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ABSTRACT: Statistical inference for extremes has been a subject of intensive re-
search during the last years. In this paper, we generalize the Marshall-Olkin bivari-
ate Pareto distribution. In this case, a new bivariate distribution is introduced by
compounding the Pareto Type II and geometric distributions. This new bivariate
distribution has natural interpretations and can be applied in fatal shock models or
in competing risks models. We call the new proposed model Marshall-Olkin bivariate
Pareto-geometric (MOBPG) distribution, and then investigate various properties of
the new distribution. This model has five unknown parameters and the maximum
likelihood estimators cannot be afforded in explicit structure. We suggest to use the
EM algorithm to calculate the maximum likelihood estimators of the unknown param-
eters, and this structure is quite flexible. Also, Monte Carlo simulations are performed
to investigate the effectiveness of the proposed algorithm. Finally, we analyze a real
data set to investigate our purposes.
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1. Introduction

Statistical modeling of extreme values has been extensively developed during the last decades. Also, Many
studies apply this model to a wide range of important problems such as extreme wind speeds, wave heights, floods,
insurance claims and price fluctuations.

The Pareto distribution is a skewed, heavy-tailed distribution that is sometimes used in business, economics,
actuarial science, queueing theory and Internet traffic modeling. The two-parameter Pareto Type II distribution
has the following cumulative distribution function (CDF) and probability density function (PDF), respectively:

f(x, α, λ) = αλ(1 + αx)−λ−1, x > 0, α > 0, λ > 0, F (x, α, λ) = 1− (1 + αx)−λ, x > 0, α > 0, λ > 0.

Also, Pa(α, λ) explains the Pareto distribution with the shape parameter λ > 0 and scale parameter α > 0.
The modeling of a lifetime is an important problem in a variety of scientific and technological fields. Several methods
have been proposed for multivariate survival data. For an extensive discussion of multivariate models and their
properties and applications, one may refer to [15].

In this paper, we introduce Marshal-Olkin formulation ([22]) of Pareto distribution. In the classical Marshall-
Olkin model, a system consists of two components which are exposed to shocks arriving from three sources. These
shocks are built randomly. The shock of the first source modifies the first component, the shock of the second
source modifies the second component and the shock of the third source modifies both components. The indepen-
dent exponential shock times are discussed by [22]. They conclude the joint survival function of the components
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of the system. In recent years, many articles have been devoted to the generalization of Marshall and Olkin’s
model. [22] proposed a bivariate Weibull distribution. [2], suggested a bivariate distribution using the Gompertz
and an exponential distribution. [27] introduced a bivariate distribution by generalized exponential an exponential
distribution. [19] improved the proposed model by Sarhan and Balakrishnan assuming different generalized expo-
nential distributions for the components. In this paper, we discuss a bivariate Pareto distribution whose marginals
have Pareto distributions using the proposed idea of Marshall and Olkin. This new bivariate distribution is called
the Marshall-Olkin bivariate Pareto (MOBP) distribution and several other properties of the MOBP model are
investigated.

Also, for modeling survival data, [24] introduced a procedure to add an extra parameter to a family of univariate
distributions, and considered the generalization of exponential and Weibull models in details. In this method, they
presented a class of univariate distributions. So that this class is acquired by a minimum and maximum of indepen-
dent and identically distributed continuous random variables, and the sample size has the geometric distribution.
Therefore, because of an additional parameter, the new class of univariate distributions has more flexible than the
exponential or Weibull class, respectively. In fact, continuous compounding with discrete distributions have been
presented and discussed in recent years. This method introduces distributions with great flexibility and is useful in
expanding statistical models which use in a variety of applications. Then, the same method for several distributions
is studied by many researchers, see for example [11], [12], [26], [10], [8], [5] and their references.

In fact, it can be seen that due to the lack of analyzes for bivariate distributions, there has not been much work
on these distributions and their expansion. Therefore, assuming that the failure times follow the Pareto Type II
distribution, the main aim of this paper is to generalize the Marshall-Olkin bivariate Pareto (MOBP) distribution
by the structure of [24]. In fact, this procedure obtains distributions with more flexibility. This new bivariate
distribution is called the Marshall-Olkin bivariate Pareto-geometric (MOBPG) distribution. Also, the marginals
and conditionals are univariate Pareto-geometric distributions (UPG), and they are also very flexible.

We discuss different properties of this new distribution. Because of the presence of five parameters, this model is
very flexible and the joint probability density function (PDF) has different shapes. Thus, it can be applied exactly
to analyze bivariate data. Also, the generation of random samples from the proposed bivariate model is very simple,
so, simulation studies can be done very easily.

The estimation of maximum likelihood of the unknown parameters in the MOBPG distribution cannot be
computed in closed formations. We should solve five non-linear equations simultaneously. So, there are serious
problems to solve them. One can mention the detection of the initial starting value for the algorithm and the
convergence of the algorithm. To solve this subject, we investigate it as a missing value problem and suggest using
the expectation maximization (EM) algorithm to calculate the MLEs. In this algorithm, at each E-step, we solve
one-dimensional non-linear optimization problems. Therefore, the execution of the proposed EM algorithm is very
simple. This model is very flexible and the performance is very simple, so, it provides us a choice of another bivariate
model, which may provide a better fit than the available models.

For study purposes, this article is organized as follows: a bivariate Pareto distribution of the Marshall-Olkin
type is obtained, in Section 2. Also, various properties of the new bivariate distribution are discussed in this section.
We generalize the Marshall-Olkin bivariate Pareto distribution, and a new bivariate model of the proposed method
of Marshall and Olkin (1997) is introduced. In addition, various properties of this distribution are investigated
in Section 3. The MLE of the unknown parameters are computed in Section 4. The results of the simulation
experiments and a real data set have been presented in Section 5 and finally, we conclude the paper in Section 6.

2. Model Formulation

The important purpose of this section is to create a bivariate Pareto distribution so that the marginals have
Pareto distributions using the same structure of Theorem 3.2 proposed by [22]. This distribution has wide applica-
tions in modeling, data related to finance, insurance, environmental sciences and the internet network.

2.1. Marshall-Olkin Bivariate Pareto Distribution

In this subsection, we will introduce the bivariate Pareto distribution. Suppose U0 ∼ Pa(α, λ0), U1 ∼ Pa(α, λ1),
U2 ∼ Pa(α, λ2) and they are independent. Then, we consider X1 = min{U0, U1}, and X2 = min{U0, U2}. Therefore,
the bivariate vector (X1, X2) is a bivariate Pareto distribution with the parameters α, λ0, λ1, λ2 and is displayed as
MOBP (α, λ0, λ1, λ2).

Theorem 1. If (X1, X2) ∼ MOBP (α, λ0, λ1, λ2), so, their joint survival function has the following structure for
z = max{x1, x2},

F̄X1,X2
(x1, x2) = P (X1 ≥ x1, X2 ≥ x2) = P (U1 ≥ x1, U2 ≥ x2, U0 ≥ z) = (1 + αx1)−λ1(1 + αx2)−λ2(1 + αz)−λ0 .
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Corollary 2.1. The joint survival function of the MOBP (α, λ0, λ1, λ2) can be obtained as:

F̄X1,X2
(x1, x2) = F̄CH(x1, α, λ1)F̄CH(x2, α, λ2)F̄CH(z, α, λ0)

=

 F̄Pa(x1, α, λ1 + λ0)F̄Pa(x2, α, λ2) if x2 < x1

F̄Pa(x1, α, λ1)F̄Pa(x2, α, λ2 + λ0) if x1 < x2

F̄Pa(x, α, λ0 + λ1 + λ2, λ) if x1 = x2 = x.
(1)

Theorem 2. If (X1, X2) ∼MOBP (α, λ0, λ1, λ2), then the joint PDF of (X1, X2) is:

fX1,X2(x1, x2) =

 f1(x1, x2) if x2 < x1

f2(x1, x2) if x1 < x2

f0(x) if 0 < x1 = x2 = x <∞,
(2)

where

f1(x1, x2) = α2λ2(λ0 + λ1)(1 + αx1)−(λ0+λ1)−1(1 + αx2)−λ2−1.

f2(x1, x2) = α2λ1(λ0 + λ2)(1 + αx1)−λ1−1(1 + αx2)−(λ0+λ2)−1.

f0(x) = αλ0(1 + αx)−(λ0+λ1+λ2)−1.

