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ABSTRACT:  In this paper, we design an attractive algorithm aiming to classify moving targets including 
human, animal, vehicle and drone, at ground surveillance radar systems. The non-stationary reflected 
signal of the targets is represented with a novel mathematical framework based on behavior of the signal 
components in reality. We further propose using the generalized linear chirp transform for the analysis 
stage. To enhance the classification performance, the rotation invariant pseudo Zernike-Moments are 
extracted from the time-frequency map.  Consequently, the obtained features are trained to the k-NN 
classifier. In the numerical experiments we show the superiority of the proposed method in comparison 
with the existing recent counterparts, for both performance as well as the computational complexity. The 
results indicate that the proposed method obtains the rate of 95% accuracy in classification performance, 
when the signal to noise ratio is higher than 25dB. Index Terms—Automatic Target Recognition 
(ATR), General Linear Chirplet Transform (GLCT), Moving Target Detector (MTD), Radar Target 
Classification, Short Time Fourier Transform (STFT).
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I. Introduction
A. Overview

Ground surveillance radar systems, use narrow-band 
waveforms (low-resolution) for detection and tracking [1], 
while many target classification or identification algorithms, 
requires high resolution [2]–[5]. However, recent researches 
indicate that poor-resolution Moving Target Indication 
(MTI) radar systems can be used in classification of moving 
targets through observing the micro Doppler signatures 
of the reflected signal [6]–[9]. In fact, a rotating propeller 
on a fixed-wing aircraft, the multiple spinning rotor blades 
of a helicopter, or an Unmanned Aerial Vehicle (UAV); the 
vibrations of an engine shaking a vehicle; an antenna rotating 
on a ship; the flapping wings of birds; the swinging arms and 
legs of a walking person; and many other sources are the 
source of micromotion, are known as the micro-Doppler, 
and can be used for target classification and reduction of the 
sensor false alarm rate1 [7].

MTI radar systems can reject fixed clutter through a 
subtraction process while remaining the moving targets. To 
perform this subtraction, it is necessary to keep transmit 
and receive parameters (i. e., operating frequency, duty 

1- Confuser detections, such as birds for UAVs or animals for 
humans, can be interpreted as false alarms for a sensor system, 
so using the available micro-Doppler returns for classification can 
significantly reduce the sensor false alarm rate, thereby improving 
the utility of the sensor system.

cycle, intra pulse modulation, etc.) fixed for a while, and 
obtain Coherent Pulse Interval (CPI) [10]. Conventional 
Moving Target Detector (MTD) radar systems, usually 
use a filter-bank implemented via Fast Fast Fourier 
Transform (FFT) to process the reflected signal from the 
targets coherently, at the receive side (and profit both 
clutter cancellation and coherent processing gain). In low-
resolution radar systems, the intra pulse modulation of 
the transmit waveform has not a significant effect on MTI/
MTD performance when it repeats pulse-to-pulse, which is 
of course necessary for the MTI/MTD process. Performing 
FFT in slow-time and estimation of the reflected signal 
periodogram, can extract the micro Doppler, which can 
be used as the classification feature. In conventional MTI/
MTD radar systems, the slow-time Doppler signal usually is 
converted to sound, and expert operators can identify targets 
by hearing the Doppler [10], [11]. But when number of target 
categories increases (e. g., human, animal, motorcycle, car, 
truck, drone, train, etc.), artificial intelligence maybe more 
useful than human experience and cause to decrease in 
classification error rate.

B. Literature Review
When we have a moving target reflecting a signal, naturally the 
Doppler effect comes into picture; the received signal becomes 
non-stationary with respect to its spectral content, even if 
the generated signal is stationary [12]. This nonstationarity 



R. Amiri and A. Shahzadi , AUT J. Elec. Eng., 51(2) (2019) 113-122, DOI: ﻿ 10.22060/eej.2019.15276.5257

114

in the signal provides information about the motion of the 
source. There are lots of literatures studying micro-Doppler 
characteristics through different Time Frequency (TF) 
analysis on target reflected signal (see [6]–[9], [11], [13]–[16] 
and references therein).

