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ABSTRACT:  Recent advances in the field of construction materials have led to development of a 
variety of high performance concretes like steel fiber reinforced one (SFRC). It has been proved by many 
researches that the addition of steel fibers can improve various properties of concrete. The compressive 
strength of concrete (fc) is the main mechanical property in design of reinforced concrete structures. 
This paper deals with estimation of compressive strength of SFRC using gene expression programming 
(GEP) approach. In this regard, fine aggregate to cement ratio (FA/C), coarse aggregate to cement ratio 
(CA/C), water to cement ratio (W/C), fiber percentage (FP), superplastizer to cement percentage (SP/C) 
and fiber length to diameter ratio (L/D) were considered as the most important factors affecting the 
compressive strength of SFRC. To extract an accurate mathematical relationship from GEP approach, 
a comprehensive database was collected from literature with 115 mix design of SFRC. About 80% of 
the gathered database was used for training the model, while the rest was utilized for testing the model. 
The results indicate the acceptable performance of the developed GEP-based model, as the viewpoint of 
statistical parameters. The absolute fraction of variances for both training and testing datasets are more 
than 0.98 which approve a high correlation between the predicted values of the proposed model and the 
experimental results. At the end, a parametric study was carried out to investigate the efficiency of the 
developed model in predicting the tendency of compressive strength by changing the effective input 
variables.  
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1. INTRODUCTION
Recent improvements in the field of concrete technology 

have led to the emergence of fiber reinforced concrete. It has 
been approved by many research studies that the addition of 
fibers can improve different mechanical properties of concrete 
such as tension, compression, shear, flexural strength, 
ductility, impact resistance and first cracking strength [1-5]. 
Fibers used in concrete are usually made of steel, glass, plastic 
or natural materials. Steel fiber reinforced concrete (SFRC) has 
been rapidly gaining in popularity as a result of its improved 
mechanical properties over plain concrete. As the viewpoint of 
concrete structure design, the concrete compressive strength 
is the most important mechanical property. Many factors can 
significantly influence the compressive strength including 
water-binder ratio (W/B), the size of the specimens, cement 
type, aggregate content, maximum aggregate size, aggregate 
type, curing type and period, type and amount of chemical 
admixtures and mineral additives, environmental factors and 
the specimen’s testing method.

A genetic algorithm (GA), inspired by biological 
evolutionary process, is a global optimization technique 
which can be used to find a near optimal solution to a problem 
with many local solutions. The genetic algorithm, which was 

first formalized as an optimization method by Holland [6], is 
a meta-heuristic optimization technique for high dimensional 
and nonlinear problems. Genetic programming (GP) [7], 
as an extension of GA, is an artificial intelligence method 
which the solutions are computer programs (equations) with 
tree structures and can be used to predict the behavior of 
engineering systems. The developed equations can be easily 
manipulated in practical circumstances, noisy problems 
and stochastic search techniques based on the mechanism 
of natural selection and natural genetics. Gene expression 
programming (GEP) [8] is a recent extension of GP which 
evolves computer programs with different sizes and shapes 
encoded in linear chromosomes with a fixed length. There 
have been some scientific efforts in serving GEP to material 
and structural engineering tasks. The main advantage of 
the GEP-based approach is its capability in generating 
predictive equations without assuming the prior form of the 
mathematical relationship.

Nazari and Riahi (2012) used a gene expression 
programming model as a powerful tool for predicting the 
effect of nanoparticles on the compressive strength of the 
geo-polymers in the considered range [9]. Gandomi et al. 
(2013) developed a GEP based-model for estimating the shear 
strength of deep reinforced concrete beams and introduced 
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a formula with better efficiency compared to other design 
codes [10]. Gandomi et al. (2009) proposed a new version of 
GP, called linear GP, for the formulation of the compressive 
strength of concrete cylinders confined by carbon fiber 
reinforced plastic and demonstrated the high performance 
of the developed model compared to available traditional 
equations [11]. Baykasoglu et al. (2008) studied the uniaxial 
compressive and tensile strengths of rocks that are widely 
used in the design stage of geotechnical structures using GP 
[12]. Kara (2012) studied the feasibility of using GEP to create 
an empirical model for the ultimate shear strength of SFRC 
beams without stirrups and approved the higher capability 
of the developed model in comparison to other available 
mathematical relationships  [13]. González-Taboada et al. 
(2016) developed a GEP for estimation of structural recycled 
concretes using a comprehensive gathered database and 
proved their model was in good harmony with experimental 
results [14]. Jafari and Mahini (2017) developed a GEP model 
for design of lightweight concrete based on their experimental 
results and demonstrated its high accuracy [15].

