee 
robustness of the coupled system against uncertainties 
and disturbances. Moreover, a combination of second 
order sliding mode controller with an optimal cooperative 
algorithm is employed to control all the quadrotors such 
that a soft touching occurs between the object being carried 
and the cooperative quadrotors. A nonlinear filter equivalent 
to well-known Extended Kalman-Bucy filter (EKBF) in a 
continuous-time stochastic system has also been developed in 
our work to improve the estimation accuracy and robustness 
of the system. The simple design and implementation and 
accurate estimation of state variables under noisy condition 
make EKBF suitable for robotic manipulators and other 
industrial applications. 
Finally, the proposed controller successfully rejects the 
external disturbances (e.g. wind effect) for cooperative 
quadrotors. The other advantages of using this approach are 
from simple implementation and flexible parameter learning 
to design criteria customization. The simulation results show 
the effectiveness and superior performance of the proposed 
control strategy for transporting a common payload in various 
maneuvers by cooperative quadrotors. 
The subsequent parts of this paper are as it follows. First of 
all, developing a model for a single quadrotor and modeling 
of a team of UAV’s rigidly attached to a payload is discussed 
in Section 2. In Section 3, the Extended Kalman Bucy 
Filter is described briefly. Section 4 proposes cooperative 
control algorithms defined with respect to the payload that 

stabilizes the object along three dimensional trajectories 
based on a SOSMC incorporated with optimal Moore-
Penrose theory. We review and analyze experimental study 
with teams of quadrotors cooperatively grasping, stabilizing, 
and transporting payloads in Section 5. It includes point-to-
point path planning and trajectory tracking. Finally, Section 
6 concludes the paper with some future improvement 
suggestions.

2- Mathematical Modeling and Coordinate Reference 
Frame
2- 1- Dynamic Model of single quadrotor
Fig.1 shows the configuration of our quadrotor system that can 
fly in all directions and has no limit on maneuver. Two main 
reference frames are considered: model frame, { }, ,x y zE E E E= , 
and the body-fixed reference frame, { }, ,x y zB B B B= . In this 
nomenclature, ξ [ ], , Tx y z= and [ ], , Tη ϕ θ= Ψ  are the position 
and orientation vectors in reference E . ( )1,2,3,4iF i =  is 
the thrust force produced by four rotors. The full quadrotor 
dynamical model with the  , ,x y z  motions as outcome of a 
pitch, roll and yaw rotation is [27]:
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in which  im  is considered as mass of one quadrotor; also k  
and b  represent the thrust and drag coefficient, respectively. 
The input 1U  is related to the total thrust; while the inputs 

2 3 4, ,U U U  are related to the rotations of the quadrotor and 
 , , , , , x y z ϕ θω ω ω ω ω ωΨ  are external disturbances, jr  denotes 

the inertia of the z-axis and 1 2 3 4Ω = −Ω +Ω −Ω +Ω   is the 
overall residual propeller angular speed. The model in Eq. (1) 
can be rewritten in a state-space form, ( ),f U=X X , where 

[ ]
 ÿ

1 12, .., , , , , , , , , , , ,  
T

x x y y z zϕ ϕ θ θ ψ ψ = …… =   
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is the state vector of the system.

Assumption 1 .It is assumed that the roll ,pitch and 
yaw angle satisfy the conditions ( )   / 2 tϕ π<  ( ),   / 2tθ π<  

 ,   and ψ π<   for t ≥ 0

Fig. 1. Configuration frame of a quadrotor [27]
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2- 2- Dynamic Model of Coupled System
According to Fig.2 , we consider a group of 4 quadrotors 
jointed through a fixed interaction to the cross object 
coordinate frame  B . The axes of the coupled system are 
described as body frame axes and each UAV has an individual 
body frame iQ  where { }1,2, ,i n= …  and  n is the number of 
UAVs in the group. For extracting the dynamic model of 
the coupled system we assumed the quadrotors are rigidly 
connected to the object and also, the center of mass of the 
system is intended as the origin of the rigid-body coordinate 
system. Therefore, the motion formulation for each quadrotor 
can be written as:

