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ABSTRACT: The important approaches to statistical and fuzzy clustering are reviewed 
and compared, and their applications to an agricultural problem based on a real-world data 
are investigated. The methods employed in this study includes some hierarchical clustering 
and non-hierarchical clustering methods and Fuzzy C-Means method. As a case study, these 
methods are then applied to cluster 15 provinces of Iraq based on some agricultural crops. 
Finally, a comparative and evaluation study of different statistical and fuzzy clustering 
methods is performed. The obtained results showed that, based on the Silhouette criterion and 
Xie-Beni index, fuzzy c-means method is the best one among all reviewed methods.
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1- Introduction
Data clustering is a technique of originating groups of objects to clusters such that the objects in one cluster are quite 
analogous, and those in various clusters are extremely different. Several techniques of clustering have been extensively 
utilized in many research areas such as agriculture, sociology, medicine, geology, criminology, and engineering fields. 
For a review on some basic methods in this topic see, e.g. Gan et al. (2007) and Rencher (2002). During the last decades, 
there has been a lot of attention to the fuzzy clustering methods, too. To achive the goals of this study, we look at some 
studies concerning classical and fuzzy clustering particularly related to agricultural studies. Kostov and McErlean (2006) 
employed a specific technique to classify farms into representative farms. Chang et al. (2011) proposed a Fuzzy C-Means 
(FCM) clustering method using the cluster center displacement method between reiterate procedures that lessening the 
computational intricacy of the traditional Fuzzy C-Means clustering method. Chattopadhyay et al. (2011) suggested 
the Entropy-based fuzzy clustering (EFC) algorithm and compared that with a Fuzzy C-Means method. In EFC case, 
the cluster centers are real, which were chosen from the data points. However, in the FCM case, the cluster centers are 
simulated, which are chosen at haphazardly and therefore, could be out of the dataset. Also, algorithms have been 
compared on four datasets, namely, IRIS, WINES, OLITOS, and psychosis, based on the quality of the clusters obtained, 
including (discrepancy factor, compactness, distinctness) and their computational time. Volmurgan (2012) probed a two 
partitions-based clustering performance as K-Means and Fuzzy C-Means. The comparison is achieved through data points 
clustering that is haphazardly circulated. Panda et al. (2013) employed clustering methods to certain field such as medicine, 
business, engineering systems, and image processing. A comparison study is done by Grover (2014) in which various fuzzy 
clustering techniques like Fuzzy C-Means Algorithm, Possibilistic C-Means Method (PCM), Fuzzy Possibilistic C-Means 
Method (FPCM) and a Possibilistic Fuzzy C- Means Method (PFCM) are compaired by expressing their advantages and 
disadvantages. A comparative study is presented by Bora et al. (2014) between Fuzzy clustering method and a hard 
clustering method. Mansour et al. (2015) examined the genetic variety among accessions of pomegranate of South Eastern 
Tunisia through employing a clustering technique. A study conducted by Aguilar et al. (2015) investigated adopters of 
cluster analysis of specific drills and technologies for the planters of oil palm in Mexico. Ferraro et al. (2015) studied the R 
programming language to propose an innovative toolbox for the fuzzy clustering technique. The new toolkit that called 
fclust comprises a suite of fuzzy clustering methods, conception tools, and fuzzy cluster validity keys for fuzzy clustering 
outcomes. Lately, Ansari et al. (2016)  investigated clusters of genetic diversity in germplasm of cluster bean. Furthermore, 
Fajardo et al. (2016) studied the fuzzy clustering of definite varieties for the objective recognition of soil morphological 
prospects of soil outlines. Gomathi and  Velusamy (2018) suggested a hybridization of the Fuzzy C-Means and Fuzzy 
Bee Colony Optimization to solve the local optima problem and achieved a global optimum solution in Fuzzy C-means 
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algorithms. The experimental results show that the proposed hybridization model created higher performance compared 
with other clustering methods. For more about fuzzy clustering methods and applications see, e.g. Oliveira and Pedrycz 
(2007)
In the present research, we review and compare the main approaches to statistical clustering and fuzzy clustering, and 
guide the readers how to use the methods of clustering (hierarchical clustering and nonhierarchical clustering methods), 
and fuzzy clustering method (Fuzzy C-Means) through a specific real-world data set on some agricultural crops in the 
current distribution of Iraq’s provinces. The results are calculated by using the software R. 

