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Real-time Fuzzy Fractional-Order Control of Electrically Driven Flexible-Joint Robots
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ABSTRACT:  Fractional order control of electrically driven flexible-joint robots has been addressed 
in this paper. The controller design strategy is based on the actuators’ electrical subsystem considering 
to voltage saturation nonlinearity. Hence, the knowledge of the actuator/robot dynamics model is not 
required as it is for many other control strategies. The overall closed-loop system is proven to be stable 
and the joint position tracking error is uniformly bounded based on the Lyapunov’s stability concept. The 
satisfactory performance of the proposed control scheme is verified by experimental results.

Review History:

Received: Oct. 08, 2017
Revised: Oct. 07, 2018
Accepted: Dec. 18, 2018
Available Online: Jun. 15, 2020

Keywords:

Actuator saturation 

flexible-joint manipulator 

fractional-order control 

indirect adaptive fuzzy control 

voltage control strategy.

11

*Corresponding author’s email: izadbakhsh_alireza@hotmail.com

                                  Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  
                                 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

1- INTRODUCTION
Reviewing the robotic researches in the last decades 

indicates that control of flexible joint robots is one of the 
most challenging tasks in this field. On the other hand, 
their widespread application in various fields such as space 
manipulators and articulated hands [1] has made it a 
popular research area. Many valuable control strategies have 
been applied to flexible joint robots to enhance the system 
performance. A task-space controller based on the back-
stepping approach has been presented in [2]. An observer-
based controller for flexible joints robots has been developed, 
[3], in which the uncertainties on the motor-side are 
successfully eliminated using a disturbance observer. Also, 
many other approaches such as nonlinear adaptive control 
[4], passivity-based control [5], adaptive back-stepping 
control [6], global position-feedback tracking control [7], 
Singular perturbation approach [8-9], predictive control [10], 
adaptive fuzzy approaches [11-12], hierarchical sliding mode 
control [13], dynamic surface control [14], and higher-order 
differential feedback control [15] have been studied. It is worth 
noting that most of them have ignored the actuator dynamics 
in their design procedure. In other words, their control laws 
calculate the desired torque that should be applied to the 
manipulator joints. 

Since most robotic systems use electrical motors as 
actuators, recently, some voltage-based controllers have 

been presented for electrically driven flexible joint robot 
manipulators (EDFJR). A decentralized robust back-stepping 
like control strategy for EDFJR considering the effects of 
actuator voltage input constraint has been proposed in 
[16]. Adaptive form of this work has also been presented 
in [17] that guarantees only BIBO stability of the systems’ 
states. The considerable point is that, stability is analyzed 
separately in saturated and unsaturated operation areas. 
However, the stability of the closed-loop system may not 
be guaranteed through these separations, since transitions 
from saturation area to unsaturated area and vice versa are 
neglected. As an extension in this field, a robust Lyapunov-
based controller for EDFJR using voltage control strategy 
has been proposed in [18]. The controller design procedure 
in [18] is based on the third order instead of the fifth order 
system dynamics, while all system states are remained 
bounded and the position errors of the links asymptotically 
converge to zero. An indirect adaptive fuzzy controller 
for EDFJR manipulators has been developed in [19]. The 
controller structure differs from the previous ones due to 
using one control loop whereas the commonly used control 
design employs two control loops. Nevertheless, the stability 
analysis presented in [19], does not address the saturated area 
properly. In [20], the previous results on the robust stability 
of EDFJR presented by [16] have been modified. It should 
be emphasized that considering electrical motors dynamics 
increases the system order and consequently, the number 



A. Izadbakhsh et al., AUT J. Model. Simul., 52(1) (2020) 11-18, DOI: 10.22060/miscj.2018.13523.5075

12

of required feedbacks will be increased. Moreover, actuator 
saturation is another challenging issue, which should be taken 
into consideration in the controller design, since it imposes 
additional nonlinearities to the closed-loop system [21-22]. 
To the best of our knowledge, there are very few works in the 
control literature, which deal with the actuator saturation in 
voltage-based control of flexible joint manipulators. Thus, the 
contributions of this paper are designing a suitable voltage-
based controller for flexible joint manipulators to consider the 
actuator saturation problem.