Proof: The phrases of f1(., .) and f2(., .) can be received by −∂
2F̄X1,X2

(x1,x2)

∂x1∂x2
for x1 < x2 and x2 < x1 respectively.

But f0(.) can not be established in a similar method. Now considering that∫ ∞
0

∫ ∞
x2

f1(x1, x2)dx1dx2 +

∫ ∞
0

∫ ∞
x1

f2(x1, x2)dx2dx1 +

∫ ∞
0

f0(x)dx = 1.

So, ∫ ∞
0

∫ ∞
x2

f1(x1, x2)dx1dx2 = λ2

∫ ∞
0

α(1 + αx2)−(λ0+λ1+λ2)−1dx2 =
λ2

λ0 + λ1 + λ2
.

and similarly, ∫ ∞
0

∫ ∞
x1

f2(x1, x2)dx2dx1 = λ1

∫ ∞
0

α(1 + αx1)−(λ0+λ1+λ2)−1dx1 =
λ1

λ0 + λ1 + λ2
.

Note that ∫ ∞
0

f0(x)dx = λ0

∫ ∞
0

α(1 + αx)−(λ0+λ1+λ2)−1dx =
λ0

λ0 + λ1 + λ2
.

Therefore, the result was obtained..

It is necessary to mention that the MOBP distribution has two parts, similar to the Marshall-Olkin bivariate
exponential or bivariate Weibull model. It has an absolute continuous part and a singular part. We know that, the
PDF of the MOBP distribution is fX1,X2

(., .) in Theorem 2. It is quite clear that the first two phrases are densities
with respect to the two dimensional Lebesgue measure and the third expression is a density function with respect
to the one dimensional Lebesgue measure. In the MOBP distribution, we have a singular part. It means that if
X1 and X2 are MOBP distribution, then X1 = X2 has a positive probability. In many applied states, it occurred
that X1 and X2 are both continuous random variables, but X1 = X2 has a positive probability, see [22]. In the
following, we will obtain some structures to investigate the absolute continuous part and the singular part of the
MOBP distribution.

Theorem 3. If (X1, X2) ∼MOBP (α, λ0, λ1, λ2). Then,

F̄X1,X2
(x1, x2) =

λ1 + λ2

λ0 + λ1 + λ2
F̄a(x1, x2) +

λ0

λ0 + λ1 + λ2
F̄s(x1, x2), (3)

where for z = max{x1, x2},
F̄s(x1, x2) = (1 + αz)−(λ0+λ1+λ2),

and

F̄a(x1, x2) =
λ0 + λ1 + λ2

λ1 + λ2
(1 + αx1)−λ1(1 + αx2)−λ2(1 + αz)−λ0 − λ0

λ0 + λ1 + λ2
(1 + αz)−(λ0+λ1+λ2).
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proof 1. Suppose A is the following event:

A = {U0 < U1} ∩ {U0 < U2}.

Then P (A) = λ0/(λ0 + λ1 + λ2) and P (A′) = (λ1 + λ2)/(λ0 + λ1 + λ2). Therefore,

F̄X1,X2(x1, x2) = P (X1 ≥ x1, X2 ≥ x2|A)P (A) + P (X1 ≥ x1, X2 ≥ x2|A′)P (A′).

Moreover, for z as defined before,

P (X1 ≥ x1, X2 ≥ x2|A) = [P (A)]−1P (U1 ≥ U0, U2 ≥ U0, U0 ≥ z)
= (1 + αz)−(λ0+λ1+λ2).

Then, we calculate P (X1 ≥ x1, X2 ≥ x2|A′) using subtraction. It is immediate that (1 + αz)−(λ0+λ1+λ2) is the
singular part as its mixed second partial derivatives is zero when x1 6= x2, and P (X1 ≥ x1, X2 ≥ x2|A′) is the
absolute continuous part as its mixed second partial derivatives is a bivariate density function.

Corollary 2.2. The joint PDF of (X1, X2) can be obtained as follows for z = max{x1, x2};

fX1,X2(x1, x2) =
λ1 + λ2

λ0 + λ1 + λ2
fa(x1, x2) +

λ0

λ0 + λ1 + λ2
fs(z), (4)

where

fa(x1, x2) =
λ1 + λ2

λ0 + λ1 + λ2

{
fPa(x1, α, λ0 + λ1)fPa(x2, α, λ2) if x2 < x1

fPa(x2, α, λ1)fPa(x2, α, λ0 + λ2) if x1 < x2,

and
fs(z) = fPa(z, α, λ0 + λ1 + λ2).

Thus, here fa(x1, x2) and fs(z) are the absolutely continuous and singular part, respectively. Also, the surface
plot of the joint probability density function of MOBP is drawn in Figure 1.

Figure 1: The shape of the joint probability density function of MOBP for various values of parameters Θ = (α, λ0, λ1, λ2) : (a)
Θ = (0.5, 1, 1.5, 2) (b) Θ = (0.75, 1, 1.5, 2) (c) Θ = (1, 1, 1.5, 2) (d) Θ = (2, 0.1, 0.5, 0.7).

It is easily seen from Theorem 3 that for fixed λ1 and λ2, as λ0 → 0,

F̄X1,X2
(x1, x2)→ (1 + αx1)−λ1(1 + αx2)−λ2 ,

therefore, X1 and X2 become independent. Moreover, since

A = (U1 < U0) ∩ (U2 < U0) = {max{U1, U2} > U0} = {X1 = X2},
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and P (A) = λ0

λ0+λ1+λ2
, therefore, as λ0 →∞, P (A) = P (X1 = X2)→ 1, i.e. X1 and X2 are asymptotically almost

surely equal. This implies that for fixed λ1 and λ2, as λ0 varies from 0 to ∞, the correlation between X1 and X2

varies from 0 to 1.

2.2. Different Properties

In this subsection, we discuss various basic properties of the MOBP model. First, we discuss the marginal and
conditional distributions of the MOBP model. An algorithm is presented to generate a random sample of MOBP
distribution. Also, the ageing properties and the bivariate hazard gradient are discussed.

Proposition 2.1. If (X1, X2) ∼MOBP (α, λ0, λ1, λ2). Then,

1) X1 ∼ Pa(α, λ0 + λ1) and X2 ∼ Pa(α, λ0 + λ2).

2) P (X1 < X2) = λ0

λ0+λ1+λ2
.

3) min{X1, X2} ∼MOBP (α, λ0 + λ1 + λ2).

Proof: They can easily be obtained.
Algorithm to generate from MOBP:

Step 1 Generate v0, v1 and v2 from U(0, 1),

Step 2 Compute

U0 =
(1− v0)−

1
λ0 − 1

α
, U1 =

(1− v1)−
1
λ1 − 1

α
, U2 =

(1− v2)−
1
λ2 − 1

α
,

Step 3 Obtain
X1 = min{U0, U1}, and X2 = min{U0, U2}.

Hence, the marginal distributions of the bivariate vector (X1, X2) are the Pareto distributions, therefore, they can
have a decreasing failure rate function.