¨
Qii i Bm z m g= − + iF  ,                                                                    (3)

where  BiF  is lift force generated by  each quadrotor. By 
applying Newton’s second law to the payload, we have:

¨
QBi Lm Z m g= −  ,                                                                             (4)

where Lm  is the mass of the object. Since, all the forces are 
used for lifting and moving toward the positive Z  direction, 
the equation of motion for the coupled system can be easily 
written as:

B 1 2 3 4, Lmz mg m m m m m m= − + = + + + + F  

1 2 3 4 m m m m m= + + + +        			          (5)

which  BF  is the total lift force imposed by all quadrotors 
and m  is sum  of the quadrotors and object’s mass. Hence, 
the rotor forces can be rewritten as a total force from each 
quadrotor , q iF . By considering each UAV’s generated 
forces and moments in its own frame, we need to develop 
a relationship between the behavior of the system and the 
agents. Finally, the equation of motion for the coupled system 
is obtained as it follows [28]:
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where xBM , y BM , z BM  are the body moments in the QiZ  
direction as shown in Fig. 2. Also, ,q iF  is the total force from 
each quadrotor and ,xq iM , ,yq iM , ,zq iM  are moments around 
each quadrotor’s body frame axis.

3- Nonlinear Observer Based on EKBF
The Extended Kalman Bucy Filter is considered as an optimal 
recursive estimation algorithm for calculating the states of 
a nonlinear stochastic system with uncorrelated Gaussian 
process and measurement noise. EKBF is designed by 
determining the filtering and prediction equations. Consider 
a nonlinear stochastic system with uncorrelated Gaussian 
process and measurement noise as it follows [29-31]:

( ) ( )( ) ( ) ( )d t t ,  t dt G t d t ,  t= + ∀ ∈x f x w 

( )k k k k, t   = +Z h x v
(7)

where ( )tx  is the state vector and kZ  is the measurement 
vector. ( )tw  and k  v denote the state and measurement noise, 
a noise that apply to the system state variables in kalman filter 
process. In filtering step, the estimation of error covariance 
matrix is determined by:
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 The estimated parameters by kalman filter have indicated by 
notation prime. and Kalman filter gain is computed as:
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where kR  represents the covariance matrix of the sensor 
noise. In prediction step, we have:
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where ( )( )´  ˆ t , tF x  and ( )´
k k ˆ , tH x   are the Jacobean matrixes 

of ( )( )t ,  tf x  and ( )k k, th x evaluated at ( )´ˆ tx  respectively. 
Moreover, ( )tQ  represents the power of measurement noise. 
After applying EKBF on system, the estimated is shown as
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where 4 4nˆ ×∈X   is a constant vector containing the states of 
translational and rotational subsystems.

Remark 1. Usually, in a real application, the “true” states 
are not available and the states are estimated from the 
measurement system. To design the controller based on the 
“estimated” states using a Kalman filter, although the choice 
of the assumed covariance matrices andQ  R  can have a 
significant effect on the estimation performance, it is also 
necessary to decrease the sampling time sufficiently. In this 
regard, one can observe that both parameters andQ  R  have a 
direct relation with sampling time which means that lowering 
the sampling time leads to a decrease in the estimation error 
and directs the estimated values toward the “true” states. 
Therefore, in this paper, in order to ensure that the “true” 
states converge to the desired values using the estimated 
states, the following conditions will be considered based on 
simulations:

( ) 1 00000;             ,         0.0001;       ≥ ≤N number of time steps dt Sampling time s,

( ) 1 00000;             ,         0.0001;       ≥ ≤N number of time steps dt Sampling time s ,

( ) ( )  * 1: ;     =t dt N time vector s
in which, to attain more accurate results in simulations, the 
sampling time is defined considering a constraint on the 

Fig. 2. The coordinate Cooperative quadrotor system [27]
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upper limit of input frequency of the desired value (i.e. 0.5Hz 
in this paper). This computational method is based on trial 
and error strategy to minimize an ITAE cost function of 
estimation error.