2- Clustering Methods
The hierarchical clustering and partitioning are the two commonly used approaches to clustering. 

2- 1- Hierarchical Clustering Methods
Hierarchical clustering starts with n  clusters, each cluster contains one object and ends with a single cluster includes 
all of n  objects. There is an alternate method, named the divisive method, which begins with one cluster including all 
n  observations and in each step splits a cluster into two clusters. This approach finishing with n  clusters, each one 
containing a single element (Rencher (2002)).

2- 1- 1- Agglomerative Methods
In such methods, two closest clusters are joined into a single new cluster at each step. Agglomerative methods include 
different methods: single linkage, complete linkage, centroid method, average linkage, median method, Ward’s method, 
and a flexible beta method. In each method, the distance of every pair of clusters is calculated and at each step, two clusters 
are joined if they have the smallest distance. 
Let A  and  B be two clusters, the distance between A  and  B is defined as follows:

1- Single linkage method, ( ) ( ){ },     ,  ,         i j i jD A B min d y y for y in A and y in B= , ( ) ( ){ },     ,  ,         i j i jD A B min d y y for y in A and y in B=  where ( ),  i jd y y  is any  distance between the 
vectors  .i jy and y

2- Complete linkage method, ( ) ( ){ },    , ,        i j i jD A B max d y y for y in A and y in B=  ( ) ( ){ },     ,  ,         i j i jD A B min d y y for y in A and y in B= . 

3- Centroid method, ( ) ( ),    , A BD A B d y y= , 
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5- Ward’s method joins the two clusters  and  A B that minimize the increase in SSE , defined as:
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Additionally,     AB A Bn n n= + is the number of points in  AB. 
Ward’s method has a relationship with the centroid method. If the distance ( ) ( ) , ,A BD A B d y y=  is squared and then 
compared to (2), the only observed difference is the coefficient A B

A B

n n
n n+

 for Ward’s method. 

6- Flexible beta method, if the clusters  are joined to form the cluster then

( ) ( ) ( ) ( ) ( ) ( ) ,  ,  ,  ,  , , ,              A BD C AB D C A D C B D A B D C A D C Bα α β γ= + + + − (3)

where the distances ( ) ( ) ( ) ( ), , ,    ,   3 D C A D C B and D A B in  are forming the distance matrix before joining   A and B . Lance and 
Williams (1967) proposed the following constraints on the parameter values:  1,    , A B A Bα α β α α+ + = =    0    1 .andγ β= <  
With  A Bα α= , we have ( )2 1         1  / 2A A Borα β α α β= − = = − , 0.5β = − .
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2- 1- 2- Divisive Hierarchical Methods
In this method, our work focuses on a splinter group and what remains is stated below: 
1- Calculate the distance between all the items.
2- Calculate the average distances between every item and the other items. 
3- Choose the element that has the leading average distance and separates it to be the splinter group.
4- Repeat the point (2) for the items in the remainder group.
5- Determine the divergence between the typical distance of the item in the remains of the other elements in the remain, 

and its typical distance from the elements in the splinter group.
6- If the major difference in the point (5) becomes positive, the element is relocated to the splinter group. But, if the largest 

difference is negative, the process ends and the split is complete, (Rencher (2002)).
 
2- 2- Non-hierarchical Clustering Methods
2- 2- 1- Partitioning Method (K-Means) 
In this method, we follow the steps below:
1- Select k  items to serve as centers. 
2- Calculate the distance between each remaining item and the centers 
3- Assigned each item to the cluster with the nearest center. 
4- Replaced the centers in step (1) by the centroids (mean vectors) of the clusters.
5- Calculate the distance between each item and the centroid of own cluster, and the centroid of another cluster. If the item 

is closer to the centroid, of another cluster than to the centroid of its own cluster, the item is moved to the new cluster 
and the two cluster centroids are updated. 

6- This procedure will be continued until no further improvement is possible, (Rencher (2002)). 

