تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,169 |
تعداد دریافت فایل اصل مقاله | 4,882,898 |
خوردگی و ارتعاش: عوامل موثر بر تغییرات جهتگیری فاز متخلخل در چدن خاکستری | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 13، دوره 52، شماره 3، خرداد 1399، صفحه 703-716 اصل مقاله (690.97 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2018.14718.5918 | ||
نویسندگان | ||
مریم اکبری1؛ عسل حسینی منزه* 2 | ||
1گروه مواد و متالورژی، دانشکده مهندسی مکانیک و انرژی، پردیس فنی و مهندسی شهید عباسپور، دانشگاه شهید بهشتی، تهران، ایران. | ||
2گروه مواد و متالورژی، دانشکده مهندسی مکانیک و انرژی، پردیس فنی و مهندسی شهید عباسپور، دانشگاه شهید بهشتی، تهران، ایران | ||
چکیده | ||
چدن خاکستری به دلیل وجود سیلیسیوم، قابلیت ریختهگری بالایی دارد. توانایی بالای ماشینکاری قطعات خاص این آلیاژ هستند که سبب کاربرد گسترده آن در صنعت گردیده ریخته شده و میرایی ارتعاش دو خاصیت تقریبا است. استفاده از برادههای ماشینکاری به عنوان ماده اولیه ساخت قطعات، در چند سال اخیر مورد توجه محققان قرارگرفته است. در این پژوهش، از براده ماشینکاری چدن خاکستری به عنوان ماده اولیه جهت تولید ساختارهای متخلخل استفاده گردید. ساختارهای متخلخل تولیدی تحت دو فرآیند عمده و مخرب صنعتی یعنی خوردگی و ارتعاش به صورت متوالی و موازی قرار داده شد. به منظور نشان دادن قدرت تخریب و مقایسه این فاکتور در این دو فرآیند، تغییرات جهتگیری فاز متخلخل (ناشی از جذب انرژیهای دو فرآیند مخرب) اندازه گیری گردید. مشاهده گردید بیشترین میزان جذب انرژی که همراه با بیشترین تغییرات در جهتگیری فاز متخلخل میباشد؛ تابع میزان تخلخل، نوع فرآیند مخرب و ترتیب اعمال خوردگی و ارتعاش میباشد. در حالتی که دو فرآیند ارتعاش و خوردگی به صورت متوالی اعمال شود؛ مکانیزم غالب در اعمال تغییر جهت فاز متخلخل، خوردگی میباشد؛ که توانایی کمتری در ایجاد تغییرات ریزساختاری دارد. در صورتی که فرآیندهای مخرب به صورت موازی اعمال شود؛ نمونهای با مقدار متوسط تخلخل 42 ،%بیشترین جذب انرژی را داشته و مکانیزم غالب در این حالت، ارتعاش است. | ||
کلیدواژهها | ||
چدن خاکستری؛ میرایی ارتعاش؛ محیط خورنده؛ جهتگیری فاز متخلخل | ||
عنوان مقاله [English] | ||
Corrosion and Vibration: Effective Factors on Orientation Changes of Porous Phase in Grey Cast Iron | ||
نویسندگان [English] | ||
Maryam Akbari1؛ Asal Hosseini Monazzah2 | ||
1Materials and Metallurgy Group, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran,Iran. | ||
2Materials and Metallurgy Group, Faculty of Mechanical Energy and Engineering, Shahid Beheshti University, A.C., Tehran, Iran | ||
چکیده [English] | ||
Two specific characteristics of grey cast iron, i.e. good machinability, as well as, high vibration damping, results in widespread applications in industry. In this research the grey cast iron powder which was fabricated via machining was utilized as raw material for producing foams. The porous structures were manufactured by powder metallurgy method were subjected under two major industrial destructive processes, i.e., corrosion and vibration, in a continuous and parallel manner. To demonstrate the degradation potency and comparison of these two destructive factors, changes of porous phase orientation as a result of energy absorption was measured. It was found that the amount of energy absorption, which was associated with the most changes in the porous phase orientation, is dependent on porosity volume, the type of destructive processes and the priority of corrosion and vibration. In the case of applying two destructive media successively, the corrosive atmosphere which induced less microstructural changes is the dominant mechanism. If destructive processes were applied in parallel, a sample with a mean value of 42% porosity can absorb the maximum energy, in which vibration is the dominant mechanism for this case. | ||
کلیدواژهها [English] | ||