Proposition 2.2. If (X1, X2) ∼MOBP (α, λ0, λ1, λ2). Then,

1) The conditional survival function of X1 given X2 ≥ x2, say F̄X1|X2≥x2
(x1) is an absolutely continuous survival

function as follows:

P (X1 ≥ x1|X2 ≥ x2) = F̄X1|X2≥x2
(x1) =

{
(1 + αx1)−(λ0+λ1)(1 + αx2)λ0 if x2 < x1

(1 + αx1)−λ1 if x1 < x2.
(5)

2) The conditional survival function in (5) has a presentation

F̄X1|X2≥x2
(x1) = pG(x1) + (1− p)H(x1),

where,

G(x1) =
1

p

{
(1 + αx1)−(λ0+λ1)(1 + αx2)λ0 if x2 < x1

(1 + αx1)−λ1 − λ0

λ0+λ2
(1 + αx2)−λ1 if x1 < x2,

H(x) =

{
1 if x < x2

0 if x > x2,

and

p = 1− λ0

λ0 + λ2
(1 + αx2)−λ1 .

Proof: The proofs can be obtained in a routine manner.
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2.3. Ageing Properties and Bivariate Hazard Gradient

(a) If (X1, X2) ∼MOBP (α, λ0, λ1, λ2), then for α > 1, it can be shown that

P (X1 > x1 + t,X2 > x2 + t)

P (X1 > x1, X2 > x2)
,

increases in x1 and x2 for t > 0. Thus, in this state (X1, X2) has the multivariate decreasing failure rate
(MDFR) property.

(b) [13] defined the bivariate hazard gradient as follows:

hX1,X2
(x1, x2) = (− ∂

∂x1
,− ∂

∂x2
) lnP (X1 > x1, X2 > x2).

If (X1, X2) ∼ MOBP (α, λ0, λ1, λ2), then for α ≥ 1 and all values of x1 > 0, x2 > 0, both the components of
hX1,X2

(x1, x2) are decreasing functions of x1 and x2.

2.4. Dependence

We can describe various concepts of positive and negative dependence for multivariate distributions which are
presented in the literature, see for example, [6].

(a) A random vector (X1, X2) has a positive upper orthant dependent if for all x1 > 0 and x2 > 0,

P (X1 ≥ x1, X2 ≥ x2) ≥ P (X1 > x1)P (X2 > x2). (6)

(see [20]). If (X1, X2) ∼ MOBP (α, λ0, λ1, λ2), then (X1, X2) satisfies (6). So, (X1, X2) is positive upper
orthant dependent.

(b) As we know, the connection between joint survival function and the joint CDF is as follows:

F̄X1,X2
(x1, x2) = 1− FX1

(x1)− FX2
(x2) + FX1,X2

(x1, x2).

If (X1, X2) ∼MOBP (α, λ0, λ1, λ2), then F̄X1,X2
(x1, x2) ≥ F̄X1

(x1)F̄X2
(x2) for all x1, x2. So, FX1,X2

(x1, x2) ≥
FX1

(x1)FX2
(x2) for all x1, x2, therefore, they will be positive quadrant dependent, i.e., for every pair of in-

creasing functions h1(.) and h2(.) ([7]) the following relation is satisfied:

Cov(h1(X1), h2(X2)) > 0.

(c) A random vector (X1, X2) has the right tail increasing (RTI) property if for i 6= j,

P (Xi > xi|Xj > xj). (7)

be non-decreasing in xj for all xi > 0. If (X1, X2) ∼ MOBP (α, λ0, λ1, λ2), then (X1, X2) satisfies 7. So,
(X1, X2) has the right tail increasing property.
In the following, the bivariate right corner set increasing (RCSI) is explained, which can be an alternative
bivariate dependence concept.

(d) A random vector (X1, X2) has the right corner set increasing (RCSI) property if

P (X1 > x1, X2 > x2|X1 ≥ x̃1, X2 ≥ x̃2). (8)

increases in x̃1, x̃2 for every choice of (x1, x2). If (X1, X2) ∼ MOBP (α, λ0, λ1, λ2), then, (X1, X2) satisfies
(8). So, (X1, X2) has the RCSI property.
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3. Generalization: Marshall-Olkin Bivariate Pareto-Geometric Distribution

In this section, the Marshall-Olkin bivariate Pareto-geometric distribution is introduced. For this purpose,
suppose {(X1n, X2n);n = 1, 2, . . .} is a sequence of i.i.d. non-negative bivariate random variables with common
joint distribution function FX(., .) where X = (X1, X2) and N is a geometric random variable independent of
{(X1n, X2n), n = 1, 2 . . .}. Also, a random variable N has a geometric distribution function which it is denoted by
GM(θ) and is defined as follow:

P (N = n) = θ(1− θ)n−1, n = 1, 2, 3, . . . , 0 < θ < 1. (9)

In the following, we will attend the bivariate random variable Y = (Y1, Y2):

Y1 = min{X11, . . . , X1N}, and Y2 = min{X21, . . . , X2N}.

The joint survival function of Y = (Y1, Y2) becomes:

P (Y1 > y1, Y2 > y2) =

∞∑
n=1

P (Y1 > y1, Y2 > y2|N = n)P (N = n)

=

∞∑
n=1

[F̄X(y1, y2)]nθ(1− θ)n−1 =
θF̄X(y1, y2)

1− (1− θ)F̄X(y1, y2)
. (10)

In this case, we call Y a bivariate F-geometric (BFG) distribution. Then the survival function of Yi is:

F̄Yi(yi) =
θF̄Xi(yi)

1− (1− θ)F̄Xi(yi)
, i = 1, 2. (11)

where, F̄Xi , i = 1, 2 are the marginal survival functions of F̄X , i.e. F̄X1
(x) = F̄X(x, 0), F̄X2

(x) = F̄X(0, x).
Therefore, the random variable Y = (Y1, Y2) has the bivariate Pareto-geometric distribution with parameters
θ, α, λ0, λ1, λ2, if the distribution FX in (10) is MOBP (α, λ0, λ1, λ2). Therefore, the joint survival function of
(Y1, Y2) becomes;

ḠY (y1, y2) = P (Y1 > y1, Y2 > y2)

=


θ(1+αy1)−(λ0+λ1)(1+αy2)−λ2

1−(1−θ)(1+αy1)−(λ0+λ1)(1+αy2)−λ2
if y2 ≤ y1

θ(1+αy1)−λ1 (1+αy2)−(λ0+λ2)

1−(1−θ)(1+αy1)−λ1)(1+αy2)−(λ0+λ2) if y1 < y2.
(12)

(13)

It will be denoted by (Y1, Y2) ∼MOBPG(θ, α, λ0, λ1, λ2).

Proposition 3.1. If (Y1, Y2) ∼MOBPG(θ, α, λ0, λ1, λ2), then,

ḠY (y1, y2) =

∞∑
n=1

pnF̄MOBP (y1, y2;α, nλ0, nλ1, nλ2), (14)

where pn = P (N = n) = θ(1− θ)n−1.

Theorem 4. Let (Y1, Y2) ∼MOBPG(θ, α, λ0, λ1, λ2), then the joint PDF of (Y1, Y1) is

gY (y1, y2) =

 g1(y1, y2) if y2 < y1

g2(y1, y2) if y1 < y2

g0(y1, y2) if y1 = y2 = y.
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where

g1(y1, y2) =
θα2λ2(λ0 + λ1)(1 + αy1)−(λ0+λ1)−1(1 + αy2)−λ2−1

[1− (1− θ)(1 + αy1)−(λ0+λ1)(1 + αy2)−λ2 ]3

× [1 + (1− θ)(1 + αy1)−(λ0+λ1)(1 + αy2)−λ2 ].

g2(y1, y2) =
θα2λ1(λ0 + λ2)(1 + αy1)−λ1−1(1 + αy2)−(λ0+λ2)−1

[1− (1− θ)(1 + αy1)−λ1)(1 + αy2)−(λ0+λ2)]3

× [1 + (1− θ)(1 + αy1)−λ1(1 + αy2)−(λ0+λ2)].

g0(y) =
θαλ0(1 + αy)−(λ0+λ1+λ2)−1

[1− (1− θ)(1 + αy)−(λ0+λ1+λ2)]2
.

