تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,012 |
تعداد دریافت فایل اصل مقاله | 4,882,752 |
تحلیل اگزرژواکونومیک سیستم تولید سهگانه بر مبنای پیل سوختی اکسیدجامد با ریفُرمر خارجی و دیمتیلاتر | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 6، دوره 52، شماره 6، شهریور 1399، صفحه 1463-1478 اصل مقاله (1.23 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2019.15117.6030 | ||
نویسندگان | ||
سهیلا صالح میرحسنی* 1؛ صمد جعفرمدار2؛ شهرام خلیل آریا2؛ عطا چیت ساز خویی3 | ||
1گروه مکانیک، دانشکده فنی، دانشگاه ارومیه، ارومیه، ایران | ||
2استاد تمام، گروه مکانیک، دانشکده فنی، دانشگاه ارومیه، ارومیه، ایران | ||
3استادیار، دانشکده مهندسی مکانیک دانشگاه ارومیه عضو هیئت علمی | ||
چکیده | ||
در مطالعۀ حاضر، یک سیستم تولید سهگانه پیشنهادی بر اساس پیل سوختی اکسید جامد با ریفُرمر خارجی، سیستم تبرید گَکس و بازیاب حرارتی از دیدگاه ترمودینامیکی و اگزرژواکونومیکی مورد بررسی قرار گرفته است. از یک ریفُرمر خارجی برای تبدیل سوخت د یمتی لاتر به هیدروژن، جهت مصرف در واکنشهای الکتروشیمیایی پیل سوختی استفاده شده است. تأثیر پارامترهای اساسی )ضریب بهرهوری سوخت و دمای جریان ورودی به آند( بر روی چندین متغیر )بازده انرژی و اگزرژی، تخریب اگزرژی و هزینه واحد توان تولیدی( مورد بررسی قرار گرفته است. بر اساس نتایج، بازده انرژی سیستم پیشنهادی از بازده پیل سوختی به تنهایی بیش از 38 % بیشتر است. بالا بردن دمای جریان ورودی به آند موجب نزولی شدن روند تخریب اگزرژی در پس سوز و پیل سوختی میشود در حالی که بر روی بازیاب حرارتی تأثیری معکوس دارد. هزینۀ واحد توان تولیدی تحت شرایط مُعیّن برابر با $/ 23/51 GJ است و با افزایش ضریب بهر هوری سوخت و یا افزایش دمای جریان ورودی به آند روند نزولی دارد. افزایش ضریب بهرهوری سوخت موجب افزایش بازدههای قانون دوم به میزان 12 % میشود. تأثیر افزایش دمای جریان ورودی به آند بر بازده های قانون دوم نیز مثبت است ولی نسبت به افزایش ضریب بهرهوری سوخت پایینتر بوده و بازدهها 8% افزایش مییابند. | ||
کلیدواژهها | ||
پیل سوختی اکسیدجامد؛ دیمتیلاتر؛ سیستم تولید سهگانه؛ ریفُرمر خارجی؛ تحلیل اگزرژواکونومیک | ||
عنوان مقاله [English] | ||
Exergoeconomic Analysis of a Solid Oxide Fuel Cell Based Trigeneration System with External Reformer and Dimethyl Ether | ||
نویسندگان [English] | ||
Soheila Saleh Mirhasani1؛ Samad Jafarmadar2؛ Shahram Khalilarya2؛ Ata Chitsaz3 | ||
1Department of Mechanical Engineering, Urmia University, Urmia, Iran | ||
2Department of Mechanical Engineering, Urmia University, Urmia, | ||
3Department of Mechanical Engineering, Urmia University, Urmia, Iran | ||
چکیده [English] | ||
In the present study, Exergoeconomic analysis of a combined solid oxide fuel cell with a gas turbine, a generator-absorber heat exchanger and heating process heat exchanger for heating, cooling and power production as a tri-generation system is conducted. An external steam reformer is applied to convert di-methyl ether as oxygenated fuel to hydrogen for the electrochemical process of the solid oxide fuel cell. The influence of the primary design parameters (fuel utilization factor and anode inlet temperature) on several variables (energy and exergy efficiencies, exergy destruction and unit costs of the power) are examined. Results show that energy efficiency of proposed system is 38% higher than standalone solid oxide fuel cell. It was found that the maximum exergy destructions occurred in afterburner, solid oxide fuel cell and recuperator. An increase in anode inlet temperature leads to reduction of exergy destruction in afterburner and fuelcell. Unit cost of power is equal to 23.51 $⁄GJ and decreases with an increase in fuel utilization factor or increasing of anode inlet temperature. Increasing of utilization factor will increase all exergy efficiencies by 12%. The effect of increase in anode inlet temperature on exergy efficiencies is positive but compared with the other parameter is lower and will increase them by 8%. | ||
کلیدواژهها [English] | ||
Solid oxide fuel cell, Dimethyl ether, Tri-generation, External reforming, Exergoeconomic analysis | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] Energy Information Administration, International Energy Outlook, U.S.A, (2009). [2] CHP: Evaluating the benefits of greater global investment, International Energy Agency, France, (2008). [3] T. Kerr, CHP and emissions trading options for policy makers, International Energy Agency, USA, (2008). [4] Office of Administration U.S. Environmental Protection Agency, Laboratories for the 21st Century, Energy Efficiency Resources Management In partnership with the U.S. Department of Energy, and Renewable Energy. On-site power systems for laboratories, (2003). [5] EG, G-Services & National Energy Technology Laboratory (U.S.), Fuel Cell Handbook. Morgantown, WV: U.S. Dept. of Energy, Office of Fossil Energy, National Energy Technology Laboratory, (2004). [6] M. Burer, K. Tanaka, Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell-gas turbine combinedcycle, heat