2- 2- 2- Fuzzy Clustering Methods
In hard clustering methods, each data element belongs to exactly one cluster. In fuzzy clustering, observations can belong 
to more than one cluster, with possibilities. The Fuzzy C-Means (FCM) Method is one of the famous fuzzy clustering 
methods. Let { }1 2, , , nX x x x= …  be a set of giving data, and { }1 2, , , cp A A A= …  be a family of fuzzy subsets of X which 
satisfies ( )

1

1 for all 1, 2, ,
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= = …∑  and ( )
1

and 0  for all 1, , ,   where 
n

i k
k

A x n i c
=

< < = …∑  where c n<  is a positive integer and p  is called a fuzzy 
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where  
1 2, , , p

k k k kpx x x x R = … ∈  ,   1m >  is a real number that governs the impact of membership grades. The performance 
index of a fuzzy c-partition  p , ( )mJ p , is defined by the formula:

( ) ( ) 2
1
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c mn
m i k k ik

i

J p A x x v
=

=

 = − ∑ ∑ ,

where 2
k ix v−  is the distance between   . k ix and v The goal of the FCM is to find a fuzzy c-partition that minimizes the 

performance index ( ) mJ p , Klir and Yuan (1995).
Let  T  be the maximum number of iterations allowed, 0 1,ε< <  ( ) , 0t

iv t = ; be the initial centers, 1, , ,i c= …  and ( )  tV  be 
the set of centers in the iteration t . The Fuzzy C-means Method has the following steps:

1- Choose the initial centers  iv , and fix 0.ε >
2- Compute the distance between the elements and the centers  k i p

x v− .
3- Compute the membership, degree to assign the elements kx  to the clusters, according to:
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5- If ( ) ( )1  ;t t

p
V V ε− − <  or  ,T t=  then stop. Otherwise, go to step 2.

A list of advantages and limitations of FCMare as follows, Yang (1993), and Suganya and  Shanthi (2012).
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 Advantages
1-Unsubstantiated: The FCM technique is an unsubstantiated method that the data may be a considered and class 

information is unreachable.
2-Converges: The convergence features of algorithms are the significant theoretical matter. The optimal cluster centers are 

the stable points of FCM clustering algorithms.

Disadvantages
1-The computational time is long.
2- It is sensitive to the initial speculation (velocity, local minima).
3- It is sensitive to noise and outliers.

It is worth mentioning that there are some fuzzy clustering methods which can be compared with the FCM in terms of 
advantages and disadvantages, as follows:
1-Possibilistic Fuzzy Clustering (PFC): The PFC minimizes an objective function and generally leads to reasonable results, 

although it suffers from stability problems. The disadvantage of PFC analysis is that the sum of the membership 
degrees to all clusters must sum up to 1, (Timm et al. (2004)).

2-Fuzzy K-Modes Clustering (FKM): The FKM salgorithm is  suited to large categorical data sets. The cost of the FKM 
algorithm is lower than that of the K-Means algorithm. The FKM algorithm not only split items into clusters, but 
display how confident an object is assigned to a cluster. The time utilized by the FKM algorithm was less than that 
used by the hierarchical clustering algorithm. The tricky part of the FKM  algorithm is to reduce the cost function and 
to decrease the computational complexity, Huang and Ng (1999).

3-Fuzzy Shell-Clustering (FSC): The FSC algorithms are new methods for detecting curve boundaries, especially a circular 
and elliptical. These FSC algorithms are good in the computer storage requirements and computational requirements, 
converges quickly and keeps computation time. The FSC method is eligible to produce a perfect classification. Large 
features of the FSC method is in the areas of memory storage requirements and computational requirements. But this 
method is less strong to noise, Dave (1989).

2- 3- The Employed Methods in This Study
In this research, we used all the above methods, including statistical clustering techniques (hierarchical clustering and non-
hierarchical clustering) and Fuzzy C-Means method to cluster 15 provinces of Iraq based on some agricultural productions. 
Using Silhouette criterion, it is verified to know which of these methods are more suitable for the clustering of these data.