Proof: The phrases for g1(., .) and g2(., .) can be calculated using −∂
2Ḡ(y1,y2)
∂y1∂y2

for y2 < y1 and y1 < y2 respectively.

But g0(.) can not be calculated in the similar method. Using the facts that∫ ∞
0

∫ ∞
y2

g1(y1, y2)dy1dy2 +

∫ ∞
0

∫ ∞
y1

g2(y1, y2)dy2dy1 +

∫ ∞
0

g0(y)dy = 1.

Therefore, the result follows.

Proposition 3.2. If (Y1, Y2) ∼MOBPG(θ, α, λ0, λ1, λ2), then,

g1(y1, y2) =

∞∑
n=1

pnfPa(y1, α, n(λ0 + λ1))fPa(y2, α, nλ2).

g2(y1, y2) =

∞∑
n=1

pnfPa(y1, α, nλ1)fPa(y2, α, n(λ0 + λ2)).

g0(y) =
λ0

λ0 + λ1 + λ2

∞∑
n=1

pnfPa(y, α, n(λ0 + λ1 + λ2)).

where pn = P (N = n) = θ(1 − θ)n−1 and fPa(., nλ) is the PDF of Pareto distribution with parameters α and
nλ. Note that fPa(., nλ) is the PDF of the random variable min(U1, · · · , Un) where Ui’s are independent random
variables from a Pareto distribution with parameters α and λ.

The MOBPG model has various forms. We have presented the surface plots of the PDF of MOBPG distribution
in Figure 2 for various values of parameters.

Also, the joint PDF of (Y1, Y2) can be written as follows:

g(y1, y2) =
λ1 + λ2

λ0 + λ1 + λ2
ga(y1, y2) +

λ0

λ0 + λ1 + λ2
gs(y).

here

ga(y1, y2) =
λ0 + λ1 + λ2

λ1 + λ2
×
{
g1(y1, y2) if y2 < y1

g2(y1, y2) if y1 < y2.

and

gs(y) =
θαλ0(1 + αy)−(λ0+λ1+λ2)−1

[1− (1− θ)(1 + αy)−(λ0+λ1+λ2)]2
, if y1 = y2 = y.

where, ga(., .) and gs(.) are the absolute continuous part and the singular part, respectively. If λ0 = 0, it does not
have any singular part, and it becomes an absolute continuous distribution. For θ = 1, it is immediate that MOBP
can be obtained as a special case of MOBPG.
In the following, the joint PDF of Y1, Y2 and N is obtained, where (Y1, Y2) has the MOBPG distributions and N is
the geometric distribution.

P (Y1 > y1, Y2 > y2, N = n) = P (Y1 > y1, Y2 > y2|N = n)P (N = n)

=

{
θ(1− θ)n−1(1 + αy1)−n(λ0+λ1)(1 + αy2)−nλ2 if y2 ≤ y1

θ(1− θ)n−1(1 + αy1)−nλ1(1 + αy2)−n(λ0+λ2) if y1 < y2.

76



Shirin Shoaee et al., AUT J. Math. Com., 1(1) (2020) 69-87, DOI:10.22060/ajmc.2018.14869.1012

Figure 2: The shape of the joint probability density function of MOBPG for various values of parameters Θ = (θ, α, λ0, λ1, λ2) : (a)
Θ = (0.2, 0.3, 3, 3, 3) (b) Θ = (0.5, 0.2, 1, 2, 3) (c) Θ = (2, 0.75, 3, 3, 3) (d) Θ = (1, 0.3, 1, 1.5, 2).

Therefore, the joint PDF of Y1, Y2 and N is:

fY1,Y2,N (y1, y2, n) =

 θ(1− θ)n−1f1n(y1, y2) if y2 < y1

θ(1− θ)n−1f2n(y1, y2) if y1 < y2

θ(1− θ)n−1f0n(y) if y1 = y2 = y.
(15)

where,

f1n(y1, y2) = n2α2λ2(λ0 + λ1)(1 + αy1)−n(λ0+λ1)−1(1 + αy2)−nλ2−1.

f2n(y1, y2) = n2α2λ1(λ0 + λ2)(1 + αy1)−nλ1−1(1 + αy2)−n(λ0+λ2)−1.

f0n(y) = nαλ0(1 + αy)−n(λ0+λ1+λ2)−1. (16)

Also, the conditional probability mass function of N given Y1 = y1 and Y2 = y2 can be calculated as follows:

fN (n|y1, y2) =


c1(y1, y2)n2(1− θ)n−1(1 + αy1)−(n−1)(λ0+λ1)(1 + αy2)−(n−1)λ2 if y2 < y1

c2(y1, y2)n2(1− θ)n−1(1 + αy1)−(n−1)λ1(1 + αy2)−(n−1)(λ0+λ2) if y1 < y2

c0(y)n(1− θ)n−1(1 + αy)−(n−1)(λ0+λ1+λ2) if y1 = y2 = y.

(17)

where,

c1(y1, y2) =
[1− (1− θ)(1 + αy1)−(λ0+λ1)(1 + αy2)−λ2 ]3

1 + (1− θ)(1 + αy1)−(λ0+λ1)(1 + αy2)−λ2
.

c2(y1, y2) =
[1− (1− θ)(1 + αy1)−λ1(1 + αy2)−(λ0+λ2)]3

1 + (1− θ)(1 + αy1)−λ1(1 + αy2)−(λ0+λ2)
.

c0(y) = [1− (1− θ)(1 + αy)−(λ0+λ1+λ2)]2.

We will be using the following equations for (17)

fN (n|y1, y2) =


[1−ξ1(y1,y2,θ,γ)]3

[1+ξ1(y1,y2,θ,γ)] n
2ξn−1

1 (y1, y2, θ, γ) if y2 < y1

[1−ξ1(y1,y2,θ,γ)]3

[1+ξ2(y1,y2,θ,γ)] n
2ξn−1

2 (y1, y2, θ, γ) if y1 < y2

[1− ξ0(y1, y2, θ, γ)]
2
nξn−1

0 (y1, y2, θ, γ) if y1 = y2 = y.
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where γ = (α, λ0, λ1, λ2) and

ξ1(y1, y2, θ, γ) = (1− θ)(1 + αy1)−(λ0+λ1)(1 + αy2)−λ2 .

ξ2(y1, y2, θ, γ) = (1− θ)(1 + αy1)−λ1(1 + αy2)−(λ0+λ2).

ξ0(y1, y2, θ, γ) = (1− θ)(1 + αy)−(λ0+λ1+λ2).

Also, we can compute

E(N |y1, y2) =


(1−ξ1(y1,y2,θ,γ))2−6(1−ξ1(y1,y2,θ,γ))+6

(1−ξ1(y1,y2,θ,γ))2 if y2 < y1

(1−ξ2(y1,y2,θ,γ))2−6(1−ξ2(y1,y2,θ,γ))+6
(1−ξ2(y1,y2,θ,γ))2 if y1 < y2

1+ξ0(y1,y2,θ,γ)
1−ξ0(y1,y2,θ,γ) if y1 = y2 = y.

Theorem 5. Let (Y1, Y2) ∼MOBPG(θ, α, λ0, λ1, λ2), then

(I) Y1 ∼ UPG(θ, α, λ0 + λ1).

(II) Y2 ∼ UPG(θ, α, λ0 + λ2).

(III) Y = min{Y1, Y2} ∼ UPG(θ, α, λ0 + λ1 + λ2).

(IV) P (Y1 < Y2) = λ1

λ0+λ1+λ2
.

proof: The proofs of parts of 1, 2 and 3 are similar. The proof of 1 and 2 are immediate from (11) with F̄Xi having
the Pareto distribution. Also, we have

F̄X1
(y1) = P (min{U0, U1} > y1) = P (U0 > y1, U1 > y1)

= F̄Pa(y1, α, λ0)F̄Pa(y1, α, λ1) = F̄Pa(y1, α, λ0 + λ1).