Studying the literature on the field of adaptive and robust 
control in recent years, remains no doubt that uncertainty 
estimation and compensation play the key role in improving 
the controller performance [23-25]. At the heart of this area 
is the Stone-Weierstrass theorem [26]. Many advances and 
successes in neuro-fuzzy control of complicated uncertain 
nonlinear multivariable systems owe to this fundamental 
theorem and during the last few decades, numerous 
neuro-fuzzy control structures for various systems have 
been presented [27-29]. The reason for these widespread 
applications of neuro-fuzzy systems may be the fact that with 
the help of Stone-Weierstrass theorem, determination of the 
regressor matrices can be avoided. However, fractional order 
control of electrically driven flexible joint robots using voltage 
control strategy remains as an open problem.

In this paper, we are going to address an indirect adaptive 
fuzzy fractional-order control for EDFJR considering to 
actuator input constraint. The controller design is not 
dependent on the dynamics of the actuators and manipulators, 
thus is a model-free controller. The overall closed-loop system 
is proven to be stable and the joint position tracking errors 
are uniformly bounded based on the Lyapunov stability 
concepts. Most of previous approaches proposed for position 
control of flexible joint electrically driven robots (FJER) 
utilize back-stepping or back-stepping-liked control strategy 
which requires convergence of internal signals to their desired 
values called as fictitious control signals [20]. This strategy 
is complicated and time consuming, whereas each joint of 
the robot is described by a 5th-order cascade differential 
equation. Therefore, as studied in this paper, the best idea 
is focusing on the convergence of the system output and 
meanwhile guaranteeing boundedness of other states (internal 
signals). Consequently, the control law dimension and its 
implementation costs are reduced. This is the main problem 
which has been considered in the proposed approach.

The rest of this paper is as follows. In section 2, the model 
of an n-link flexible joint robot manipulator is described. 
In section 3, the indirect adaptive fuzzy fractional-order 
controller is presented. The stability analysis is also discussed 
in this section. In section 4, some experimental results are 
illustrated and finally, some conclusions are given in Section 
5. Note that, throughout this paper, we present the vectors 
and matrices in bold form.

2- ROBOT DYNAMICS 
The dynamics of an electrically driven flexible-joint robot 

can be described by
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its implementation costs are reduced. This is the main 
problem which has been considered in the proposed 
approach. 

The rest of this paper is as follows. In section 2, the 
model of an n-link flexible joint robot manipulator is 
described. In section 3, the indirect adaptive fuzzy 
fractional-order controller is presented. The stability 
analysis is also discussed in this section. In section 4, 
some experimental results are illustrated and finally, 
some conclusions are given in Section 5. Note that, 
throughout this paper, we present the vectors and 
matrices in bold form. 

2. Robot dynamics  

The dynamics of an electrically driven flexible-joint 
robot can be described by 

(1) ( ) ( , ) ( ) ( )m+ + = −D q q C q q q g q K rθ q  

(2) ( )m m m m a+ + − =Jθ Bθ rK rθ q K I  

(3) ( )a a b m t+ + =RI LI K θ v  
where q  is the n-vector of joint angles, ( )D q  is the 
n n  inertia matrix, ( , )C q q q  is the n-vector of 
centrifugal and Coriolis forces, ( )g q  is the gravitational 

forces vector, mθ  is the n-vector of motor angles, aI  is 
the n-vector of motor armature current, and ( )tv  is the 
n-vector control input voltage to the actuators. J , B , r
, mK , L , R , bK , and K , are n n  constant 
diagonal matrices of actuator inertias, damping, gear-
box ratio, torque constant, electrical inductance, 
electrical resistance, back-emf effects, and joint 
stiffness, respectively. 