4- Cooperative Control Strategy
In this section, the perfect state cooperative guidance 
controller of UAV presented in [28] will be developed to 
achieve a decentralized control strategy with superior results 
regarding state estimation. Therefore, the problem considered 
in this part is separated in two steps: the first step focuses 
on designing the basic control vectors for n quadrotors 
using the Moore-Penrose theory based on estimated state 
variables which are generated by EKBF, and the second step 
describes how to determine individual control vectors by 
SOSMC. Finally, the cooperative control algorithm can be 
extracted by combining the individual control vectors and the 
basic control vectors.

4- 1- Deriving Basic Control Vectors of Cooperative Control 
Law
By using all force vectors of the coupled system in linear 
system (6), four equations for 4 quadrotors can be established 
as follows:

, , ˆ,
T

B xB yB zB u  = F M M M X (12)

where 4nu∈  includes 4 control input vectors for each  n
quadrotor:
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Now, consider the following cost function to minimize the 
control inputs [28]:
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in which , , ,Fi Mxi Myi MziΛ Λ Λ Λ  are the weight of each of the 
control inputs. By considering the features of mathematical 
theory of Moore-Penrose inverse, point-wise minimization of 
the function  J  will be accrued and an optimal control vector 
can be written as [28 ]:
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Also, according to this fact that all quadrotors have a common 
role in lifting the object off the ground and equal partnership, 
the body force F and yaw torque produced by each of them 
is almost equal. Therefore, the basic control vectors which 
include total force, yaw, pitch and roll moment generated for 
the coupled system structure are obtained as follows:
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Therefore, four basic control vectors for n cooperative 
quadrotors obtained according (16) and in the in the next 
section the individual control vectors, , , , , 

qn qn qn qn

T
des des des des

B xB yB zB
 
 F M M M

will be established. Finally, by combination of two set of 
mentioned vectors, the cooperative control vectors will be 
defined as it follows:

, , , , , ,
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T
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4- 2- Deriving Individual Control Vectors of Cooperative 
Control Low
In this section, determining individual control vectors of 
cooperative control strategy based on second order sliding 
mode  technique is supposed to asymptotically perform 
position and attitude tracking of the quadrotors in order to 
generate a robust solution. Now, to complete the cooperative 
algorithm, using tracking errors of state variable(s), a 
switching sliding surface is considered for the whole 
subsystem (rotational or transitional). The sliding manifolds 
based on SOSMC are chosen as it follows [32, 33]:
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I Iy Iz jrU S S
l Ix Ix

ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ

α
ϕ ϕ ϕ θψ θ κ ω

α α
 −    = − + − + Ω+ +Υ −       

 

 



( ) ( )ˆ1
ˆ ˆ ˆ3 2

ˆ ˆ2 2

1ˆ ˆ ˆ ˆ  sgny
d d

I Iz Ix jrU S S
l Iy Ix

θ
θθ θ θ

θ θ

α
θ θ θ ϕψ ϕ κ ω

α α

  −  = − + − + Ω+ +Υ −       



  

 

( ) ( ) ˆ
1

4 3
2 2

ˆ
ˆ ˆ

ˆ ˆ

1ˆˆ ˆ [ sgn ]z
d d

I Ix IyU S S
l Iz

ψ
ψ ψ ψ ψ

ψ ψ

α
ψ ψ ψ ϕθ κ ω

α α
 −  = − + − + +Υ −  

   



 

 

(20)

where ˆ1 2 3 ˆ ˆ, , , , , 0 .ϕ ψθ
κ κ κ Υ Υ Υ >  Now for transitional 

subsystem, the objective is to guarantee the state variables 
[ ]ˆ ˆ, , ˆx y z  converge to the desired values [ ], ,d d dx y z , 
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respectively. The time derivatives of the sliding manifolds of 
rotational subsystem are obtained,

ÿ ¨ ¨

1 2ˆ ˆ ˆˆ ˆdx x d xα α   = − + −   
   



S x x x x

ÿ ¨ ¨

1 2ˆ ˆ ˆ ,ˆˆy y d y dα α   = − + −   
   



S y y y y

ÿ ¨ ¨

1 2ˆ ˆ ˆ .ˆˆ dz z d zα α   = − + −   
   



S z z z z

(21)