The proof of 3 is obtained by (11). The part IV can be proven as follows:

P (Y1 < Y2) =

∞∑
n=1

P (Y1 < Y2, N = n)

=

∞∑
n=1

∫ ∞
0

∫ ∞
y1

θ(1− θ)n−1f2n(y1, y2)dy2dy1

=

∞∑
n=1

θ(1− θ)n−1

∫ ∞
0

∫ ∞
y1

f2n(y1, y2)dy2dy1

= θ

∞∑
n=1

(1− θ)n−1 λ1

λ0 + λ1 + λ2
=

λ1

λ0 + λ1 + λ2
.�

We apply the following algorithm to check the purpose.
Algorithm to generate from MOBPG:

• Generate n from GM(θ).

• Generate {u01, . . . , u0n} from Pa(α, λ0), similarly, {u11, . . . , u1n} from Pa(α, λ1) and {u21, . . . , u2n} from
Pa(α, λ2).

• Obtain x1k = min{u0k, u1k} and x2k = min{u0k, u2k}, for k = 1, . . . , n.

• Compute the desired (y1, y2) as y1 = min{x11, . . . , x1n} and y2 = min{x21, . . . , x2n}.

4. Maximum Likelihood Estimators

In this section, the maximum likelihood estimators of the unknown parameters of the MOBPG distribution
using the EM algorithm are considered. Also, the confidance intervals of the parameters are calculated.
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4.1. EM Algorithm

Suppose {(y11, y21), . . . , (y1m, y2m)} is a random sample from MOBPG with parameters Θ = (θ, α, λ0, λ1, λ2),
and we will obtain the MLE’s of the unknown parameters. We introduce the following useful notation:
I0 = {i : y1i = y2i = yi}, I1 = {i : y1i > y2i} and I2 = {i : y1i < y2i}. Also, |I0| = m0, |I1| = m1, |I2| = m2 and
m = m0 +m1 +m2. According to the above notation, the log-likelihood function is computed as follows:

`(Θ) =
∑
i∈I0

ln g0(yi) +
∑
i∈I1

ln g1(y1i, y2i) +
∑
i∈I2

ln g2(y1i, y2i). (18)

where g0, g1 and g2 are defined in Theorem 4. We will compute the MLE’s of the parameters by maximizing `(Θ)
in equation (18) with respect to the unknown parameters. Clearly, the MLEs of the unknown parameters cannot
be calculated directly. They can be obtained only by solving five equations with five unknowns. We suggest to use
the EM algorithm, which this algorithm is more flexible and computationally done easily. So, they are considered
as a missing value problem. For this purpose, suppose that, the joint PDF of (Y1, Y2, N) is provided in (15). Note
that,

(Y1, Y2|N) ∼MOBP (α, nλ0, nλ1, nλ2).

We can show the complete data as follows: {(y1i, y2i, ni); i = 1, ...,m}. We maximize the conditional log-likelihood
function to calculate the MLE’s of unknown parameters, and it is as follows:

`1(α, λ0, λ1, λ2) =
∑
i∈I0

ln f0ni(yi) +
∑
i∈I1

ln f1ni(y1i, y2i) +
∑
i∈I2

ln f2ni(y1i, y2i).

The functions, f0ni , f1ni and f2ni are determined in (16). We will describe this subject as a missing value problem
using the EM algorithm. For this purpose, we consider the new set of random variables as follows:

{Ui|N = n} ∼ Pa(α, nλi), i = 0, 1, 2. (19)

Also, we assume that they are conditionally independent. We easily know that:

{Y1|N = n} = min{U0, U1}|N = n, and {Y2|N = n} = min{U0, U2}|N = n.

Assume that for the bivariate random vector (Y1, Y2), there are associated random vectors

(∆1,∆2) =


(0, 0) if Y1 = U0, Y2 = U0

(0, 1) if Y1 = U0, Y2 = U2

(1, 0) if Y1 = U1, Y2 = U0

(1, 1) if Y1 = U1, Y2 = U2 .

(20)

Here Yi’s are the same as defined above. Therefore, a sample is obtained from (Y1, Y2,∆1,∆2, N) which is the
complete observation. Therefore, suppose that (Y1, Y2,∆1,∆2, N) be a random sample of size m. So, we can solve
a one dimensional optimization problem to calculate the estimation of the unknown parameters. It is clear that
if we know (Y1, Y2), the associated (∆1,∆2) may not always be known. Thus, if Y1 = Y2, then, ∆1 = ∆2 = 0 is
known. Hence, if Y1 6= Y2, therefore, (∆1,∆2) is not known. If (Y1, Y2) ∈ I1, the feasible values of (∆1,∆2) are
(0,1) or (1,1), and if (Y1, Y2) ∈ I2, the feasible values of (∆1,∆2) are (1,0) or (1,1), with positive probabilities,
see for example [17]. We discuss the ’pseudo’ log-likelihood function for performance of the EM algorithm. For
this purpose, we use the proposed structure of [9] or [16]. In this method, the conditional ’pseudo’ log-likelihood
function is formed by conditioning on N , and N is replaced by E(N |Y1, Y2).

In the ’E’ step, if the observations belong to I0, then, we kept the log-likelihood contribution intact and their
related (∆1,∆2) are completely known. Also, if the observations depend to I1 or I2, then they are treated as
missing observations.
If (y1, y2) ∈ I1, the ’pseudo observation’ is formed by fractioning (y1, y2) to two partially complete ’pseudo ob-
servations’ of the form (y1, y2, u1(Θ)) and (y1, y2, u2(Θ)). The fractional mass u1(Θ) and u2(Θ) assigned to the
’pseudo observation’ are the conditional probabilities that (∆1,∆2) takes values (0,1) or (1,1), respectively, given
that (Y1, Y2) ∈ I1.
Similarly, if (Y1, Y2) ∈ I2, ’pseudo observations’ are formed as (y1, y2, v1(Θ)) and (y1, y2, v2(Θ)), where v1(Θ) and
v2(Θ) are the conditional probabilities that (∆1,∆2) takes values (1,0) and (1,1), respectively. The information in
Table 1 will be applied to build ’E’ step of the EM algorithm.
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Table 1: All possible cases of U0, U1, U2, corresponding probabilities and (∆1,∆2).

Different Case probability (∆1,∆2) Y1&Y2 Set

U0 < U1 < U2
λ1λ0

(λ1+λ2)(λ0+λ1+λ2)
(0,0) Y1 = Y2 I0

U0 < U2 < U1
λ2λ0

(λ1+λ2)(λ0+λ1+λ2)
(0,0) Y1 = Y2 I0

U1 < U0 < U2
λ1λ0

(λ0+λ2)(λ0+λ1+λ2)
(1,0) Y1 < Y2 I2

U1 < U2 < U0
λ1λ2

(λ0+λ2)(λ0+λ1+λ2)
(1,1) Y1 < Y2 I2

U2 < U0 < U1
λ0λ2

(λ0+λ1)(λ0+λ1+λ2)
(0,1) Y2 < Y1 I1

U2 < U1 < U0
λ1λ2

(λ0+λ1)(λ0+λ1+λ2)
(1,1) Y2 < Y1 I1

Therefore,

v1(Θ) =
λ0

λ0 + λ2
, v2(Θ) =

λ2

λ0 + λ2
, u1(Θ) =

λ0

λ0 + λ1
, u2(Θ) =

λ1

λ0 + λ1
.

In the following, we consider the ’pseudo’ log-likelihood contribution of an observation y ∈ I0, with conditioning on
N = n. Then, the log-likelihood contribution is:

lnn+ lnλ0 − n(λ0 + λ1 + λ2) ln(1 + αy) + lnα− ln(1 + αy).