3. Indirect adaptive fuzzy fractional-order control 

Equations (1)-(3) represent a fifth-order highly 
nonlinear dynamic system that makes the control 
problem extremely difficult. To cope with this problem, 
an indirect adaptive fuzzy fractional-order controller is 
developed based on the actuators' electrical subsystem 
and using voltage control strategy. The controller design 
procedure start by adding and subtracting the Caputo 
fractional derivative of the joint position variable, 

0
( )C

t tD q t , to the left hand side of Equation (3) in 

decentralized form as 

(4) 0 0
( ) ( ) v( )C C

t t t t a a b mD q t D q t RI LI K t  − + + + =  

where 

(5) 0
0

( )

01
1 ( )( ) .   t>t

( ) ( )

t n
C
t t n

t

qD q t d
n t



 

  − +
=
 − −  

represents the Caputo fractional derivative of order 
 + , and ( )n  denotes the famous Gamma 
function with min{ / }n k k =    [30]. Let us 

define
0

( , , , ( ))C
a a m t tF I I D q t , called residual 

uncertainty as 

(6
) 

0 0
( , , , ( )) ( )C C

a a m t t a a b m t tF I I D q t RI LI K D q t  = + + −

 

Equation (4) can be rewritten as follows 

(7) 0 0
( ) ( , , , ( )) v( )C C

t t a a m t tD q t F I I D q t t + =  

From practical point of view, the range of actuator input 
may limit by some upper and lower bound [20]. 
Suppose that the input limitation is described as 

(8) 
;u( )           

v( )=sat(u( )) u( ) ; u( )
;u( )        

u u

u u

u u

t
t t t t

t


 

 

 
= −  
−  −

 

where v( )t  represents the actual actuator input, 
sat(u( ))t   represents the saturation function, u( )t
represents the controller output, and 0u   denotes the 
maximum admissible voltage of the motor. When 
controller output falls outside linear range of the 
actuator operation, actuator saturation occurs. The non-
implemented control signal by the device, denoted as 
dzn(u( ), )ut  , is then given by [31, 32] 

(9) dzn(u( ), )=u( ) sat(u( ))ut t t −  

Now, substituting (8) into (7), and using (9), it follows 
that 

(10) 0 0
( ) ( , , , ( )) u( )

                                      dzn(u( ), )

C C
t t a a m t t

u

D q t F I I D q t t

t

 



+ =

−
 

Remark 1: Equation (8) indicates that the motor 
voltage is bounded, i.e, 

(11) v( ) ut   

As a result, the variables aI , aI , and m are upper 
bounded as I , I and 

m
 , respectively [31]. 

The considerable point is that the uncertain term 

0
( , , , ( ))C

a a m t tF I I D q t  cannot be evaluated directly, 

since the actual values of the motor dynamic parameters 

�  (1)
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fractional-order controller is presented. The stability 
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throughout this paper, we present the vectors and 
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robot can be described by 

(1) ( ) ( , ) ( ) ( )m+ + = −D q q C q q q g q K rθ q  

(2) ( )m m m m a+ + − =Jθ Bθ rK rθ q K I  

(3) ( )a a b m t+ + =RI LI K θ v  
where q  is the n-vector of joint angles, ( )D q  is the 
n n  inertia matrix, ( , )C q q q  is the n-vector of 
centrifugal and Coriolis forces, ( )g q  is the gravitational 

forces vector, mθ  is the n-vector of motor angles, aI  is 
the n-vector of motor armature current, and ( )tv  is the 
n-vector control input voltage to the actuators. J , B , r
, mK , L , R , bK , and K , are n n  constant 
diagonal matrices of actuator inertias, damping, gear-
box ratio, torque constant, electrical inductance, 
electrical resistance, back-emf effects, and joint 
stiffness, respectively. 

3. Indirect adaptive fuzzy fractional-order control 

Equations (1)-(3) represent a fifth-order highly 
nonlinear dynamic system that makes the control 
problem extremely difficult. To cope with this problem, 
an indirect adaptive fuzzy fractional-order controller is 
developed based on the actuators' electrical subsystem 
and using voltage control strategy. The controller design 
procedure start by adding and subtracting the Caputo 
fractional derivative of the joint position variable, 

0
( )C

t tD q t , to the left hand side of Equation (3) in 

decentralized form as 

(4) 0 0
( ) ( ) v( )C C

t t t t a a b mD q t D q t RI LI K t  − + + + =  

where 
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( )

01
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( ) ( )

t n
C
t t n

t

qD q t d
n t



 

