تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,376 |
تعداد مشاهده مقاله | 5,133,651 |
تعداد دریافت فایل اصل مقاله | 4,759,501 |
بررسی تجربی و آشکارسازی انتقال حرارت جریان جوشش در لوله عمودی حاوی ماده متخلخل فلزی | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 14، دوره 52، شماره 6، شهریور 1399، صفحه 1595-1612 اصل مقاله (1.97 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2018.14539.5880 | ||
نویسندگان | ||
مهدی کاشی1؛ امیر رمضانی2؛ محسن نظری* 3؛ محمد محسن شاه مردان4 | ||
1دانشگاه صنعتی شاهرود | ||
2دانشگاه شاهرود | ||
3Shahrood University of Tech, Shahrood, Iran | ||
4عضو هیئت علمی گروه مکانیک، دانشگاه شاهرود | ||
چکیده | ||
درمطالعه حاضربه بررسی تجربی انتقال حرارت جوشش در یک لوله عمودی مسی با قطرداخلی16 میلیمترتحت شرایط شار حرارتی ثابت و در فشار اتمسفریک با سیال کاری آب پرداخته شده است. تمامی آزمایشهای دوفازی در محدوده رژیم جریان اسالگ بوده و توسط یک لوله شیشهای که در انتهای بسترآزمایشگاهی قرار داده شده است، با دوربین پرسرعت آشکارسازی گردید. مؤلفههای انتقال حرارت نظیرعددناسلتو ضریب انتقال حرارت جابهجایی دردبیهای جرمی و شارهای حرارتی متفاوت اندازهگیری گردید و نتایج آزمایشها با روابط تجربی موجود برای حالت دوفازی مقایسه و میزان انحراف نتایج از روابط پیشنهادی گزارش شد. همچنین تاثیرماده متخلخل، شار حرارتیو شار جرمی برمؤلفههای انتقال حرارت بررسی گردید.درنهایت مشخص شددرکیفیتهای پایین، برای لوله حاوی فوم فلزی با افزایش شار حرارتی و جرمی، بهبود ضریب انتقال حرارت نسبت به لوله خالی اندکی کاهش مییابد، اما با اینحال میزان بهبودهموارهدر بازه 5/1 تا 8/1 قرارداردکه نشاندهنده بهبودانتقال حرارت درمبدل با فوم فلزی نسبت به مبدل ساده است.همچنین مشخص شدباوجود استفاده از فوم فلزی الگوی جریان همچنان اسالگ باقی میماند. | ||
کلیدواژهها | ||
انتقال حرارت دوفازی؛ جریان جوشش؛ فوم فلزی؛ جریان عمودی؛ آشکارسازی | ||
عنوان مقاله [English] | ||
Experimental Investigation and Visualization of Flow Boiling Heat Transfer in a Vertical Tube Containing Metal Porous Medium | ||
نویسندگان [English] | ||
Mahdi Kashi1؛ Amir Ramezani2؛ Mohsen Nazari3؛ MM Shahmardan4 | ||
1Shahrood Univ. | ||
2Shahrood Univ | ||
4SUT | ||
چکیده [English] | ||
In this study, flow boiling heat transfer in a vertical copper tube with internal diameter of 16 mm under constant heat flux conditions and at atmospheric pressure is experimentally investigated by using water as working fluid. All two-phase experiments are within the Slug flow regime which are visualized by a glass tube placed at the end of the laboratory bed and a high-speed camera. Heat transfer parameters such as Nusselt number and convection heat transfer coefficients are measured in different mass flow rates and heat fluxes. The results of the experiments are compared with the experimental data for the two-phase flow and the amount of deviation of the results from the proposed relationships is reported. Also, the effects of porous material, heat flux and mass flux on heat transfer parameters are investigated. It was also found that, despite the use of metal foam, the slug flow pattern remains in the porous tube. | ||
کلیدواژهها [English] | ||
Two-phase heat transfer, Flow boiling, Metal foam, Vertical flow, Visualization | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] L. Tadrist, M. Miscevic, O. Rahli, F. Topin, About the use of fibrous materials in compact heat exchangers, Experimental thermal and fluid science, 28(2-3) (2004) 193-199.
[2] C. T’Joen, P. De Jaeger, H. Huisseune, S. Van Herzeele, N. Vorst, M. De Paepe, Thermo-hydraulic study of a single row heat exchanger consisting of metal foam covered round tubes, International Journal of Heat and Mass Transfer, 53(15-16) (2010) 3262-3274.
[3] M.F. Ashby, T. Evans, N.A. Fleck, J. Hutchinson,H. Wadley, L. Gibson, Metal foams: a design guide, Elsevier, 2000.
[4] K. Boomsma, D. Poulikakos, F. Zwick, Metal foams as compact high performance heat exchangers, Mechanics of materials, 35(12) (2003) 1161-1176.
[5] W. Hsieh, J. Wu, W. Shih, W. Chiu, Experimental investigation of heat-transfer characteristics of aluminum-foam heat sinks, International Journal of Heat and Mass Transfer, 47(23) (2004) 5149-5157.
[6] S. Kim, J. Paek, B. Kang, Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger, Journal of heat transfer, 122(3) (2000) 572-578.
[7] S. Mahjoob, K. Vafai, A synthesis of fluid and thermal transport models for metal foam heat exchangers, International Journal of Heat and Mass Transfer, 51(15- 16) (2008) 3701-3711.