The above equation follows from (19), and in this case, U0 = y, U1 > y and U2 > y.
Also, when (y1, y2) ∈ I1 and (y1, y2) ∈ I2, the ’pseudo’ log-likelihood contribution, conditioning on N = n, becomes:

2 lnn+ 2 lnα+ lnλ2 + u1 lnλ0 + u2 lnλ1 − (nλ2 + 1) ln(1 + αy2)− (n(λ0 + λ1) + 1) ln(1 + αy1).

and

2 lnn+ 2 lnα+ lnλ1 + v1 lnλ0 + v2 lnλ2 − (nλ1 + 1) ln(1 + αy1)− (n(λ0 + λ2) + 1) ln(1 + αy2).

respectively. We know that, lnn and n are missing. So, we compute the ’pseudo’ log-likelihood function at the
E-step of the EM algorithm by replacing them with E(lnN |y1, y2) and E(N |y1, y2), respectively. Also, we will use
the following notations in the k-th step of the EM algorithm.

• Θ(k) = (θ(k), α(k), λ
(k)
0 , λ

(k)
1 , λ

(k)
2 ) is defined for the estimates of the parameters in the k-th step.

• E(N |y1i, y2i,Θ) = ai.

• E(N |y1i, y2i,Θ
(k)) = a

(k)
i .

• u1(Θ(k)) = u
(k)
1 , u2(Θ(k)) = u

(k)
2 , v1(Θ(k)) = u

(k)
1 and v2(Θ(k)) = u

(k)
2 .

Now we can discuss the EM algorithm.
E-Step: At the k-step of the EM algorithm, we can write the ’pseudo’ log-likelihood function without the additive
constant as follows:

`pseudo(Θ) = (m0 + 2m1 + 2m2) lnλ0 + (m2 +m1u
(k)
2 ) lnλ1 + (m2v

(k)
2 +m1) lnλ2

− λ0{
∑
i∈I0

a
(k)
i ln(1 + αyi) +

∑
i∈I2

a
(k)
i ln(1 + αy2i) +

∑
i∈I1

a
(k)
i ln(1 + αy1i)}

− λ1{
∑
i∈I0

a
(k)
i ln(1 + αyi) +

∑
i∈I2

a
(k)
i ln(1 + αy1i) +

∑
i∈I1

a
(k)
i ln(1 + αy1i)}

− λ2{
∑
i∈I0

a
(k)
i ln(1 + αyi) +

∑
i∈I2

a
(k)
i ln(1 + αy2i) +

∑
i∈I1

a
(k)
i ln(1 + αy2i)}

− {
∑
i∈I0

ln(1 + αyi) +
∑
i∈I2

ln(1 + αy1i) +
∑
i∈I2

ln(1 + αy2i) +
∑
i∈I1

ln(1 + αy2i) +
∑
i∈I1

ln(1 + αy1i)}

+ (m0 + 2m1 + 2m2) lnα+m ln
θ

1− θ
+ ln(1− θ)

m∑
i=1

a
(k)
i . (21)
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M-Step: In the ’M’-step, we maximize `pseudo(Θ) with respect to the unknown parameters. Also for fixed α, This
maximization is determined according to the unknown parameters as follows:

λ̂0(α) =
m0 +m2v

(k)
1 +m1u

(k)
1∑

i∈I0 a
(k)
i ln(1 + αyi) +

∑
i∈I2 a

(k)
i ln(1 + αy2i) +

∑
i∈I1 a

(k)
i ln(1 + αy1i)

. (22)

λ̂1(α) =
m2 +m1u

(k)
2∑

i∈I0 a
(k)
i ln(1 + αyi) +

∑
i∈I2 a

(k)
i ln(1 + αy1i) +

∑
i∈I1 a

(k)
i ln(1 + αy1i)

. (23)

λ̂2(α) =
m1 +m2v

(k)
2∑

i∈I0 a
(k)
i ln(1 + αyi) +

∑
i∈I2 a

(k)
i ln(1 + αy2i) +

∑
i∈I1 a

(k)
i ln(1 + αy2i)

. (24)

and θ̂ is:

θ̂ =
m∑m

i=1 a
(k)
i

. (25)

We can compute the pseudo-maximum likelihood estimate of α through maximization the pseudo-profile log-
likelihood function `pseudo(θ̂, α, λ̂0(α), λ̂1(α), λ̂2(α)). Another method is to solve the following non-linear equation,

g(α) = α. (26)

where g(α) = m0+2m1+2m2

h(α) , and

h(α) = λ̂0(α){
∑
i∈I0

a
(k)
i

yi
1 + αyi

+
∑
i∈I2

a
(k)
i

y2i

1 + αy2i
+
∑
i∈I1

a
(k)
i

y1i

1 + αy1i
}

+ λ̂1(α){
∑
i∈I0

a
(k)
i

yi
1 + αyi

+
∑
i∈I2

a
(k)
i

y1i

1 + αy1i
+
∑
i∈I1

a
(k)
i

y1i

1 + αy1i
}

+ λ̂2(α){
∑
i∈I0

a
(k)
i

yi
1 + αyi

+
∑
i∈I2

a
(k)
i

y2i

1 + αy2i
+
∑
i∈I1

a
(k)
i

y2i

1 + αy2i
}

− {
∑
i∈I0

yi
1 + αyi

+
∑
i∈I2

y1i

1 + αy1i
+
∑
i∈I2

y2i

1 + αy2i
+
∑
i∈I1

y2i

1 + αy2i
+
∑
i∈I1

y1i

1 + αy1i
}.

Thus, we can apply an easy, iterative process to solve the equation (26). For example, the Newton - Raphson
method or the proposed method by [17] and [18] can be used. Now, we use the following steps to obtain the
estimation of parameters by the EM algorithm: ALGORITHM

• Step 1: Take some initial value of Θ, say Θ(0) = (θ(0), α(0), λ
(0)
0 , λ

(0)
1 , λ

(0)
2 ).

• Step 2: Compute a
(0)
i = E(N |y1i, y2i; Θ(0)).

• Step 3: Compute u1, u2, v1, and v2.

• Step 4: Find α̂ by solving equation (26), say α̂(1).

• Step 5: Compute λ̂
(1)
i = λ̂i(α̂

(1)), i = 0, 1, 2 from (22)-(24).

• Step 6: Find θ̂ from (25).

• Step 7: Replace Θ(0) by Θ(1) = (θ(1), α(1), λ
(1)
0 , λ

(1)
1 , λ

(1)
2 ), go back to step 1 and continue the process until

convergence takes place.
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4.2. Confidence Interval

For constructing confidence intervals, the observed Fisher Information Matrix obtained from the EM algorithm
using the method of [21] is applied. Using a similar equation in [21], the Fisher Information Matrix can be computed
as follows:

Iobs = B − SST .
where matrix B defines the Hessian matrix and the vector S obtains the gradient vector of the pseudo-log-likelihood
function. We provide the elements of matrix B and S as follows:

B11 =
m0 + 2m1 + 2m2

α̂2
+ λ̂0{

∑
i∈I0

ai
y2
i

(1 + αyi)2
+
∑
i∈I2

ai
y2

2i

(1 + αy2i)2
+
∑
i∈I1

ai
y2

1i

(1 + αy1i)2
}

+ λ̂1{
∑
i∈I0

ai
y2
i

(1 + αyi)2
+
∑
i∈I2

ai
y2

1i

(1 + αy1i)2
+
∑
i∈I1

ai
y2

1i

(1 + αy1i)2
}

+ λ̂2{
∑
i∈I0

ai
y2
i

(1 + αyi)2
+
∑
i∈I2

ai
y2

2i

(1 + αy2i)2
+
∑
i∈I1

ai
y2

2i

(1 + αy2i)2
}

− {
∑
i∈I0

y2
i

(1 + αyi)2
+
∑
i∈I2

y2
1i

(1 + αy1i)2
+
∑
i∈I2

y2
2i

(1 + αy2i)2
+
∑
i∈I1

y2
2i

(1 + αy2i)2
+
∑
i∈I1

y2
1i

(1 + αy1i)2
.