  − +
=
 − −  

represents the Caputo fractional derivative of order 
 + , and ( )n  denotes the famous Gamma 
function with min{ / }n k k =    [30]. Let us 

define
0

( , , , ( ))C
a a m t tF I I D q t , called residual 

uncertainty as 

(6
) 

0 0
( , , , ( )) ( )C C

a a m t t a a b m t tF I I D q t RI LI K D q t  = + + −

 

Equation (4) can be rewritten as follows 

(7) 0 0
( ) ( , , , ( )) v( )C C

t t a a m t tD q t F I I D q t t + =  

From practical point of view, the range of actuator input 
may limit by some upper and lower bound [20]. 
Suppose that the input limitation is described as 

(8) 
;u( )           

v( )=sat(u( )) u( ) ; u( )
;u( )        

u u

u u

u u

t
t t t t

t


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 
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where v( )t  represents the actual actuator input, 
sat(u( ))t   represents the saturation function, u( )t
represents the controller output, and 0u   denotes the 
maximum admissible voltage of the motor. When 
controller output falls outside linear range of the 
actuator operation, actuator saturation occurs. The non-
implemented control signal by the device, denoted as 
dzn(u( ), )ut  , is then given by [31, 32] 

(9) dzn(u( ), )=u( ) sat(u( ))ut t t −  

Now, substituting (8) into (7), and using (9), it follows 
that 

(10) 0 0
( ) ( , , , ( )) u( )

                                      dzn(u( ), )

C C
t t a a m t t

u

D q t F I I D q t t

t

 



+ =

−
 

Remark 1: Equation (8) indicates that the motor 
voltage is bounded, i.e, 

(11) v( ) ut   

As a result, the variables aI , aI , and m are upper 
bounded as I , I and 

m
 , respectively [31]. 

The considerable point is that the uncertain term 

0
( , , , ( ))C

a a m t tF I I D q t  cannot be evaluated directly, 

since the actual values of the motor dynamic parameters 

� (2)
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its implementation costs are reduced. This is the main 
problem which has been considered in the proposed 
approach. 

The rest of this paper is as follows. In section 2, the 
model of an n-link flexible joint robot manipulator is 
described. In section 3, the indirect adaptive fuzzy 
fractional-order controller is presented. The stability 
analysis is also discussed in this section. In section 4, 
some experimental results are illustrated and finally, 
some conclusions are given in Section 5. Note that, 
throughout this paper, we present the vectors and 
matrices in bold form. 

2. Robot dynamics  

The dynamics of an electrically driven flexible-joint 
robot can be described by 

(1) ( ) ( , ) ( ) ( )m+ + = −D q q C q q q g q K rθ q  

(2) ( )m m m m a+ + − =Jθ Bθ rK rθ q K I  

(3) ( )a a b m t+ + =RI LI K θ v  
where q  is the n-vector of joint angles, ( )D q  is the 
n n  inertia matrix, ( , )C q q q  is the n-vector of 
centrifugal and Coriolis forces, ( )g q  is the gravitational 

forces vector, mθ  is the n-vector of motor angles, aI  is 
the n-vector of motor armature current, and ( )tv  is the 
n-vector control input voltage to the actuators. J , B , r
, mK , L , R , bK , and K , are n n  constant 
diagonal matrices of actuator inertias, damping, gear-
box ratio, torque constant, electrical inductance, 
electrical resistance, back-emf effects, and joint 
stiffness, respectively. 

3. Indirect adaptive fuzzy fractional-order control 

Equations (1)-(3) represent a fifth-order highly 
nonlinear dynamic system that makes the control 
problem extremely difficult. To cope with this problem, 
an indirect adaptive fuzzy fractional-order controller is 
developed based on the actuators' electrical subsystem 
and using voltage control strategy. The controller design 
procedure start by adding and subtracting the Caputo 
fractional derivative of the joint position variable, 

0
( )C

t tD q t , to the left hand side of Equation (3) in 

decentralized form as 

(4) 0 0
( ) ( ) v( )C C

t t t t a a b mD q t D q t RI LI K t  − + + + =  

where 

(5) 0
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( )

01
1 ( )( ) .   t>t

( ) ( )

t n
C
t t n

t

qD q t d
n t



 