3- Data Set
Among a large number of crops, wheat and barley are of great economic importance and are regarded as the strategic 
agricultural products owing to their close relationship with daily human and animal nutrition. Wheat is one of the oldest 
known field crops grown in the world as a primary source of food. Wheat is grown in Iraq in very large areas, especially 
northern governorates. The barley crop is another important economic crop that is grown in all parts of Iraq and is regarded 
as one of the most important sources of food for livestock. Wheat is the most important product of cereal crops and rice 
comes in the second place. Hence, wheat is considered as the most important cereal crop in Iraq in terms of both production 
and consumption. The winter wheat crop is dependent on either irrigation or rain, which are often available in the northern 
provinces of Iraq (Nineveh/Dahuk/Erbil/Sulaymaniyah). In the central and southern regions, wheat production relies 
mainly on irrigation from rivers and its cultivation is concentrated around the basin of the Tigris and Euphrates. However, 
this is not the case in other provinces located in western Iraq. It is worthy to mention that river irrigation plays a key role in 
the production of wheat the other crops. Barley and corn are also raised in Iraq; however, they are mostly used as animal 
feed. The annual productions of wheat, barley and yellow corn by the cities of Iraq are summarized in Table 2.1 for 2010 
according to their relative importance, (Al-Fahad and Abbas (2011)).
To illustrate the application of agglomerative techniques, we used the observations listed in Table 3.1 and the distance of 
Euclidean and Manhattan, respectively. The obtained results are depicted in Table 3.2, Table 3.3 (see Appendix for tables). 

By using Euclidean distance, the results of average, centroid and median methods are similar. However, with Manhattan 
distance, the results of complete linkage and average methods are similar, also centroid and median methods have the 
same results. In addition, the results of the Ward’s method  based on  Euclidean  and Manhattan  distances are similar and 
the results of the flexible beta method based on Euclidean  and Manhattan distances are similar.
Figures 1-5 illustrate the results of the agglomerative techniques based on Euclidean and Manhattan distances. For example, 
in Figure 1, the result of a single linkage method based on Euclidean distance is shown in several stages, at each stage the 
two closest provinces merge into one cluster as follows: 
C1={Karbala, Basra}, C2={Diyala, Anbar}, C3={Salahaddin, C2}, C4={C1, Muthanna}, C5={C3, Najaf}, C6={C5, C4}, 
C7={C6, Maysan}, C8={Dhi Qar,C7}, C9={C8, Diwaniya}, C10={Baghdad, Babylon}, C11={C10, Kirkuk}, C12={C9, Wasit}, 
C13={C12, C11}, C14={ Nineveh, C13}.
Observations are used in Table 3.1 to illustrate the divisive hierarchical methods, as in Table 3.4.
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Since Nineveh is the major and has the largest average distance to other cities, it is the initial item in the splinter group. 
Currently, we have been applying the steps 3-6 above, we obtained Table 3.5, (see Appendix for tables). The second column 
depicts the average distance from each city (except Nineveh) to the remaining cities. The third column illustrates the 
average distance from each city of Nineveh, and the fourth column indicates the variance between the second and third 
columns. Since the largest difference in the third column is not positive, the process halts and the division is complete.
To illustrate the K-Means algorithm, we consider the data in Table 3.1. We choosed 2, by which the data were divided in 
two clusters of sizes 14 and 1, as follows.

Cluster means:
              B           W          Y
1          3.41      5.35       7.14
2          52.27    25.10     0.03

Where 1 and 2 are the final centers of clusters 1 and 2, respectively.

Clustering vectors:
 Nineveh    Kirkuk    Diyala    Anbar

       2               1              1           1   
Baghdad    Babylon    Karbala    Wasit 

     1                1               1               1
  Wasit    Salahaddin   Najaf    Diwaniya  

       1            1                1             1         
  Muthanna    Dhi Qar   Maysan    Basra

       1                    1             1            1
Where, Diyala, Anbar, Karbala, Salahaddin, Najaf, Diwaniya, Muthanna, Dhi Qar, Maysan, Kirkuk, Baghdad, Babylon, 
Wasit, and Basra are located in cluster 1 and Nineveh is located in the cluster 2. Also, once the ratio (SS_between /  
SS_total= 65.5 %) is decreased,  can be concluded that it better results are obtained. It is worthy to mention that this quantity 
represents the ratio of between-cluster distances and the total distances. 
Now, we employ the Fuzzy C-Means algorithm to data set in Table 3.1. Suppose that 6c = , 6, and  .m =  || .||  is the Euclidean 
distance and the initial fuzzy partition is ( ) { }0