Grey cast iron, Vibration damping, Corrosive atmosphere, Orientation of porous phase | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] J.Banhart, Light‐Metal Foams—History of Innovation and Technological Challenges, Advanced Engineering Materials, 15(3) (2013) 82-111. [2] R.M. German, Powder metallurgy and particulate materials processing: the processes, materials, products, properties, and applications, Metal powder industries federation Princeton, 2005. [3] Y. Atalla, R. Panneton, Inverse acoustical characterization of open cell porous media using impedance tube measurements, Canadian Acoustics, 33(1) (2005) 11-24. [4] O. Doutres, Y. Salissou, N. Atalla, R. Panneton, Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube, Applied Acoustics, 71(6) (2010) 506509. [5] H. Meng, Q. Ao, H. Tang, F. Xin, T. Lu, Dynamic flow resistivity based model for sound absorption of multi-layer sintered fibrous metals, Science China Technological Sciences, 57(11) (2014) 2096-2105. [6] M.A. Biot, Theory of deformation of a porous viscoelastic anisotropic solid, Journal of Applied Physics, 27(5) (1956) 459-467. [7] R. Goodall, Porous metals: Foams and sponges, in: Advances in Powder Metallurgy, Elsevier, 2013, pp. 273-307. [8] A. Katayose, R. Yokose, K. Obata, T. Makuta, New fabrication method and properties of porous metals produced by ultrasonic control of microbubble size, Microsystem Technologies, 24(1) (2018) 709-713. [9] M.A. Atwater, L.N. Guevara, K.A. Darling, M.A.Tschopp, Solid State Porous Metal Production: A Review of the Capabilities, Characteristics, and Challenges, Advanced Engineering Materials,(2018) .6670071 [10] J. Zhang, R. Perez, E. Lavernia, Documentation of damping capacity of metallic, ceramic and metalmatrix composite materials, Journal of Materials Science, 28(9) (1993) 2395-2404. [11] I. Ritchie, Z.-L. Pan, High-damping metals and alloys, Metallurgical Transactions A, 22(3) (1991) 607-616. [12] R. De Batist, High damping materials:mechanisms and applications, Le Journalde Physique Colloques, 44(C9) (1983) C9-39-C39-50. [13] A. Kandeil, M. Mourad, Effect of surface texture on corrosion behaviour of steel, Surface and coatings Technology, 37(2) (1989) 237-250. [14] S. Nakahara, Microporosity induced by nucleation and growth processes in crystalline and non-crystalline films, Thin Solid Films, 45(3) (1977) 421-432. [15] T. Remmerswaal, The influence of microstructure onthe corrosion behaviour of ferritic-martensitic steel, master thesis, Delft University of Technology, Delft, 2015. [16] L. da Silva, H. Costa, Tribological behavior of gray cast iron textured by maskless electrochemical texturing, Wear, 376 (2017) 1601-1610. [17] A. Dawood, S. Nazirudeen, New method for the development of porous gray cast iron castings, International Journal of Metalcasting, 3(2) (2009) 43-53. [18] H. Abdollahi, R.A. Mahdavinejad, V. Zal, M. Ghambari, Optimization of mechanical properties of iron-based recycled powder metallurgy parts and investigation of these properties by transverse rupture test, (2015). [19] H. Abdollahi, R. Panahi Leavoli, R. Ali Mahdavinejad, V. Zal, Investigation of machinability of green and sintered iron-jet milled cast iron powder metallurgy parts, Modares Mechanical Engineering, .14(11)(2015) [20] C.E. da Costa, W.C. Zapata, M.L. Parucker, Characterization of casting iron powder from recycled swarf, Journal of materials processing technology, 143 (2003) 138-143. [21] J.-C. Hung, Y.-C. Tsai, C. Hung, Frictional effect of ultrasonic-vibration on upsetting, Ultrasonics, )3(64 (2007) 277-284. [22] R. Venegas, C. Boutin, O. Umnova, Acoustics of multiscale sorptive porous materials, Physics of Fluids, 29(8) (2017) 082006. [23] Z. Liu, M. Fard, J.L. Davy, Acoustic properties of the porous material in a car cabin model, in: Proc 23rd International Congress on Sound and Vibration, 2016, pp. 10-14. [24] M.I. Ab Kadir, M.S. Mustapa, N.A. Latif, A.S.Mahdi, Microstructural Analysis and Mechanical Properties of Direct Recycling Aluminium Chips AA6061/Al Powder Fabricated by