  − +
=
 − −  

represents the Caputo fractional derivative of order 
 + , and ( )n  denotes the famous Gamma 
function with min{ / }n k k =    [30]. Let us 

define
0

( , , , ( ))C
a a m t tF I I D q t , called residual 

uncertainty as 

(6
) 

0 0
( , , , ( )) ( )C C

a a m t t a a b m t tF I I D q t RI LI K D q t  = + + −

 

Equation (4) can be rewritten as follows 

(7) 0 0
( ) ( , , , ( )) v( )C C

t t a a m t tD q t F I I D q t t + =  

From practical point of view, the range of actuator input 
may limit by some upper and lower bound [20]. 
Suppose that the input limitation is described as 

(8) 
;u( )           

v( )=sat(u( )) u( ) ; u( )
;u( )        

u u

u u

u u

t
t t t t

t


 

 

 
= −  
−  −

 

where v( )t  represents the actual actuator input, 
sat(u( ))t   represents the saturation function, u( )t
represents the controller output, and 0u   denotes the 
maximum admissible voltage of the motor. When 
controller output falls outside linear range of the 
actuator operation, actuator saturation occurs. The non-
implemented control signal by the device, denoted as 
dzn(u( ), )ut  , is then given by [31, 32] 

(9) dzn(u( ), )=u( ) sat(u( ))ut t t −  

Now, substituting (8) into (7), and using (9), it follows 
that 

(10) 0 0
( ) ( , , , ( )) u( )

                                      dzn(u( ), )

C C
t t a a m t t

u

D q t F I I D q t t

t

 



+ =

−
 

Remark 1: Equation (8) indicates that the motor 
voltage is bounded, i.e, 

(11) v( ) ut   

As a result, the variables aI , aI , and m are upper 
bounded as I , I and 

m
 , respectively [31]. 

The considerable point is that the uncertain term 

0
( , , , ( ))C

a a m t tF I I D q t  cannot be evaluated directly, 

since the actual values of the motor dynamic parameters 

� (3)

where q  is the n-vector of joint angles, ( )D q  is the 
n n×  inertia matrix, ( , )C q q q   is the n-vector of centrifugal 
and Coriolis forces, ( )g q  is the gravitational forces vector, 

mè  is the n-vector of motor angles, aI  is the n-vector of 
motor armature current, and ( )tv  is the n-vector control 
input voltage to the actuators. J , B , r , mK , L , R , bK
, and K , are n n×  constant diagonal matrices of actuator 
inertias, damping, gear-box ratio, torque constant, electrical 
inductance, electrical resistance, back-emf effects, and joint 
stiffness, respectively.

3- INDIRECT ADAPTIVE FUZZY FRACTIONAL-
ORDER CONTROL

Equations (1)-(3) represent a fifth-order highly nonlinear 
dynamic system that makes the control problem extremely 
difficult. To cope with this problem, an indirect adaptive 
fuzzy fractional-order controller is developed based on the 
actuators’ electrical subsystem and using voltage control 
strategy. The controller design procedure start by adding 
and subtracting the Caputo fractional derivative of the joint 
position variable, 0

( )C
t tD q tα , to the left hand side of Equation 

(3) in decentralized form as

0 0
( ) ( ) v( )C C

t t t t a a b mD q t D q t RI LI K tα α θ− + + + =

�
(4)

Where

0
0

( )

01
1 ( )( ) .   t>t

( ) ( )

t n
C
t t n

t

qD q t d
n t

α
α
τ τ

α τ − +
=
Γ − −∫

�
(5)

represents the Caputo fractional derivative of order 
α +∈ℜ , and ( )nΓ  denotes the famous Gamma function with 

min{ / }n k k α= ∈ >  [30]. Let us define
0

( , , , ( ))C
a a m t tF I I D q tαθ , 

called residual uncertainty as

0 0
( , , , ( )) ( )C C

a a m t t a a b m t tF I I D q t RI LI K D q tα αθ θ= + + −  

�
(6)

Equation (4) can be rewritten as follows

0 0
( ) ( , , , ( )) v( )C C

t t a a m t tD q t F I I D q t tα αθ+ =

�
(7)

From practical point of view, the range of actuator input 
may limit by some upper and lower bound [20]. Suppose that 
the input limitation is described as