1 2  6, , ,p A A A= … , then we have 

1 2
1 2 15 1 2 15

0.2 0.2 0.2 0.13 0.13 0.13, , , ,   , , ,  A A
x x x x x x

   
= … = …   
   

   3 4
1 2 15 1 2 15

0.17 0.17 0.17 0.15 0.15 0.15  , , , , , , ,A A
x x x x x x

   
= … = …   
      

3 4
1 2 15 1 2 15

0.17 0.17 0.17 0.15 0.15 0.15  , , , , , , ,A A
x x x x x x

   
= … = …   
   

5 6
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Fig. 7. Evaluation and comparison the clustering algorithms for data of Table 3.1
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Fig. 8. Evaluation of the K-Means method for data of Table 
3.1

Table 3.1. Crop production by relative importance 
percentage

Province Barley Wheat Yellow corn

Nineveh 52.27 25.1 0.03

Kirkuk 5.3 13.36 22.1

Diyala 2.18 5.3 3.4

Anbar 0.48 5.99 3.7

Baghdad 0.72 3.6 20.1

Babylon 2.71 5.88 25.3

Karbala 0.35 0.34 1.6

Wasit 6.34 11.34 11.4

Salahaddin 0.94 8.58 4.4

Najaf 0.33 4.67 0.1

Diwaniya 11.53 7.95 0.9

Muthanna 2.73 0.96 0

Dhi Qar 7.9 3.35 1

Maysan 5.87 2.96 6

Basra 0.35 0.62 0

Table 3.2. Matrix of Euclidean distance between Provinces 

Euclidean distanceProvince

0Nineveh

053.2Kirkuk

020.653.1Diyala

01.920.455.3Anbar

016.616.91159.4Baghdad

06.21.721.98.558.9Babylon

024.518.865.624.857.5Karbala

015.915.412.911.110.910.949.3Wasit

09.38.721.216.52.73.718.854.1Salahaddin

05.814.44.625.3203.83.824.255.8Najaf

011.711.212.213.52622.511.61022.844.2Diwaniya

011.34.4915.82.925.820.46.65.525.555.1Muthanna

05.85.97.79.413.28.22520.48.36.523.549.4Dhi Qar

05.47.19.18.37.6107.519.8156.65.119.251.8Maysan

08.58.12.413.44.19.116.81.62620.36.56.12657.4Basra
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Table 3.3. Matrix of Manhattan distance between Provinces 

Manhattan distanceProvince

0Nineveh

080.8Kirkuk

029.973.3Diyala

02.730.674.6Anbar

01919.916.393.1Baghdad

09.523.92313.394.1Babylon

031.622.17.98.638.578.3Karbala

026.82322.118.918.213.871.1Wasit

015.211.625.420.93.85.526.872.2Salahaddin

08.8245.928.821.55.15.835.772.4Najaf

015.314.719.119.535.334.415.814.532.858.8Diwaniya

016.76.213.825.44.630.224.8118.337.173.7Muthanna

08.68.39.815.62011.23226.512.810.133.767.1Dhi Qar

07.411.115.813.212.214.312.525.419.910.78.627.174.5Maysan

013.911.32.719.44.21328.11.932.923.59.29.939.876.4Basra

Table 3.4. Illustration the average distance of each city from 
the remaining cities

Average 
distance

ProvinceAverage 
distance

Province

13.36

13.86

16.09

14.11

14.05

12.92

14.72

Salahaddin

Najaf

Diwaniya

Muthanna

Dhi Qar

Maysan

Basra

53.95

22.09

12.31

12.76

19.75

23.17

14.29

15.57
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Fig. 9. Evaluation of Fuzzy C-Means method for data of 
Table 3.1 based on Silhouette index.
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Fig. 10. Evaluation of Fuzzy C-Means method for data of 
Table 3.1 based on Xie-Beni index.
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Fuzzy six partitions ( ) { }9
1 2 6A ,A , ,Ap = …  are given in Table 2.6. Then, the algorithm stops at 9t = , and we obtain the six 

fuzzy partitions. The six cluster centers are
( ) ( )
( ) ( )
( ) ( )