By generating ( ) ( )ˆx xˆ ˆ ˆ   ,    ,ˆ ˆ ˆ ˆ ,sgn x y zκ= − −Υ =




x xS S S x  and by 
considering [ ] 4,5,6 , ∈ the associated control inputs are 
defined as:

( ) ( )
2

ˆ
ˆ ˆ ˆ

ˆ ˆ

¨
1

4
1 2

1ˆ sgnx
dx d x x x x

x x

mU x x x S Sα κ ω
µ α α

 
 = − + + + Υ −  

 




,

( ) ( )ˆ
ˆ ˆ

ˆ

¨
1

2 2 ˆ
5 ˆ

2

1ˆ sgny
y d y y y yd

y y

mU y y y S S
α

κ ω
µ α α

   = − + + + Υ −    




,

( ) ( )
ˆ

¨
1

1 6
3 2 2

ˆ
ˆ ˆ ˆ

ˆ

1ˆ [ sgn ] z
dd z z z z

z z

mU z z z g S Sα κ ω
µ α α

 
= − + + + +Υ − 

 




,

(22)

where 6 ˆ ˆ ˆ4 5, , , , , 0x y zκ κ κ Υ Υ Υ > . In addition, the terms 1 2 3, ,µ µ µ  
are:

( ) ( )2 1 3
ˆ, ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ,  cos sin sin sin sin cos sin cos sin sin cos cosµ ϕ θ ψ ϕ ψ µ ϕ θ ψ ϕ ψ µ ϕ θ= − = + =

( ) ( )2 1 3
ˆ, ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ,  cos sin sin sin sin cos sin cos sin sin cos cosµ ϕ θ ψ ϕ ψ µ ϕ θ ψ ϕ ψ µ ϕ θ= − = + =

(23)

To synthesize a stabilizing control law by second order 
sliding mode, the sufficient condition for stability of the 
system, i.e. ( ) xˆ ˆ ˆ ˆ. .x xV = < −

xS S SS  , where ℒ is the positive 
value ( 0)> ,  must be verified. The time derivative of ( )x̂V S  
satisfies  ˆ x̂. 0<xS S . Thus, a Lyapunov function can be written 
as ˆ ˆ

1
2

TV = ∑ x xS S , that one can describe as :

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ
1V
2

T T T T T T
x x y y z z ϕ ϕ ψ ψθ θ

= + + + + +xS S S S S S S S S S S S S
.

(24)

The chosen law for the attractive surface is the time derivative 
of

( ) ˆˆ ˆ ˆ
2

x ˆ x̂V .  0κ= = − −Υ ≤




x x xS S S S xS (25)
Therefore, according to (25) the time derivative of final 
Lyapunov function ( )ˆV xS is as:

( )

( )

2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4 5 6

ˆ 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 2 3

2
ÿ ¨

ˆ ˆ ˆ ˆ4 1 2 1

ˆ ˆ ˆ5 1

ˆˆ ˆ ˆ ˆˆ cos sin cos sin sin

x x x y y y z z z

x

dx x x d x x

y y

S S S S S S
V S

S S S S S S

lS x x x U
m

S

ϕ ϕ ϕ ψ ψ ψθ θ θ

κ κ κ

κ κ κ

κ α α ϕ θ ψ ϕ ψ ω

κ α

 − −Υ − −Υ − −Υ
 = =
 − −Υ − −Υ − −Υ 

    − −Υ − + − + +          

− −Υ





( ) ( )

( )