;u( )           
v( )=sat(u( )) u( ) ; u( )

;u( )        

u u

u u

u u

t
t t t t

t

ξ
ξ ξ

ξ ξ

ξ >
= − ≤ ≤
− < − �

(8)

where v( )t  represents the actual actuator input, 
sat(u( ))t ∈ℜ  represents the saturation function, u( )t represents 
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the controller output, and 0uξ >  denotes the maximum 
admissible voltage of the motor. When controller output 
falls outside linear range of the actuator operation, actuator 
saturation occurs. The non-implemented control signal by the 
device, denoted as dzn(u( ), )ut ξ , is then given by [31, 32]

dzn(u( ), )=u( ) sat(u( ))ut t tξ − � (9)

Now, substituting (8) into (7), and using (9), it follows that

0 0
( ) ( , , , ( )) u( )

                                      dzn(u( ), )

C C
t t a a m t t

u

D q t F I I D q t t

t

α αθ

ξ

+ =

−



�
(10)

Remark 1: Equation (8) indicates that the motor voltage 
is bounded, i.e,

v( ) ut ξ≤ � (11)

As a result, the variables aI , aI , and mθ are upper 
bounded as Iξ , Iξ  and mθ

ξ
 , respectively [31].

The considerable point is that the uncertain term 
0

( , , , ( ))C
a a m t tF I I D q tαθ  cannot be evaluated directly, since the 

actual values of the motor dynamic parameters are unknown. 
Under these circumstances, indirect adaptive fuzzy fractional-
order control with a set of tunable parameters is employed 
to approximate lumped uncertainty. Overall control law is as 
follows:

0

0

u( ) ( ) ( ( ) ( ))

ˆ ( , , , ( ))

C
t t d p d

C
a a m t t

t D q t k q t q t

F I I D q t

α

αθ

= + −

+ 

�

(12)

where ( )dq t  is the desired trajectory, pk is a positive control 
gain, and 

0
ˆ ( , , , ( ))C

a a m t tF I I D q tαθ  is a fuzzy system to estimate 
the function 

0
( , , , ( ))C

a a m t tF I I D q tαθ . Purposefully, 
0
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is bounded.
According to the universal approximation property of 

fuzzy systems, F  can be represented by
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(21) 1 2 3( , , )TF x x x = +y ψ  

where 1 27[ ]Ty y=y  is an optimal weighting 
vector, and   denotes the bounded approximation error. 
Now, applying Equations (19) and (21) to equation (13) 
obtains the closed loop system as 
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where expression ˆ= −y y y  represents the difference 
between actual and estimated value of weighting 
vectors. 

3. 1. Stability analysis 

To proceed with subsequent stability analysis, the 
following lemma is required. First, the following three 
assumptions are enforced. 

Assumption 1: The desired trajectory and its fractional-
order derivatives are continuous and uniformly 
bounded. 

Assumption 2: The motor parameters R , L , and bK  
are assumed to be bounded from above and below. That 
is 
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and ε  denotes the bounded approximation error. Now, 
applying Equations (19) and (21) to equation (13) obtains the 
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where expression ˆ= −y y y  represents the difference 
between actual and estimated value of weighting vectors.

3. 1. Stability analysis
To proceed with subsequent stability analysis, the following 

lemma is required. First, the following three assumptions are 
enforced.

Assumption 1: The desired trajectory and its fractional-
order derivatives are continuous and uniformly bounded.

Assumption 2: The motor parameters R , L , and bK  are 
assumed to be bounded from above and below. That is
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Since ( , )V e y  is positive-definite and decrescent, it can 
be concluded from Theorem 3 of [33] that, the origin of the 
system (22) and (29) is uniformly stable. As a result, the joint 
position tracking error is bounded. Because e  is bounded, 
boundedness of q  can be obtained whereas dq  is bounded. In 
addition to this, 0
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bounded. Equation (22) is a linear fractional-order differential 
equation with bounded input. Thus, Equation (22) is stable 
based on Routh-Hurwitz criteria [34]. As a result, 0