1 2

3 4

5 6

 2.73, 0.96, 0.01 ,   7.9, 3.35,1 , 

 11.53, 7.95, 0.9 ,   0.49, 5.99, 3.7 ,

  5.87, 2.96, 6 ,       2.71, 5.88, 25.29

v v

v v

v v

= =

= =

= =
   

( ) ( )
( ) ( )
( ) ( )

1 2

3 4

5 6

 2.73, 0.96, 0.01 ,   7.9, 3.35,1 , 

 11.53, 7.95, 0.9 ,   0.49, 5.99, 3.7 ,

  5.87, 2.96, 6 ,       2.71, 5.88, 25.29

v v

v v

v v

= =

= =

= =
4- Evaluation and Comparison of Clustering Methods
The Silhouette value is a measure of the similarity of an object to its own cluster compared to its similarity to other clusters. 
It can be used to choose a number of clusters. For each object, i  a certain value ( )s i  will be introduced, and then these 
numbers are combined into a plot. Let A  be any cluster and B , is a different cluster from  A , and i  be any object in the 
cluster  A , the Silhouette value is defined as:

( )

( )
( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )

1
 

s 0  

 
1

a i
if a i b i

b i
i if a i b i

b i
if a i b i

a i

 −
< 

 
 = = 
 
 >
 − 

Table 3.5. Illustration of the average distance of each city from the remaining cities, and splinter groups.

Province Average distance to 
remainder(1)

Average distance to 
splinter group(2) Difference(1)-(2)

Kirkuk
Diyala
Anbar

Baghdad
Babylon
Karbala
Wasit

Salahaddin
Najaf

Diwaniya
Muthanna

Dhi Qar
Maysan

Basra

19.7
9.1
9.48
16.71
20.54
10.97
12.98
10.22
10.63
13.93
10.96
11.33
9.93
11.44

53.21
53.97
55.32
59.35
58.86
57.54
49.28
54.10
55.81
44.21
55.11
49.42
51.76
57.40

-33.15
-44.87
-45.84
-42.64
-38.32
-46.57
-36.3
-43.88
-45.18
-30.28
-44.15
-38.09
-41.83
-45.96

Table 3.6. Result of Fuzzy C-Means method.

Province
( ) ,i kA x  i 

A1(xk) A2(xk) A3(xk) A4(xk) A5(xk) A6(xk)

Nineveh
Kirkuk
Diyala
Anbar

Baghdad
Babylon
Karbala
Wasit

Salahaddin
Najaf

Diwaniya
Muthanna

Dhi Qar
Maysan

Basra

0.16
0.15
0.17
0.06
0.15
0.03
0.24
0.15
0.16
0.21
0.03
0.77
0.04
0.04
0.26

0.17
0.15
0.16
0.05
0.15
0.03
0.16
0.16
0.16
0.17
0.04
0.05
0.80
0.05
0.16

0.18
0.15
0.13
0.05
0.14
0.03
0.13
0.17
0.14
0.14
0.84
0.04
0.04
0.04
0.13

0.16
0.16
0.26
0.75
0.16
0.03
0.18
0.18
0.26
0.22
0.03
0.05
0.04
0.04
0.18

0.17
0.16
0.17
0.06
0.16
0.04
0.17
0.18
0.17
0.16
0.03
0.05
0.05
0.80
0.16

0.16
0.23
0.1
0.04
0.24
0.83
0.10
0.15
0.11
0.10
0.02
0.03
0.03
0.03
0.10
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It can be also written this in the form of

( ) ( ) ( )
( ) ( ){ },

b i a i
s i

max a i b i
−

= ,

where ( )  a i = Average dissimilarity of  i  to all other objects of  A , ( ) ,  d i B =  Average dissimilarity of i  to all objects of  B , 
( ) ( )min , .