Uniaxial Cold Compaction Technique, Procedia Engineering, 184 (2017) 687-694. [25] K. Mahmood, W.U.H. Syed, A.J. Pinkerton, Innovative reconsolidation of carbon steel machining swarf by laser metal deposition, Optics and lasers in engineering, 49(2) (2011) 240-247. [26] M.E. Shaibani, N. Eshraghi, M. Ghambari, Sintering of grey cast iron powder recycled via jet milling, Materials & Design, 47 (2013) 174-178. [27] E. Androsik, G. Dubrovskaya, I. Kundikov, I. Potapnev, Optimum conditions for the liquid-phase sintering of parts from ground cast-iron swarf and iron powder, Powder Metallurgy and Metal Ceramics, 14(5) (1975) 383-386. [28] J.K. Sinha, Significance of vibration diagnosis of rotating machines during installation and commissioning: a summary of few cases, Noise & Vibration Worldwide, 37(5) (2006) 17-27. [29] J.W.a. Sons, THE CORROSIVE BEHAVIOR OF NON-FERROUS METALS IN SEA WATER, American Society for Naval Engineering,73(2)(1961)187-394. [30] M. Ghambari, M.E. Shaibani, N. Eshraghi, Production of grey cast iron powder via target jet milling, Powder Technology, 221 (2012) 318-324. [31] B. Yan, W. Shi, C. Hua, J. Liu, D. Dong, J. Chen, Vibration damage mechanism analysis on rotor of diesel generating set with rigid coupling, in:Journal of Physics: Conference Series, IOP Publishing, 2015, pp. 012071. [32] J. Švarc, T. Binar, P. Dostál, M. Černý, J. Tippner, The Influence of Corrosion Attack on Grey Cast Iron Brittle-Fracture Behaviour and Its Impact on the Material Life Cycle, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65(4) (2017) 1295-1301. [33] R. Yue, Q. Zhang, Changes in Pore Structures of Porous Beds When Subjected to Vertical Vibration, KONA Powder and Particle Journal, 34 (2017) 224233. [34] A. Beltzer, The influence of porosity on vibrations of elastic solids, Journal of Sound and Vibration, 63(4) (1979) 491-498. [35] X. Wang, Porous metal absorbers for underwater sound, The Journal of the Acoustical Society of America, 122(5) (2007) 2626-2635. [36] Z. Abdullah, A. Ismail, S. Ahmad, The Influence of Porosity on Corrosion Attack of Austenitic Stainless Steel, in: Journal of Physics: Conference Series, IOP Publishing, 2017, pp. 012013. [37] E. Aghion, Y. Perez, Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology, Materials Characterization, 96 (2014) 78-83. [38] Y.-H. Li, G.-B. Rao, L.-J. Rong, Y.-Y. Li, The influence of porosity on corrosion characteristics of porous NiTi alloy in simulated body fluid, Materials Letters, 57(2) (2002) 448-451. [39] W.-q. Zou, Z.-g. Zhang, H. Yang, W. Li, Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting, China Foundry, 13(4) (2016) 248.552 [40] W. Jiang, X. Chen, B. Wang, Z. Fan, H. Wu, Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting, The International Journal of Advanced Manufacturing Technology, 83(1-4) (2016) 167-175. [41] L. Qingmei, Z. Yong, S. Yaoling, Q. Feipeng, Z. Qijie, Influence of ultrasonic vibration on mechanical properties and microstructure of 1Cr18Ni9Ti stainless steel, Materials & design, 28(6) (2007) 1949-1952. [42] K. Teh, C. Huang, The effects of fibre orientation on free vibrations of composite beams, Journal of Sound and Vibration, 69(2) (1980) 327-337. [43] T.H. Orem, Influence of crystallographic orientation on the corrosion rate of aluminum in acids and alkalies, Journal of Research of the National Bureau of Standards, 58(3) (1957) 157. [44] H. Jasim, Investigating the effect of vibration on corrosion rate of crude oil storage tanks, Materials and Corrosion, 67(9) (2016) 988-993. [45] J.O. Olawale, J.K. Odusote, A.B. Rabiu, E.O. Ochapa, Evaluation of corrosion behaviour of grey cast iron and low alloy steel in cocoa liquor and well water, Journal of Minerals and Materials Characterization and Engineering, 1(2) (2013) 44-48. | ||
آمار تعداد مشاهده مقاله: 643 تعداد دریافت فایل اصل مقاله: 982 |