( )C
t tD e tα  

is bounded. This result together with the boundedness of 
0

( )C
t t dD q tα  implies that 0 0 0

( ) ( ) ( )C C C
t t t t d t tD q t D q t D e tα α α= −  is also 

bounded. From (2) we have

6 

where we have used Lemma 1 and assumption 3. As a 
result, 

0
( , )C

t tD V e y  is negative semi-definite if 

(31) 
1

(1 )p
e c

k 


 

  − 
+  

Since ( , )V e y  is positive-definite and decrescent, it can 
be concluded from Theorem 3 of [33] that, the origin of 
the system (22) and (29) is uniformly stable. As a result, 
the joint position tracking error is bounded. Because e  
is bounded, boundedness of q  can be obtained whereas 

dq  is bounded. In addition to this, 
0

( , ) 0C
t tD V e y  

implies that y  is also uniformly bounded. Equation (22) 
is a linear fractional-order differential equation with 
bounded input. Thus, Equation (22) is stable based on 
Routh-Hurwitz criteria [34]. As a result, 

0
( )C

t tD e t  is 

bounded. This result together with the boundedness of 

0
( )C

t t dD q t  implies that 

0 0 0
( ) ( ) ( )C C C

t t t t d t tD q t D q t D e t  = −  is also bounded. 

From (2) we have 
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which is a second-order linear differential equation with 
the bounded input. So, according to Routh-Hurwitz 
stability criteria, the variables mθ , mθ , and mθ  are 
bounded. Extending these results to all the joints 
concludes stability of robotic system. 

4. Experimental results 

The laboratory set-up which has been considered for 
experimental study is shown in Fig 3. It is a single-link 
flexible joint manipulator. The joint consists of two 
aluminum plates joined by polyurethane material to 
possess high flexibility. The actuator is a geared 
permanent magnet DC motor, operating within ±12 volt 
input, directly driving one plate. A steel tube is 
connected to the second plate. Two potentiometers 
provide feedback of the motor and joint positions, while 
velocity information is obtained by filtering the position 
feedback data [35]. In order to realization of fractional-
order term, we used the same notation as those defined 
in [36]. In order to control of the system by means of a 
PC, a PCL-818 I/O card and a PCLD-8115D data 
acquisition card of the Advantech Company are used for 
hardware interfacing under 10 msec sampling interval. 
The sampling period for I/O channels has been set to 

0.001secsT = . Based on the identification process 
implemented on this system, its bandwidth is 13W Hz= .  
Thus, it is obvious that the condition of Nyquist–

Shannon sampling theorem (
1 0.03846

2sT
W

 = ) is 

satisfied. The "Real-Time Workshop" facilities of the 
MATLA/SIMULINK are used for user interface. A 
block diagram of the system is shown in Fig. 4.  

To explore the controller ability, performance of the 
proposed control method is compared with robust 
voltage-based control strategy given by [16]. The 
desired trajectory is chosen as 

(33) 2( ) 1.26 0.63sin( )
5dq t t

= −  

The following settings are used for each controller. 

1) For the proposed approach, the design parameters are 
selected as 150pk = , 0.5 = , and (27)0.5I=Q , where 

( )I  denotes the identity matrix.  

2) For robust control strategy given by [16], 
100 ,  1500 ,  0.001p i dk k k= = = , 1 = , 610 −= , 

and ˆ 0.26bk = . 

Under these settings, experimental results were 
presented in Figs 5-8. Fig. 5 shows the output tracking 
performance. As can be seen, the proposed controller 
obtains suitable performance in tracking of reference 
trajectory. Joint position tracking errors are shown in 
Fig. 6. Fig. 7 shows the applied voltage to the actuator. 
Finally, Fig. 8 shows time evolution of the 
approximation of F̂ .  

As a more quantitative comparison, the tracking 
performances are also measured in terms of three 
different performance indexes [35]: the RMS (root 
mean score) value of the joint position error on a trip of 
time T defined as 

(34) 2
0
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T

RMS e t e d
T

 =   

the maximum absolute value of the tracking error 
defined as max{ ( )}e t , and integral of the square value 
(ISV) of the control input that shows the energy 
consumption.  