The conventional method typically use the Short Time 
Fourier Transform (STFT) and considered squared absolute 
value of the STFT (called the spectrogram) as an image 
where every point of instantaneous frequency is a pixel (see 
[13] and references therein). Then, through some image 
processing techniques, the TF plane of the target served as the 
inputs to the automatic target recognition (ATR) algorithms 
[6], [13], [17]. This methodology seems strong enough and 
many references have provided its powerfulness. However, 
extending the analysis domain beyond time and frequency 
gives a redundant representation of the signal which can 
improve the results for a classification algorithm [18].

Gabor Transform (GT) which is a special case of STFT with 
a tractable Gaussian window, Wavelet Transform (WT) which 
performs translation and dilation on signals to give high-
frequency resolution, Wigner’s Distribution Function (WDF) 
which is a Fourier transformed autocorrelation function with  
time averaging and time lags, Chirplet Transform (CT) that 
might be considered a generalization of STFT and WT where 
involves a complex function of time, frequency, scale and 
chirp rate; are some examples of TF representation for non-
stationary signals [12], [19]–[23].

Recently, the newly developed deep learning algorithms 
are also applied to perform target classification in radar 
systems [24]–[28]. However, these approaches need to the 
selection of raw vectors with lots (millions) of trials [29]. 
Also, in order to perform the classification techniques and 
in fact, extracting feature from the micro-Doppler raw 
signals, they demand a relatively long time, compared 
with the conventional methods.

C. Contributions
In this paper, we provide a new mathematical model for 

micro-Doppler signature of different typical targets, including 
human, animal, vehicle and drone. Then, we examine effects 
of different TF presentation of the modelbased signals, on 
a designed classification algorithm. Specifically we survey 
how STFT and General Linear Chirplet Transform (GLCT) 
affect the classification performance when a model based 
system is employed at different situation and SNRs. The 
main contributions of this proposal can be enumerated as 
follows:

• In the present work, we first show that the Doppler 
signal can be modeled as a multi-component function 
around the cross-over time instant and then estimate 
its parameters from the intercepts of linear functions. 
• Since we model the mirco-Doppler as a multicomponent 
function around the main Doppler, we can use the GLCT to 
estimate the Doppler and hence the source parameters.

• We show the improvements that can be achieved by an 
accurate TF estimation on the classification performance.

D. Organization and Notation
The rest of this work is organized as follows. In Section II, 

the design problem is formulated. In Section III, we develop 
the mathematical calculation of STFT and GLCT to deal 
with the problem. Section IV provides several numerical 
experiments to verify the effectiveness of the classier. Finally, 
Section V concludes the paper. The following notation is 
adopted in the paper. Bold lowercase letters for vectors 
and bold uppercase letters for matrices. The transpose, the 
conjugate, and the conjugate transpose operators are denoted 
by the symbols ,  and  respectively. The letter ȷ 
represents the imaginary unit (i.e., ȷ = √-1). For any 
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process of variance 𝜎𝜎2 whose real and imaginary 
components are identically distributed. 

Signal modeling basically can be done through two 
methods [1], [15]; as a stochastic process, or as the 
assumption of a deterministic structure but with 
unknown parameters. Although both approaches  
describe random processes, but the latter uses more 
information about some signal characteristics (for 
example, a sinusoidal signal) and can be compatible 
more accurately with real signatures. Regarding to the 
second approach, microDoppler motion 
mathematically can be written as, 