2
¨

ˆ2 1

2
ÿ ¨

ˆ ˆ ˆ ˆ6 1 2 1

ÿÿ ¨ ÿ

ˆ ˆ ˆ ˆ1 1 2

ˆˆ ˆ ˆ ˆˆ cos sin sin sin sin

ˆˆˆ cos cos

ˆˆ ˆ

y d y yd

dz z z d z z

dd

ly y y U
m

lS z z z g U
m

Iy Iz jrS
Ixϕ ϕ ϕ ϕ

α ϕ θ ψ ϕ ψ ω

κ α α ϕ θ ω

κ α ϕ ϕ α ϕ θψ

   − + − − +   
   

    − −Υ − + − − + +          

−  − −Υ − + − −      





2
ÿ

2

2
ÿ ÿ̈ ÿ ÿ

ˆ ˆ ˆ ˆ2 31 2

ÿ ¨ ÿ

ˆ ˆ ˆ ˆ3 1 2 4

ˆ

ˆ ˆ ˆ ˆ

ˆˆ ˆ

x

dd

dd

l U
Ix I

Iz Ix jr lS U
Iy Ix y

Ix Iy lS U
Iz Iz

ϕ

θθ θ θ θ

ψ ψ ψ ψ ψ

θ ω

κ α θ θ α θ ϕψ ϕ ω

κ α ψ ψ α ψ ϕθ ω

   
Ω+ +        

      −
− −Υ − + − − Ω+ +              

 −  − −Υ − + − + +      





2
  
     

(27)

Thus, under the control laws extracted from SOSMC approach 
( )1 4, ., , ,x yU U U U… , all the system state trajectories can reach 
at and stay on the associated sliding surfaces, respectively, 
and guarantees asymptotic stability of closed loop system.

Remark 2. Note that signum function which appears in 
second order sliding mode controllers and filters can cause 
chattering phenomena, or high-frequency oscillations of 
control variables. This problem can be avoided by replacing 
discontinuous signum function with an appropriate continuous 
approximation such as ( ) ( )/ ε≈i i isign s tanh s .
Finally, individual control vectors in (20) and (22) that are 
generated using SOSMC method, represented by parameters 
which are equivalent of 

, , ,,( , , , )
q n q n q n

des des des des
q n x y zF M M M  . Thus the 

individual control vectors for cooperative strategy are defined 
as follows:

( )
11 11 11

ÿ
ˆ

6 ˆ ˆ ˆ
ˆ

¨
1

12,
3 2

tanˆ h
qn qn qn

des z
qn dq n d zX X X

z

mF z X z g S Sα κ ω
µ α

   = − + + + +Υ −  
   



( ),

1 1 1

ÿ ÿ ÿ¨ˆ1
2 3 5

ˆ2
ÿ

3 ˆ ˆ ˆ1
ˆ2

ˆ ˆ ˆ

1ˆ tanh
q n

qn qn qn

qn qn qndd
des x
x

qn X X X

Iy IzX X X
I IxM

jrl X S S
Ix

ϕ

ϕ

ϕ
ϕ

α
ϕ ϕ

α

κ ω
α

   − − + −       =  
  + Ω+ +Υ −    



( ),

3 3 3

4
ˆ

ÿ ÿ ÿ¨
1

1 5

2
ÿ

1 2
2

ˆ

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ

ˆ t1 anh
q n

qn qn qn

qn qn qndd
ydes

y

qn X X X

Iz IxX X X
I IyM

jrl X S S
Ix

θ

θ

θ
θ

α
θ θ

α

κ ω
α

    −
− + −       =  

  + Ω+ +Υ −    



( )
,

5 5 5

ÿ ÿ ÿ¨ˆ1
6 1 3

ˆ2

ˆ ˆ ˆ3
ˆ2

ˆ ˆ ˆ

1 [ tanh ]
q n

qn qn qn

qn qn qndd
des z
z

X X X

Ix IyX X X
IzIM

l
S S

ψ

ψ

ψ
ψ

α
ψ ψ

α

κ ω
α

   − − + −    
   =  

 + + Υ −  



(28)

In these equations ˆqnX  is the estimated state vector. Therefore: 

( ) ( )

( ) ( )
9

7 7

9 9

7

1
10 5

2

4
ˆ1

ˆ ˆ ˆ8
ˆ 2

ˆ
ˆ ˆ ˆ

ˆ ˆ

2

2 2

ˆ1

1ˆ tanh

1ˆ tanh

qn qn qn

qn qn qn

x
x d qn d xX X X

y
y d qn d yX X X

y

x x

y

mU

mU y X y S S

x X x S S

α
κ

α κ ω
µ α α

ω
µ α α

   =


 