Exact estimation of concrete compressive strength is one 
of the most important issues which civil engineers meet with 
it. This subject is so crucial in the case of high performance 
concrete such as SFRC. The main purpose of this paper is to 
utilize the GEP technique to build a predictive model for the 
28 days’ compressive strength (fc) of SFRC with cylindrical 

specimens of 150×300 mm. The proposed model is developed 
based on a comprehensive database obtained from the 
literature. A comparative study was conducted between the 
results obtained by the proposed model and experimental 
results found in the literature.

2. METHODOLOGY
Gene expression programming (GEP), like genetic 

algorithms (GAs) and genetic programming (GP), uses 
population of individuals, selects them according to their 
fitnesses and generate next populations based on genetic 
operators. The fundamental difference between the three 
algorithms returns to the nature of the individuals: In GAs the 
individuals are linear strings of fixed length (chromosomes), 
while in GP the individuals are nonlinear entities of different 
sizes and shapes (parse trees) and in GEP the individuals 
are encoded as linear strings of fixed length (the genome or 
chromosomes) which are afterwards expressed as nonlinear 
entities of different sizes and shapes (i.e. simple diagram 
representations or expression trees) [8].

In GEP, individuals are encoded as linear strings of fixed 
size (genome) such as shown in Fig. 1 which are expressed 
later as non-linear entities with different sizes and shapes. 
These entities are known as expression trees (ETs). Usually, 
individuals are composed of only one chromosome, which, 
in turn, can have one or more genes, divided into head 

 

Fig. 1 Chromosome with two genes and its decoding [8] 

  

Fig. 1. Chromosome with two genes and its decoding [8]

 

Fig. 2 Example of a GEP expression tree [8]. 

  

Fig. 2. Example of a GEP expression tree [8].  

Fig. 3 flowchart of the GEP [8]. 

  

Fig. 3 .flowchart of the GEP [8].
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and tail parts. ETs are the expression of a chromosome 
and they undergo the selection procedure (usually fitness 
proportionate), guided by their fitness value, so as to generate 
new individuals. During reproduction, the chromosomes, 
rather than the respective ET, are modified by the genetic 
operators. The structural organization of the GEP genes is 
better understood in terms of open reading frames (ORFs). In 
biology, an ORF or the coding sequence of a gene begins with 
the “start” codon, continues with the amino acid codons, and 
ends at a termination codon. In GEP, there are two languages: 
the language of the genes and the language of the ETs. In GEP, 
thanks to the simple rules that determine the structure of ETs 
and their interactions, it is possible to immediately infer the 
phenotype given the sequence of a gene, and vice versa [16].

This intelligible bilingual notation is called the Karva 
language. For example, a mathematical expression [a×(b+c)]-
[√(a-c)] can be represented by a two gene chromosome or an 
ET, as shown in Fig. 2. This Figure shows how two genes are 
encoded as a linear string and how it is expressed as an ET 
[16].

The fundamental steps of GEP are schematically 
represented in Fig. 3. The process begins with the random 
generation of the chromosomes of the initial population. 
Then, these chromosomes are expressed and the fitness of each 
individual is evaluated using a set of fitness cases (also called 
the selection environment). Using roulette wheel sampling, the 
individuals are then selected according to their fitnesses (their 
performances in that particular environment) to reproduce 
with modifications, leaving progeny with new traits. The 
modification in the population is introduced by conducting 
single or several genetic operators on selected chromosomes, 
which include crossover, mutation and rotation. These new 
individuals are, in turn, subjected to the same developmental 
process: the expression of the genomes, confrontation of the 
selection environment and reproduction with modification. 
The process is repeated for a certain number of generations or 
until a good solution has been found [16].