(35) 2
0
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ISV u d =   

The time interval 5 30t   has been selected to 
compute these indexes. The results for each 
performance index are given in Table 1. The results of 
the first index are nearly the same for two controllers. 
The best performance for max{ ( )}e t  is obtained using 
the fuzzy fractional order control scheme. To confirm it, 
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To explore the controller ability, performance of the 
proposed control method is compared with robust 
voltage-based control strategy given by [16]. The 
desired trajectory is chosen as 
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The following settings are used for each controller. 

1) For the proposed approach, the design parameters are 
selected as 150pk = , 0.5 = , and (27)0.5I=Q , where 

( )I  denotes the identity matrix.  

2) For robust control strategy given by [16], 
100 ,  1500 ,  0.001p i dk k k= = = , 1 = , 610 −= , 

and ˆ 0.26bk = . 

Under these settings, experimental results were 
presented in Figs 5-8. Fig. 5 shows the output tracking 
performance. As can be seen, the proposed controller 
obtains suitable performance in tracking of reference 
trajectory. Joint position tracking errors are shown in 
Fig. 6. Fig. 7 shows the applied voltage to the actuator. 
Finally, Fig. 8 shows time evolution of the 
approximation of F̂ .  

As a more quantitative comparison, the tracking 
performances are also measured in terms of three 
different performance indexes [35]: the RMS (root 
mean score) value of the joint position error on a trip of 
time T defined as 
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performance index are given in Table 1. The results of 
the first index are nearly the same for two controllers. 
The best performance for max{ ( )}e t  is obtained using 
the fuzzy fractional order control scheme. To confirm it, 
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order term, we used the same notation as those defined 
in [36]. In order to control of the system by means of a 
PC, a PCL-818 I/O card and a PCLD-8115D data 
acquisition card of the Advantech Company are used for 
hardware interfacing under 10 msec sampling interval. 
The sampling period for I/O channels has been set to 
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implemented on this system, its bandwidth is 13W Hz= .  
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The following settings are used for each controller.
1) For the proposed approach, the design parameters 

are selected as 150pk = , 0.5α = , and (27)0.5I=Q , where ( )I


 
denotes the identity matrix. 

2) For robust control strategy given by [16], 
100 ,  1500 ,  0.001p i dk k k= = = , 1β = , 610ε −= , and ˆ 0.26bk = .

Under these settings, experimental results were presented 
in Figs 5-8. Fig. 5 shows the output tracking performance. 
As can be seen, the proposed controller obtains suitable 
performance in tracking of reference trajectory. Joint position 
tracking errors are shown in Fig. 6. Fig. 7 shows the applied 
voltage to the actuator. Finally, Fig. 8 shows time evolution of 
the approximation of F̂ . 

As a more quantitative comparison, the tracking 
performances are also measured in terms of three different 
performance indexes [35]: the RMS (root mean score) value 
of the joint position error on a trip of time T defined as

2
0

1[ ( )] ( )
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RMS e t e d
T

υ υ= ∫
�

(34)

the maximum absolute value of the tracking error defined 
as max{ ( )}e t , and integral of the square value (ISV) of the 

control input that shows the energy consumption. 

2
0

( )
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ISV u dτ τ= ∫ �
(35)

	
The time interval 5 30t≤ ≤  has been selected to compute 

these indexes. The results for each performance index are 
given in Table 1. The results of the first index are nearly the 
same for two controllers. The best performance for max{ ( )}e t  
is obtained using the fuzzy fractional order control scheme. 
To confirm it,

notice that the smallest value for the max{ ( )}e t  is obtained 
by the fuzzy fractional order control scheme. The percentage 
of improvement is %33.5 with respect to robust control 
[16]. The best performance for the third index was obtained 
with the proposed fractional order controller because it has 
presented the smallest value for ISV; %79.31 improvement 
with respect to robust control [16].

5- CONCLUSIONS
In this paper, we have proposed an indirect adaptive 

fuzzy fractional-order control scheme for electrically driven 
flexible joint robots. The controller design is not dependent 
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on the dynamics of the actuators and manipulators, thus is 
a model-free controller. The nonlinearities originated from 
actuator saturation have also been taken into consideration. 
Experimental results on a single-link flexible joint electrically 
driven robot are introduced to illustrate the performance and 
effectiveness of our approach.
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