+

= − + + +

− + +Υ −    

Υ −    







 





(29)

and:

( )1 1 3 5 1 5
ˆ ˆ ˆ ˆ ˆ

qn qn qn qn qncos sin sin sin sinµ = +X X X X X

( )2 1 3 5 1 5
ˆ ˆ ˆ ˆ ˆ

qn qn qn qn qncos sin sin sin sinµ = − XX X X X

3 1 3 ˆ ˆ
qn qncos cosµ = X X

(30)

4- 3- Final Cooperative Control Vectors
Now, according to Eq. (17) the cooperative control vectors 
for each independently designed quadrotor can be described 
as follows: 

1 ,1 1 ,1 1 ,1

1

2 ,2 2 ,2 2 ,2
2

3
3 ,3 3 ,3 3 ,3

4

1 ,1

2 ,2

3 ,3

q q q q q q

q q q q q q

q q q q q q

des des des des
Fq q x x y y z z

coop Q des des des des
Fq q x x y y z zcoop Q

des des des descoop Q Fq q x x y y z z
coop Q

+ + +
 
  + + +
  =
  + + +
 
 

M M M

M M M

M M M

U F U M U M U M
U

U F U M U M U MU
U U F U M U M U M
U

4 ,4 4 ,4 4 ,44 ,4 q q q q q q

des des des des
Fq q x x y y z z

 
 
 
 
 
 
 + + + M M MU F U M U M U M

  (31)

5- Simulation Results
In order to illustrate the efficiency of the designed controller, 
a set of numerical simulations are carried out. The parameters 
for simulation of a sample cooperative quadrotors model 
are set as shown in Table 1 [30] and the factor of weight of 
control inputs is set as 1

400
Mxy

F

Λ
=

Λ
. 

According to Item(4) Also in Eqs. (7)-(11) of the EKBF 
estimator, ( )tQ  is considered as a diagonal matrix of 
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form 3 4
7 7 5 510 * ,10 *− −
× × =  Q   , ( ) [ ]´

12 12ˆ ,k kt ×=H x   and 
4 4

7 7 5 510 * ,10 *k
− −

× × =  R   . Furthermore, state noise is set 
as ( ) 6 4wgn 10 ,1,10 , lineart − =  w  and measurement noise is 
assumed as 6wgn 10 ,1,1, lineark  =  v  and the Jacobean matrix 
is set as: 

( )( )

1 6 1 4

3 6 3 2

´ 2 6 1 4

0 1 0 0 0 0 0 0 0 0 0 0
ˆ ˆ0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
ˆ ˆ0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0
ˆ ˆ0 0 0 0 0 0 0 0 0 0ˆ , 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

a a

a a

a at t

 
 
 
 
 
 

=  
 
 



 

x x

x x

x xF x





(32)

where

1 2 3, , y z x y z x

x z y

I I I I I Ia a a
I I I
− − −

= = =
.

(33)

To investigate the effectiveness of proposed cooperative 
controller, two cases are considered. The first case of grasping 
is a payload transporting by cooperative quadrotors from 
different initial conditions of each UAVs for point-to-point 
path tracking. The second case considers grasping and then 
manipulation by tracking a predefined trajectory. 

Hence, the wind field effect as a destructive factor is shown in 
Fig.3. The wind velocity component ( )tω  is expressed with 
respect to an inertial coordinate frame  , , x y z . This disturbance 
has a time varying value which is introduced as follows:

( )
( )
( )
( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

20 20 20
0.5sin 0.2sin 0.06sin

20 10 5
30 30 30

ù 0.5sin 0.2sin 0.06sin
20 10 5

40 40 40
0.5sin 0.2sin 0.06sin

20 10 5

x

y

z

t t t

t t t t
t t

t
t t t

π π π

ω π π π
ω
ω

π π π

 − − −     
+ +     

       − − −      = = + +              − − −     
+ +     

     

m
s


 
 
 
 
 
 
 



(34)