3. EXPERIMENTAL DATABASE
The database used for the development of the model 

included the experimental results of 115 samples collected from 
several experimental studies [1,2,17,18,3,19,4,20,21,5,22]. In 
order to provide an accurate assessment of the compressive 
strength of SFRC using GEP model, the selection of effective 

factors on the compressive strength is so important. The 
most significant variables representing the behaviour of 
the compressive strength of SFRC were detected based on a 
literature review [1,2,5]. Six effective variables including fine 
aggregate to cement ratio (FA/C), coarse aggregate to cement 
ratio (CA/C), water to cement ratio (W/C), fiber percentage 
(FP), superplastizer to cement percentage (SP/C) and fiber 
length to diameter ratio (L/D) were used as the input variables 
of the model, while the concrete compressive strength (f’

c) was 
considered as model output. The variable selection will affect 
the model generalization capability of GEP. The statistical 
parameters of input and output variables are given in Table .1.

For the analysis, the available database was randomly 
divided into training and testing subsets. The training data 
were taken for genetic evolution, while the testing data were 
used to evaluate the generalization capability of the model 
(model selection). The models with the best performance 
on both of the training and testing datasets were finally 
selected as the outcomes of the GEP runs. Among 115 data, 
89 data were randomly taken for the training process (genetic 
evolution) and 26 data were considered for the validation 
phase to evaluate the performance of the developed model for 
unknown data.

4. MODEL DEVELOPMENT USING GEP
In this study, the goal of GEP is to find a high accurate 

formula for estimating the compressive strength of SFRC. 
This function can be expressed as follows:

f ’c = f (FA/C, CA/C, W/C, FP, SP/C, L/D) �

There are several adjustment parameters which have to be 
set before implementation of GEP. In this regard, several runs 
have to be carried out to come up with a parameterization of 
the GEP to provide enough robustness and generalization to 
solve the problem. The number of programs in the population 
that the GEP will evolve is set by the population size (number 
of chromosomes). A run will take longer with a larger 
population size. The proper number of the population depends 
on the number of possible solutions and the complexity of 
the problem. Three levels were set for the population size 
(50, 150, and 300). The chromosome architectures of the 
models evolved by GEP include head size and the number of 
genes. The head size determines the complexity of each term 

Table 1Statistical values of input and output variables. 

  Table 1. Statistical values of input and output variables.
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in the evolved model. The number of terms in the model is 
determined by the number of genes per chromosome. Each 
gene codes for a different sub-expression tree or sub-ET. Three 
optimal levels were considered for the head size (3, 5, and 8) 
and the number of genes (1, 2, and 3). For the number of genes 
greater than one, the addition linking function was used to 
link the mathematical terms encoded in each gene. There are 
three levels considered for the population size parameter × 
three levels considered for the head size parameter × three 
levels considered for the number of genes equal to 27 different 
combinations of the parameters. Even if all of the previous 
parameter settings and the architecture are kept constant, the 
outcomes of the GEP might be different. This leads to extra 
difficulties in the selection of the optimal GEP model and 
parameter settings. To overcome this difficulty, on the basis 
of a trial and error study, as well as from recommendations 
by other researchers [31], all of these parameter combinations 
were tested and ten replications for each combination were 
carried out. Therefore, the overall number of GEP runs was 
equal to 27× 10 = 270. All of these combinations were tested 
to extract the best model. After 5,000 generations considered 
herein, a mass extinction or a neutral gene was automatically 
added to the model. In this study, basic arithmetic operators 
and mathematical functions were utilized to obtain the 
optimum GEP model. The mean absolute error function was 
used to calculate the overall fitness of the evolved programs. 
The program was run until there was no longer any significant 
improvement in the performance of the models. The GEP 
algorithm was implemented using Gene Xpro Tools [23]. 