B A
b i d i B

≠
=

From the above definition, we see that ( )1 s i 1− ≤ ≤ . When ( )  s i close to 1, this implies that the ‘within’ dissimilarity ( )a i  
is much smaller than the smallest ‘between’ dissimilarity ( ) b i , and mean that all the clusters are separate in a partition, 
Rousseeuw (1987).
Xie-Beni index (XB) is a fuzzy validity criterion depended on the compactness of fuzzy c-partition and separation of the 
clusters disregard supposition as to the number of substructures found in the data. XB is a measure of compactness divided 
by a measure of separation. It may be deduced as the ratio of the within-group variance total and the separation of the 
cluster centers. The optimum cluster number is got when the minimum of XB is established (Xi and Beni (1991)). 
We used XB index for data in Table 3.1 to evaluate the FCM methods, and Silhouette value to evaluate the above-mentioned 
methods. The obtained results are described in the following sections. 

4- 1- Evaluation of the Agglomerative Hierarchical Methods
We found the followings:
1-Maximum ( )     0.71 when  2.s i k= =
2- ( )  s i  for the all above  methods (agglomerative hierarchical methods) = 0.71.

Fig. 7 shows the Silhouettes for the clustering into   2 k = clusters of the fifteen data mentioned above. The second Silhouette 
is higher than the first one because the first cluster contains only one object whereas the second contains fourteen. The first 
column (City) contains the number of cities, the second column (Cluster) shows the index of each cluster (1 and 2), the third 
column (Neighbor) gives the neighbor of each object, and the fourth column lists the numbers ( ).s i  The plot, as we find 
scale going from 0.00 1 .00.to

4- 2- Evaluation of the K-Means Method
We found the following results:
Maximum ( )  0.71,    2s i when k= = , and the results are as follows table 4.2.

Table 4.1. The Silhouettes of the agglomerative hierarchical 
methods for the clustering of the data in Table 3.1 into k=2 clusters. 

Province Cluster Neighbor

[1] 1 2 0.0000

[2] 2 1 0.6297

[3] 2 1 0.8313

[4] 2 1 0.8278

[5] 2 1 0.7185

[6] 2 1 0.6510

[7] 2 1 0.8093

[8] 2 1 0.7366

[9] 2 1 0.8110

[10] 2 1 0.8095

[11] 2 1 0.6849

[12] 2 1 0.8011

[13] 2 1 0.7707

[14] 2 1 0.8081

[15] 2 1 0.8006

Table 4.2. The Silhouettes of the K-Means method for data 
in Table 3.1 the clustering into k=2 clusters.

Province Cluster Neighbor s (i)

[1,] 2 1 0.0000

[2,] 1 2 0.6297

[3,] 1 2 0.8313

[4,] 1 2 0.8278

[5,] 1 2 0.7185

[6,] 1 2 0.6510

[7,] 1 2 0.8093

[8,] 1 2 0.7366

[9,] 1 2 0.8110

[10,] 1 2 0.8095

[11,] 1 2 0.6849

[12,] 1 2 0.8011

[13,] 1 2 0.7707

[14,] 1 2 0.8081

[15,] 1 2 0.8006
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4- 3- Evaluation of the Fuzzy C-Means Method
We found the Maximum ( ) s i  = 0.72 when k = 3 (see Figure 9), and the Manimim XB  = 0.087 when k = 3 (see Figure 10).

5- Conclusion
In this research eight statistical clustering methods (hierarchical and non-hierarchical) as well as fuzzy clustering methods 
were investigated and compared based on some well-known criteria. Then, such methods were applied on a real-world 
data set of the distribution of some agricultural productions in the provinces of Iraq. When hierarchical methods were 
applied based on two types of distances, namely Euclidean and Manhattan, the following results were obtained:

1-The average, centroid, and median methods had the same results based on Euclidean distance.
2-The centroid and median methods had the same results by using Manhattan distance.
3-Ward’s method gave the same results by using Euclidean and Manhattan distances. 

In addition, a flexible beta method gave the same results as Euclidean and Manhattan distances. 
When K-Means method was used, the better results were obtained when the ratio representing the between-cluster 
distances and the within-cluster distances is decreased. By using Silhouette value and comparison between various 
clustering methods (both statistical and fuzzy methods), it was found that the Fuzzy C-Means method is the best method 
for clustering such a data set. It should be mentioned that the clustering methods investigated in this article are general so 
that the methods and algorithms can be used in other agricultural studies. 
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