Remark 3. Genetic algorithm (GA) is a heuristic search 
method used in artificial intelligence and computing. It is used 
for finding optimized solutions to search problems based on 
the theory of natural selection and evolutionary biology. After 
an initial population is randomly generated, the algorithm 
evolves the following three basics: reproduction, crossover, 
and mutation. The most important feature of this method is a 

Fig. 3. Artificial wind gust generating setup

Table 2. Controller parameters

       Item             Value           Item            Value          Item           Value              Item            Value            Item            value

       ˆ1xα               3.58            ˆ1ϕα               8.05           x̂Υ             6.32               1κ                3.04              1ε              0.0008

       ˆ2xα               5.05           ˆ2ϕα              13.65          ŷΥ            4.12                2κ               1.24              2ε              0.0008

       ˆ1yα               3.40            ˆ1θα               1.89           ẑΥ             3.65               3κ               2.76              3ε              0.0008

       ˆ2 yα               2.60           ˆ2θα                0.43          ϕ̂Υ             4.34               4κ               3.86               4ε             0.0007

       ˆ1zα                3.60           ˆ1ψα               4.26           
θ̂

Υ             7.14               5κ               1.33             5  ε             0.0007

       ˆ2zα               1.68           ˆ2ψα               5.01           ψ̂Υ             5.96              6κ                4.56              6ε              0.0007

Table 3. quadrotors’ initial position conditions

  quadrotor1        quadrotor2        quadrotor3       quadrotor4

0 0 0 00                 2.5              2.5             0x x x x= = = =

0 0 3 40                 0                 2.5             2.5y y y y= = = =
	

0 0 3 40                 0                  0                0z z z z= = = =

 Fig. 4. Tracking simulation results of desired trajectories of position 

Table 1. Structural parameters [30]

Parameter                Definition             Value        Unit

m                 Mass of quadrotor      1.80             kg
l                  Arm length                 0.42              m

   rj               Rotor inertia      3.35 510−×          kg 2m
   xI                 X inertia            2.16 310−×         kg 2m

 yI                 Y inertia            2.16 310−×       kg 2m
  zI                  Z inertia            4.52 210−×       kg 2m
   b                  Trust factor        2.98 610−×         N

2.s
    d                 Drag factor        2.25 210−×       N 2.m s
     g                 gravity                9.81                  2/m s
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way to transform the system output to the cost function. This 
cost function is as it follows:

( ) ( ) ( ) ( )
0

ˆ ˆ1
2

T TJ X t X t U t U t dt
∞

 = + ∫ ç ã
 

(35)

The GA operator values are determined after several 
experiments. In this regard, the population size is set as 160, 
crossover is considered scatter and its value is 0.6, mutation 
is set as 0.4 and type of probability is chosen as Gaussien. 
Also η and γ are selected  as [ ] [ ]3 2

12 12 12 1210 , 10η γ× ×= =  . The 
parameters of proposed controller, obtained by GA, have 
been presented in Table 2.

5- 1- Point to point path tracking
Initial conditions of Euler angles of each quadrotor are set as
[ ] [ ], , 0.3, 0.5, 0.6 Tϕ θ ψ = . For the first simulation desired point 
configuration is [ ] [ ], , 2, 2, 2 Tx y z = . The external disturbance 
that is wind field effect is considered according Eq.(34). The 
payload on the end-effector is considered 2.5 kg while the 
controller is designed for 1.80 kg which is the mass of end-
effector in order to examine the efficiency of the controller 
in presence of payload uncertainty. The position and attitude 
angle responses of all quadrotors in the presence of wind field 
appear in Fig.4 and 5. Once more, the reference trajectories 
are tracked within the first 5s. Also, Fig.5 demonstrates the 
convergence of all the quadrotors attitude angles to 0 in a 
short time. The position tracking errors of each quadrotor 
are also shown in Fig.6 which illustrates that the position 
errors converge to zero in a reasonable time. Moreover, the 
fast convergence obtained for the tracking error ensures the 
solution of the quadrotor path tracking problem. The top view 
and global trajectory of quadrotors in 3D space are shown 
in Fig.7 and 8. Therefore, the numerical simulation results 
for point-to-point path tracking in a three dimensional space 
showed the superior performance of the controller proposed 
in this study.