5. RESULTS AND DISCUSSION
After running different GEP models, the best model was 

chosen on the basis of a multi objective strategy as below:
i. The simplicity of the model, although this is not a 

predominant factor.
ii. The best performance of the model for training dataset.
iii. The best performance of the model for testing data.
The first objective was controlled by the user through the 

parameter settings (e.g., the number of genes or head size 
which determines the upper limit for the size of the programs 
encoded in the gene). To examine how close, the predicted 
values were to the compressive strength steel fiber concrete, 
for indices, mean absolute error (MAE), mean absolute 
percentage error (MAPE), root mean square error (RMSE), 
and absolute fraction of variance (R2) were employed 
to evaluate the performance of models. These norms are 
formulated according to the following equations:
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where Oi, Ti and n are the model output, experimental 
results of ith data and the number of data, respectively.

The best formula obtained by the GEP is equal to the 
following equation. The corresponding ETs for the best results 
are depicted in Fig. 4
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Fig. 4 Expression tree for the best formula of compressive strength of SFRC. 

  

Fig. 4 .Expression tree for the best formula of compressive strength 
of SFRC.
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training and testing data are 10.73% and 11.65%, respectively. 
Moreover, The R2 values for both datasets are greater than 
0.98 which indicate a high correlation between the predicted 
values of the developed model and experimental results.

The comparisons between the experimental results and 
the prediction outputs of the developed GEP model for 
training and testing datasets are illustrated in Figs. 5, and 
6, respectively. As depicted in these Figures, there is a good 
harmony between the predicted and real values for both 
datasets. 

Moreover, for further verification of the GEP-based 
prediction model, a parametric analysis was performed to 
investigate the response of the predicted compressive strength 
of the GEP model with change of predictor variables. The 
robustness of a design equation is determined by examining 
how well the predicted target values agree with the underlying 
physical behavior of the investigated system. For this purpose, 
the trend of compressive strength with changing one input 
variable is monitored, when the values of all other variables are 
kept in their mean values. Figure Fig. 7 presents the tendency 
of the ultimate load strength predictions to the variations of 

Table 2Statistical parameters of the developed model. 
Table 2. Statistical parameters of the developed model.

 

Fig. 5 Comparison of experimental results with the predicted outputs for training dataset. 
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Fig. 6 Comparison of experimental results with the predicted outputs for testing dataset. 
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Fig. 5 .Comparison of experimental results with the predicted 
outputs for training dataset.

Fig. 6 .Comparison of experimental results with the predicted 
outputs for testing dataset.

 

Fig. 7 Ultimate load strength parametric analysis in the GEP-based model. 
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the effective input variables. As depicted in this Figure, the 
coarse aggregate to cement and water to cement ratios and 
also fiber length to diameter ratio have the most important 
effects on the compressive strength of SFRC. When the 
CA/C increases, the compressive strength of SFRC decreases 
because the amount of cement in the concrete mixture is 
reduced. With increasing the L/D of fiber, the compressive 
strength diminishes. It can be related to the inadequate 
compaction of concrete mixture for higher L/D ratios. Lower 
W/C ratio causes higher compressive strength because of the 
lower porosity of concrete and better interfacial transition 
zone condition. It can be concluded that the developed GEP 
model can correctly predict the trend of compressive strength 
with changing the input variables. What is so interesting here 
is that the amount of steel fiber in the mix design of SFRC has 
relatively no effect on the compressive strength.     

   
6. CONCLUSION

In this study, a sub-branch of genetic programming, 
called gene expression programming (GEP), was utilized to 
formulate the compressive strength of steel fiber reinforced 
concrete. In order to achieve the best mathematical equation, 
different architectures of GEP were considered. The results of 
this study are as follows:

- The proposed model is mathematically so simple which 
can be used by civil engineers and can give a good estimation 
of compressive strength of SFRC for further experimental 
work. 

- The mean absolute percentage error of the proposed 
model is about 11% for all data in the gathered database. 

- The developed model can predict the compressive 
strength of SFRC mean absolute error of 3.75 MPa.    

- The amount of steel fiber in the mix design of SFRC has 
the least effect on the compressive strength compared to other 
important variables. 

- Water to cement and coarse aggregate to cement ratios 
have the most important effects on the compressive strength 
of SFRC in the proposed GEP based model.  

- The developed GEP model has the ability to predict 
the trend of compressive strength with changing the input 
variables. 
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