B12 = B21 =
∑
i∈I0

ai
yi

1 + αyi
+
∑
i∈I2

ai
y2i

1 + αy2i
+
∑
i∈I1

ai
y1i

1 + αy1i
.

B13 = B31 =
∑
i∈I0

ai
yi

1 + αyi
+
∑
i∈I2

ai
y1i

1 + αy1i
+
∑
i∈I1

ai
y1i

1 + αy1i
.

B14 = B41 =
∑
i∈I0

ai
yi

1 + αyi
+
∑
i∈I2

ai
y2i

1 + αy2i
+
∑
i∈I1

ai
y2i

1 + αy2i
.

B15 = B51 = 0.

B22 =
m0 +m2v1 +m1u1

λ̂2
0

, B23 = B32 = 0, B24 = B42 = 0, B25 = B52 = 0.

B33 =
m2 +m1u2

λ̂2
1

, B34 = B43 = 0, B35 = B53 = 0.

B44 =
m2v2 +m1

λ̂2
2

, B45 = B54 = 0.

S1 =
m0 + 2m1 + 2m2

α̂
− λ̂0{

∑
i∈I0

ai
yi

1 + αyi
+
∑
i∈I2

ai
y2i

1 + αy2i
+
∑
i∈I1

ai
y1i

1 + αy1i
}

+ λ̂1{
∑
i∈I0

ai
yi

1 + αyi
+
∑
i∈I2

ai
y1i

1 + αy1i
+
∑
i∈I1

ai
y1i

1 + αy1i
}

+ λ̂2{
∑
i∈I0

ai
yi

1 + αyi
+
∑
i∈I2

ai
y2i

1 + αy2i
+
∑
i∈I1

ai
y2i

1 + αy2i
}

− {
∑
i∈I0

yi
1 + αyi

+
∑
i∈I2

y1i

1 + αy1i
+
∑
i∈I2

y2i

1 + αy2i
+
∑
i∈I1

y2i

1 + αy2i
+
∑
i∈I1

y1i

1 + αy1i
}.

S2 =
m0 +m2v1 +m1u1

λ̂0

− {
∑
i∈I0

ai ln(1 + αyi) +
∑
i∈I2

ai ln(1 + αy2i) +
∑
i∈I1

ai ln(1 + αy1i)}.

S3 =
m2 +m1u2

λ̂1

− {
∑
i∈I0

ai ln(1 + αyi) +
∑
i∈I2

ai ln(1 + αy1i) +
∑
i∈I1

ai ln(1 + αy1i)}.

S4 =
m1 +m2v2

λ̂2

− {
∑
i∈I0

ai ln(1 + αyi) +
∑
i∈I2

ai ln(1 + αy2i) +
∑
i∈I1

ai ln(1 + αy2i)}.

S5 =
m

θ̂(1− θ̂)
−
∑m
i=1 ai

(1− θ̂)
.
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Now, the asymptotic normality results are explained to create the asymptotic confidence intervals of α, λ0, λ1, λ2

and θ. It can be presented as follows:

√
n[(θ̂ − θ), (α̂− α), (λ̂0 − λ0), (λ̂1 − λ1), (λ̂2 − λ2)]→ N5(0, I−1(Θ)), as n→∞. (27)

Where I−1(Θ) is the variance-covariance matrix, Θ = (θ̂, α̂, λ̂0, λ̂1, λ̂1, λ̂2) and Θ = (θ, α, λ0, λ1, λ1, λ2). Since Θ
is unknown in Equation (27), I−1(Θ) is estimated by I−1(Θ̂); the asymptotic variance-covariance matrix that is
defined above and this can be used to obtain the asymptotic confidence intervals of α, λ0, λ1, λ2 and θ.

5. Data analysis and comparison study

In this section, some results based on Monte Carlo simulations and also one real data set in order to evaluate the
new suggested model and the performance of EM algorithm are obtained. We use Matlab software for data analysis.

5.1. Numerical experiments

In this subsection, several simulation experiments are performed to test the efficiency of the EM algorithm for
various sample sizes and parameter values.

To calculate the estimation of the unknown parameters, we apply the EM algorithm as proposed in Sec-
tion 3 and thus the BPG model is fitted to the simulated data set. We used three sets of parameter values
Θi = (θi, α, λ0, λ1, λ2) = (θi, 3, 1, 1, 1), where θi = 0.3, 0.5, 0.7 for i = 1, 2, 3, respectively. For each situation, the
initial value for the EM algorithm is θi = 0.2, 0.4, 0.6 for i = 1, 2, 3, α = λ0 = λ1 = λ2 = 1. We stop iteration when
the absolute value of the difference of the two consecutive iterates for all the five parameters are less than 10−5.
We repeat the procedure 1000 times, and compute the Bias estimations, the related mean squared errors (MSEs),
the average confidence lengths and the coverage percentages.

Some of the points are really obvious from the simulation results. In all situations, we observe that the biases
and the mean square errors decrease with increasing the size of the sample, which verifies the consistency properties
of the MLEs. The results are presented in Table 2. In Table 3, we presented the average confidence lengths and the
corresponding coverage percentages. The nominal level for the confidence intervals is 0.95 in each case. From Table
3, it is evident that as the sample size increases, the average confidence lengths decrease and the corresponding
coverage percentage increase.

Table 2: The Bias estimates and the associated mean squared errors (MSEs).

Θ n α λ0 λ1 λ2 θ
|Bias| MSE |Bias| MSE |Bias| MSE |Bias| MSE |Bias| MSE

40 0.3320 0.2084 0.1009 0.4375 0.1083 0.4347 0.1095 0.4054 0.1204 0.0150
Θ1 80 0.1920 0.1448 0.0296 0.2366 0.0216 0.2780 0.0301 0.2706 0.1173 0.0135

120 0.1559 0.1074 0.0151 0.1186 0.0190 0.1311 0.0269 0.1314 0.1072 0.0115
40 0.3319 0.2396 0.0661 0.3335 0.0823 0.4199 0.0946 0.4201 0.1252 0.0163

Θ2 80 0.1084 0.1834 0.0279 0.1196 0.0345 0.1451 0.0293 0.1406 0.1239 0.0155
120 0.0816 0.0968 0.0199 0.0741 0.0179 0.0832 0.0197 0.0735 0.1154 0.0105
40 0.3961 0.1578 0.0989 0.2307 0.1076 0.3217 0.1019 0.2383 0.1171 0.0162

Θ3 80 0.2352 0.1022 0.0229 0.0690 0.0286 0.0853 0.0231 0.1024 0.1149 0.0159
120 0.1441 0.0851 0.0168 0.0342 0.0172 0.0417 0.0162 0.0425 0.1057 0.0150

5.2. Real data set

We discuss the MOBPG distribution for fitting the one real data set. We apply the proposed EM algorithm
and then the estimation of parameters and their corresponding log-likelihood values are computed. Also, we
obtain the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). We also compute
the Kolmogorov-Smirnov(K-S) distances between the fitted distribution, the empirical distribution function and
the corresponding p-values for Y1, Y2 and min{Y1, Y2}. Finally, we make use the likelihood ratio test (LRT) and the
corresponding p-values to choose a better model.
Data set: This data set contains the indemnity payments (Loss) and allocated loss adjustment expense (ALAE)
relating to 50 general liability claims from an insurance company in Iran. This data set is reported in Table 4.
Before analyzing the data we divide all data by 108.
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Table 3: The average confidence lengths and the corresponding coverage percentages.