5- 2- Predefined trajectory tracking
A set of numerical simulations are executed to evaluate the 
efficiency of the controller proposed for a case that end-
effector must track a predefined trajectory. The important aim 
of the simulation in this subsection is to track the following 
desired trajectory by the group of quadrotors:

0.05sin , 0.05  , 0.032t 0.8
2dqn dqn dqn

tx y zπ+ = = − = − + 
 

(36)

The position and attitude angle responses of the system in 
presence of wind field effect in predefined trajectory tracking 
are shown in Figs.9 and 10. The proposed controller stabilizes 
the attitude angle at 0 rad in a short time. It can be seen that 
the control inputs are smooth and free of any chattering. 
The tracking trajectory of all quadrotors appear in Fig.10. It 
is shown that even though the position and attitude of the 
quadrotors are affected by the abruptly changed reference 

Fig. 5. Tracking simulation results of desired trajectories of angle (φ, θ, ψ)

Fig. 6. Error tracking of position (x, y, z)

Fig. 7. Top view trajectory tracking for the Cross conf.

Fig. 8. Global trajectory of the quadrotor position
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positions and angles, the controller is able to drive all these 
state variables back to the new reference position and angle 
within seconds which is a mandatory characteristic to control 
a system such as the quadcopter. The top view trajectory 
tracking and trajectory of all quadrotors in 3D space are 
shown in Fig.11 and 12. We see that the system performs well 
and tracks the desired trajectory in three-dimensions. Results 

indicate that quadrotors lift up and down the object, and 
stable grasp has been achieved. Moreover, the aerodynamic 
forces and moments and air drag are taken into account in 
the controller design which demonstrate the robustness and 
effectiveness of the designed cooperative control scheme.
The behavior of the sliding variables, shown in Fig.13, follows 
the expectations as all these variables converge to their sliding 
surfaces. Moreover, the position and velocity tracking errors 
of the system state variables are perfectly explained by the 
fluctuations of these sliding variables. Finally, Fig.14 shows 
the stability rotor speed response of a Quadrotor during 
hovering. The control inputs are smooth and the chattering 
phenomenon is decreased using the proposed controller. The 
amplitudes of the control inputs are also practically realizable 
and small. In a practical sense, the energy reduction enforces 
a longer autonomous flying period for the quadrotor which is 
still a major problem for this kind of mobile robots.

6- Conclusion and Future Works
In this paper, the problem of controlling multiple quadrotors 
that cooperatively manipulate and transport a payload 
in three dimensions was properly addressed. An optimal 
decentralized control algorithm based on second order sliding 
mode controller (SOSMC) approach using extended kalman-
bucy filter (EKBF) as an observer has been proposed for a 
group of cooperative quadrotors. First, a model for a single 
quadrotor and then a team of quadrotors rigidly attached to 
a payload were developed. Individual robot control laws 
were introduced with respect to the payload to stabilize the 
payload along three-dimensional trajectories. This method 
offers an efficient and systematic procedure to solve a non-
linear closed-loop optimal robust control problem. In order to 
validate the efficacy and optimality of the proposed method, 
simulation results were presented. Simulation results suggest 
that our method demonstrates better performance in the 
presence of external disturbances and parametric uncertainties 
such as wind field effects. Qualities of high accuracy, small 
position errors, minimum influence of the nonlinearities on 
the performance of cooperative UAVs, and versatility to a 
variety of maneuvers are other advantages of our proposed 
method. As a future work, the authors seek to develop a multi-

Fig. 9. Tracking simulation results of desired trajectories of angle (ϕ, θ, ψ)

Fig. 10. Tracking simulation results of desired trajectories of position (x, y, z)

Fig. 11. Top view trajectory tracking for the Cross conf.  

Fig. 12. Global trajectory of the quadrotor position
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stage sliding controller to maintain the states at desired values 
while using the Load Sharing approach among multiple 
agents in order to improve design performance gained in this 
paper.
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