pumps and chillers, Energy, 28(6) (2003) 497–518. [7] C. Weber, M. Koyama, S. Kraines, CO2-emissions reduction potential and costs of a decentralized energy system for providing electricity, cooling and heating in an office-building in tokyo, Energy, 31(14) (2006) 2705–2725. [8] M. Zenouzi,G. J. Kowalski, Selection of distributed power-generating systemsbasedon electric, heating, and cooling loads, Journal of Energy Resources Technology, 128(3) (2006) 268-177. [9] J. J. Wang, Y. Y. Jing, C. F. Zhang, A fuzzy multicriteriadecision-making model for trigeneration system, Energy Policy, 36(10) (2008) 3823-3832. [10] A. Chitsaz, S. M. Mahmoudi, M. Rosen, Greenhouse gas emission and exergy analyses of an integrated trigeneration system driven by a solid oxide fuelcell, Applied Thermal Engineering, (2015). [11] F. Ranjbar, A. Chitsaz, S. M. Mahmoudi, SH. Khalilarrya, M. Rosen, Energy and exergy assessments of a novel trigeneration system based on a SOFC, Energy Conversion and Manageement, 87(1) (2014) 318-327. [12] M. wang, Y. Zhequan, Thermodynamic analysis of a new combined cooling, heat and power system driven by solid oxide fuel cell based on ammonia, Journal of Power Sources, 196(1) (2011) 8463-8471. [13] I. Dincer, Energy and Exergy analyses of direct ammonia solid oxide fuel cell integrated with gas turbine power cycle, Journal of Power Sources, 212(1) (2012) 73-85. [14] P. Leone, A. lanzini, G.A. Ortigoza-Villalba, R. borchiellini, operation of a solid oxide fuelcell under direct internal reforming of liquid fuels, Chemical Engineering Journal, 191(1) (2012) 349-355. [15] D. Cocco, V. Tola, Externally reformed solid oxide fuel cell- microgas turbine hybrid systems fueled by methanol and di methyl ether, Energy, 34 (2009) 2124-2130. [16] C. Su, R. Ran, W. Wang, Z. Shao, Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel, , Power Source, 196 (2011) 1967-1974. [17] P.V. Snytnikov, S.D. Badmaev, G.G. Volkova, D.I. Potemkin, M.M. Zyryanova, Catalysts for hydrogen production in a multifuel processor by methanol, dimethyl ether and bioethanol steam reforming for fuel cell applications, International Journal of Hydrogen Energy, 37 (2012) 16388-16396. [18] K. Sato, Y. Tanaka, A. Negishi, T. Kato, Dual fuel type solid oxide fuel cell using dimethyl ether and liquefied petroleum gas as fuels, Power Source, 217 (2012) 37-42. [19] V. Zare, S. Mahmoudi, M. Yari, M. Amidpour, Thermoeconomic analysis and optimization of an ammonia- water power/cooling cogeneration cycle, Energy, 47(1) (2012) 271-283. [20] F. Calise, M. Dentice d’Accadia, L. Vanoli, M. Von Spakovsky, single elvel optimization of a hybrid SOFC-GT power plant, Power Source, 159(2) (2006) 1169-1185. [21] T. Semelsberger, R. Broup, Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis, Power Sources, 152(1) (2005) 87-96. [22] Y. Lwin, W. Wan Daud, A. Mohammad, Z. Yaakob, Hydrogen production from steam-methanol reforming: thermodynamic analysis, Hydrogen Energy, 25 (2000) 47-53. [23] I. Fishtik, A. Alexander, R. Datta, D. Geana, A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions, Hydrogen Energy, 25 (2000) 31-45. [24] D. Cocco, V. Tola, Use of alternative hydrogen energy carriers in SOFC–MGT hybrid power plants, Energy Conversion and Management, 50 (2009) 1040-1048. [25] G. Tao, T. Armestrang, A. Vikar, Intermidiate Temperature Solid Oxide Fuel Cell (IT-SOFC) Research and Development Activities at MSRI, Nineteenth Annual ACERC and ICES Confrence, UT, USA, (2005). [26] F. Ranjbar, A. Chitsaz, S.M. Mahmoudi, Sh. Khalil Arrya, M. Rosen, Energy and exergy assessments of a novel trigeneration system based on a SOFC, Energy Conversion and Management, 87 (2014) 318-327. [27] Y. lee, K. Ahn, T. Morosuk, Exergetic and exergoeconomic evaluation of a solid- oxide fuel- cell-based combined heat and power generation system, Energy Conversion and Management, 85 (2014) 154-64. [28] B. Najafi, A. Shirazi, M. Aminyavari, F. Rinaldi, R. Taylor, Exergetic, economic and enviromental analyses and multi- objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system, Desalination, 334(1) (2014) 46-59. [29] Y. D. Lee, Thermodynamic, econmic and enviromental evaluation of solid oxide fuel cell hybrid power generation system, Berlin University, Berlin, (2015). [30] A. Mehr, V. Zare, S.M. Mahmoudi, Standard GAX versus hybrid GAX absorption refrigeration cycle: from the view of thermoeconomics, Energy Conversion and Management, 76(1) (2013) 68-82. [31] S. Assabumrungrat, W. Sangtongkitcharoen, Effects of electrolyte type and flow pattern on performance of methanol-fuelled solid oxide fuel cells, Journal of Power Sources, (2005) 18-23. [32] S. Singhal, High temperature SOFCs fundamentals, design and applications, Elsevier, (2003). | ||
آمار تعداد مشاهده مقاله: 655 تعداد دریافت فایل اصل مقاله: 1,113 |