Θ n α λ0 λ1 λ2 θ
Length CP Length CP Length CP Length CP Length CP

40 0.9130 0.8890 1.0228 0.8920 1.1186 0.9250 1.0205 0.9000 0.4898 0.9110
Θ1 80 0.7610 0.9210 0.9728 0.9200 1.0545 0.9400 1.0138 0.9380 0.3727 0.9420

120 0.6554 0.9510 0.6887 0.9490 0.7148 0.9560 0.8983 0.9590 0.2061 0.9600
40 0.9724 0.8950 1.0547 0.9290 1.0938 0.9150 1.0179 0.9020 0.5068 0.9000

Θ2 80 0.8045 0.9230 0.8016 0.9400 0.8944 0.9290 0.8437 0.9200 0.4139 0.9200
120 0.6944 0.9500 0.6305 0.9580 0.6857 0.9300 0.6276 0.9450 0.3587 0.9420
40 0.7937 0.9120 0.9918 0.9090 1.0398 0.9250 0.9771 0.9280 0.5014 0.9300

Θ3 80 0.7069 0.9260 0.5864 0.9420 0.6043 0.9430 0.6450 0.9340 0.4906 0.9510
120 0.5832 0.9580 0.3913 0.9600 0.4184 0.9590 0.4166 0.9520 0.4089 0.9590

Table 4: The real data set.

S.N. Y1 Y2 S.N. Y1 Y2 S.N. Y1 Y2
1 3406788 386367 18 2559763 1129319 35 49732966 5084502
2 366797 16546499 19 48271944 4513586 36 12272011 3210349
3 9113373 9046402 20 7162599 7416202 37 2475933 182092
4 5816565 2469313 21 7402695 9107311 38 6132238 16562877
5 511398 767917 22 13450355 3479296 39 49487877 35107066
6 1175114 33849400 23 94415944 271460 40 17903766 219030
7 719650 3854188 24 4662978 8338641 41 8740014 18542911
8 7594948 10395944 25 1664301 1664301 42 24558000 1987411
9 10121699 7405536 26 2564265 1266798 43 10324500 4367226
10 3000947 3000947 27 13324122 22958511 44 2797877 1975131
11 11806400 2110433 28 728146 1794489 45 63904333 2915554
12 164582 365291 29 8366643 9129838 46 2257089 4657025
13 4513141 5872939 30 654520 654520 47 13181611 4384871
14 3412786 10322111 31 9825560 1102267 48 20017400 7944262
15 1958098 1719298 32 2869349 1098717 49 27989044 156936
16 761409 1684610 33 1658672 396442 50 4418335 2440770
17 1833065 4397685 34 1244447 2928196

Before going to analyze the data by MOBPG distribution, the Pareto distribution to Y1, Y2 and min{Y1, Y2} are
fitted, separately. In addition to the Pareto distribution, we fit exponential and Weibull distributions. It will help
us to investigate the recent various models and compute the initial values also. The estimation of parameters of the
ML method, the corresponding Kolmogorov-Smirnov distances (K-S) and the associated p-values are computed.
The results are presented in the Table 5. Based on the p-values the exponential, Weibull and Pareto distribution
cannot be rejected for the marginals and for the minimum also. We see that the Pareto distribution has a better
fit than two other distributions.

Table 5: The MLE’s of parameters, the Kolmogorov-Smirnov (K-S) and the associated p-values for real data set.

Models α̂ λ̂ K-S P-value
Y1 - 9.2878 0.1793 0.0761

Exponential Y2 - 16.6012 0.1282 0.3418
min{Y1, Y2} - 25.9384 0.1121 0.5076

Y1 0.7565 5.7325 0.1081 0.5532
Weibull Y2 0.8450 11.6456 0.0846 0.8284

min{Y1, Y2} 0.8796 18.6737 0.0655 0.9506
Y1 8.1545 1.9218 0.0748 0.9172

Pareto Y2 7.0243 3.3170 0.0698 0.9503
min{Y1, Y2} 7.7711 4.3571 0.0591 0.9896

Now we will fit the MOBPG model. Also, for a better comparison of models, we fit the Marshall-Olkin bivariate
Weibull-geometric (MOBWG) distribution and the Marshall-Olkin bivariate exponential-geometric (MOBEG) dis-
tribution. We fit these models by the suggested EM algorithm to the bivariate data set and obtain the estimation
of parameters and their log-likelihood values. For each fitted model, the Akaike Information Criterion (AIC) and
the Bayesian information criterion (BIC) are computed. The results are given in Table 6.

For further study of these models, the Kolmogorov-Smirnov (K-S) distances and the corresponding p-values for
three random variables Y1, Y2 and min{Y1, Y2} are computed. We present these results in Table 7. From these
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Table 6: The MLE’s of parameters, the corresponding log-likelihood, AIC and BIC for real data set.

Model α̂ λ̂0 λ̂1 λ̂2 θ̂ log(l) AIC BIC
MOBEG - 1.0918 6.8670 14.3191 0.6355 133.6083 -259.2166 -251.5685
MOBWG 0.8160 0.8931 5.1817 9.2854 0.4045 135.4399 -260.8798 -251.3197
MOBPG 1.5893 0.5906 3.5326 6.1979 0.4238 144.4461 -278.8922 -269.3321

results, it is seen that using the Marshal-Olkin bivariate Pareto-geometric model is more suitable for this real data
set.

Table 7: The Kolmogorov-Smirnov (K-S) distances and the corresponding p-values for three random variables Y1, Y2 and
min{Y1, Y2}for real data set.

Model Y1 Y2 min{Y1, Y2}
K-S P-value K-S P-value K-S P-value

MOBEG 0.1216 0.4051 0.0667 0.9359 0.0569 0.9632
MOBWG 0.1752 0.0770 0.2426 0.0040 0.2643 0.0012
MOBPG 0.0863 0.8110 0.0713 0.9315 0.0846 0.8292

Finally, the likelihood ratio test (LRT) and the corresponding p-values are obtained for testing the Marshall-
Olkin bivariate (MOB) models by the exponential, Weibull and Pareto distributions against the Marshall-Olkin
bivariate models compounding with the geometric distribution. On the other hand, for example, our purpose is to
test the null hypothesis H0 : MOBP against the alternative hypothesis H1 : MOBPG. Also, in the same way for
Weibull and exponential distributions. We report the statistics and the corresponding p-values in Table 8. Hence,
for any usual significance level, we reject proposed models in H0 in favor of the alternative models.

Table 8: The log-likelihood, AIC, BIC, LRT and the corresponding p-values for different models.

Test Models
MOBEG MOBE MOBWG MOBW MOBPG MOBP

AIC -259.2166 -220.6672 -260.8798 -225.8360 -278.8922 -229.5176
BIC -251.5685 -214.9311 -251.3197 -218.1879 -269.3321 -221.8695

log(l) 133.6083 113.3336 135.4399 116.9180 144.4461 118.7588
LRT 40.5494 37.0438 51.3746

P-value 1.9171× 10−10 1.1551× 10−9 7.6317× 10−12

6. Conclusions

In this paper, we discussed two bivariate distributions based on the Pareto distribution and used the proposed
methods of [22] in the bivariate case and [24] in the univariate cases. In the second case, their method was
generalized to bivariate case and a new bivariate distribution was introduced. In fact, this bivariate distribution
was obtained by compounding geometric distribution and bivariate Pareto distribution. We called these new
distributions the Marshall-Olkin bivariate Pareto (MOBP) distribution and bivariate Pareto-geometric (MOBPG)
distribution, respectively. It was also stated that the MOBP distribution can be computed as a particular expression
of the MOBPG distribution. Then, several properties of these distributions were established. The estimations
of unknown parameters were calculated using the maximum likelihood method. However, We observed that we
cannot directly solve the related log likelihood equations. Thus, the maximum likelihood estimation was numerically
computed through the associated nonlinear equation using the EM algorithm. Therefore, we proposed that the
EM algorithm was applied to calculate the estimation of the unknown parameters by the ML method. It was also
shown that the proposed EM algorithm has a desirable performance. Also, this new model was exactly suitable for
data analysis.
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