[8] W. Lu, C. Zhao, S. Tassou, Thermal analysis on metal- foam filled heat exchangers. Part I: Metal-foam filled pipes, International journal of heat and mass transfer, 49(15-16) (2006) 2751-2761.
[9] V. Calmidi, R. Mahajan, Forced convection in high porosity metal foams, Journal of heat transfer, 122(3) (2000) 557-565.
[10] C. Zhao, W. Lu, S. Tassou, Thermal analysis on metal-foam filled heat exchangers. Part II: Tube heat exchangers, International Journal of Heat and Mass Transfer, 49(15-16) (2006) 2762-2770.
[11] M. Nazari, M. Ashouri, M.H. Kayhani, A. Tamayol, Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam, International Journal of Thermal Sciences, 88 (2015) 33- 39.
[12] M. Nazari, N.B. Baie, M. Ashouri, M. Shahmardan, A. Tamayol, Unsteady heat transfer from a reservoir fluid by employing metal foam tube, helically tube and straight tube: a comparative experimental study, Applied Thermal Engineering, 111 (2017) 39-48.
[13] M. Nazari, M. Kayhani, R. Mohebbi, Heat transfer enhancement in a channel partially filled with a porous block: lattice Boltzmann method, International Journal of Modern Physics C, 24(09) (2013) 1350060.
[14] S. Mancin, C. Zilio, L. Rossetto, A. Cavallini, Heat transfer performance of aluminum foams, Journal of heat transfer, 133(6) (2011) 060904.
[15] S. Mancin, C. Zilio, A. Diani, L. Rossetto, Experimental air heat transfer and pressure drop through copper foams, Experimental thermal and fluid science, 36 (2012) 224- 232.
[16] A. Diani, S. Mancin, L. Doretti, L. Rossetto, Low- GWP refrigerants flow boiling heat transfer in a 5 PPI copper foam, International Journal of Multiphase Flow, 76 (2015) 111-121.
[17] S. Mancin, A. Diani, L. Doretti, L. Rossetto, R134a and R1234ze (E) liquid and flow boiling heat transfer in a high porosity copper foam, International Journal of Heat and Mass Transfer, 74 (2014) 77-87.
[18]Y. Zhu, H. Hu, G. Ding, H. Peng, X. Huang, D. Zhuang, J. Yu, Influence of oil on nucleate pool boiling heat transfer of refrigerant on metal foam covers, international journal of refrigeration, 34(2) (2011) 509-517.
[19] Y. Zhu, H. Hu, S. Sun, G. Ding, Flow boiling of refrigerant in horizontal metal-foam filled tubes: Part 1–two-phase flow pattern visualization, International Journal of Heat and Mass Transfer, 91 (2015) 446-453.
[20] Y. Zhu, H. Hu, S. Sun, G. Ding, Flow boiling of refrigerant in horizontal metal-foam filled tubes: Part 2–A flow-pattern based prediction method for heat transfer, International Journal of Heat and Mass Transfer, 91 (2015) 502-511.
[21] C. Zhao, W. Lu, S. Tassou, Flow boiling heat transfer in horizontal metal-foam tubes, Journal of Heat Transfer, 131(12) (2009) 121002.
[22] B. Madani, L. Tadrist, F. Topin, Experimental analysis of upward flow boiling heat transfer in a channel provided with copper metallic foam, Applied thermal engineering, 52(2) (2013) 336-344.
[23] G.B. Abadi, C. Moon, K.C. Kim, Flow boiling visualization and heat transfer in metal-foam-filled mini tubes–Part I: flow pattern map and experimental data, International Journal of Heat and Mass Transfer, 98 (2016) 857-867.
[24] X. Fang, Z. Zhou, H. Wang, Heat transfer correlation for saturated flow boiling of water, Applied Thermal Engineering, 76 (2015) 147-156.
[25] P. De Jaeger, C. T’Joen, H. Huisseune, B. Ameel, S. De Schampheleire, M. De Paepe, Assessing the influence of four bonding methods on the thermal contact resistance of open-cell aluminum foam, International journal of heat and mass transfer, 55(21-22) (2012) 6200-6210.
[26] T. Fiedler, I. Belova, G. Murch, Critical analysis of the experimental determination of the thermal resistance of metal foams, International journal of heat and mass transfer, 55(15-16) (2012) 4415-4420.
[27] R.J. Moffat, Using uncertainty analysis in the planning of an experiment, Journal of Fluids Engineering, 107(2) (1985) 173-178.
[28] W.M. Kays, Convective heat and mass transfer, Tata McGraw-Hill Education, 2012.
[29] S. Levy, Two-phase flow in complex systems, John Wiley & Sons, 1999.
[30] Y. Taitel, D. Bornea, A. Dukler, Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes, AIChE Journal, 26(3) (1980) 345-354.
[31]J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Industrial & engineering chemistry process design and development, 5(3) (1966) 322-329.
[32]F. Dittus, L. Boelter, Publications on Engineering, vol. 2, University of California at Berkeley, Berkeley, CA, (1930) 443-461.
[33]H. Forster, N. Zuber, Dynamics of vapor bubbles and boiling heat transfer, AIChE Journal, 1(4) (1955) 531- 535.
[34]R. Lockhart, Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chem. Eng. Prog., 45 (1949) 39-48.
| ||
آمار تعداد مشاهده مقاله: 653 تعداد دریافت فایل اصل مقاله: 1,140 |