𝒔𝒔𝒊𝒊[𝑛𝑛]  =  𝑎𝑎𝑖𝑖(𝑛𝑛) × 
𝑒𝑒𝑒𝑒𝑝𝑝 {𝚥𝚥𝑎𝑎𝑖𝑖𝑛𝑛2  +  𝚥𝚥2𝜋𝜋𝛽𝛽𝑖𝑖𝑛𝑛 +  𝚥𝚥2𝜋𝜋𝜁𝜁𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋µ𝑖𝑖𝑛𝑛 + 𝜃𝜃𝑖𝑖)  +
 𝚥𝚥𝜓𝜓𝑖𝑖}      

where 𝑎𝑎𝑖𝑖(𝑛𝑛) is the amplitude of the reflected signal 
from the i-th scatterer of the target, 𝛼𝛼𝑖𝑖  is the rate 
change of the Doppler frequency in a CPI, 𝜷𝜷𝑖𝑖  is 
Doppler frequency of the bulk motion, 𝜻𝜻𝑖𝑖  the 
micromotion spatial displacement of the i-th scatterer, 
µ𝑖𝑖 is the micromotion frequency of the i-th scatterer, 𝜃𝜃𝑖𝑖 

is the initial phase of the micromotion and 𝜓𝜓𝑖𝑖 is the 
initial phase relative to the target range. If I shows total 
number of scatterers inthe range under test, the 

 
2 Since the MTI filter is a linear filter and noise and clutter are 
independent processes. 

reflected signal result from the combination of all 
target components can be written as 
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Notice that, due to the requirement of the coherency in 
a CPI, main parameters of the radar system (e. g. 
operating frequency, intrapulse coding, etc.) will not 
change within this interval. Consequently, the target 
amplitude is assumed to be constant and its change is 
CPI to CPI (Swerling I and III), but varies dues to 
components of the target, mathematically, 𝑎𝑎𝑖𝑖(𝑛𝑛)  =
 𝛾𝛾𝑖𝑖. Therefore, 

(4) 
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where probability density function of the unknown 
variable 𝛾𝛾𝑖𝑖 , is Rayleigh with the assumption of 
Swerling I for amplitude fluctuation of the target, 
while it is chi-square if we assume Swerling III for the 
amplitude fluctuation. Notice that the model provided 
in (4) will be simplified to the model presented in [13], 
if we assume the chirp rate 𝑎𝑎𝑖𝑖  =  0. Also, neglecting 
the micro-Doppler signature, the model will simplifed 
to some of chirplets [30]. 

All the proposed classification algorithms consist of at 
least two stages; signal analysis and feature extraction. 
In the next section, two important method for signal 
analysis is explained. 

III. Proposed Method 

Signal analysis is concerned with the estimation of a 
signal whose TF characteristics are in the desired 
fashion. The advantage of specifying the behavior of 
the signal to be analyzed in TF plane is that its 
characteristics can be time-variant or non-stationary, 
which is not available either in the time or frequency-
domain representation [19]. Further, the modeling and 
description of a nonstationary signal jointly in time 
and frequency can be better understood by Fourier 
transforming the short segments of the signal [31]. 
This information has motivated many papers (e. g., 
[6]–[9], [11], [13]–[16]) to process the micro-Doppler 
in joint TF domain. 
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second approach, microDoppler motion 
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is the initial phase of the micromotion and 𝜓𝜓𝑖𝑖 is the 
initial phase relative to the target range. If I shows total 
number of scatterers inthe range under test, the 
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target components can be written as 
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Notice that, due to the requirement of the coherency in 
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operating frequency, intrapulse coding, etc.) will not 
change within this interval. Consequently, the target 
amplitude is assumed to be constant and its change is 
CPI to CPI (Swerling I and III), but varies dues to 
components of the target, mathematically, 𝑎𝑎𝑖𝑖(𝑛𝑛)  =
 𝛾𝛾𝑖𝑖. Therefore, 
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where probability density function of the unknown 
variable 𝛾𝛾𝑖𝑖 , is Rayleigh with the assumption of 
Swerling I for amplitude fluctuation of the target, 
while it is chi-square if we assume Swerling III for the 
amplitude fluctuation. Notice that the model provided 
in (4) will be simplified to the model presented in [13], 
if we assume the chirp rate 𝑎𝑎𝑖𝑖  =  0. Also, neglecting 
the micro-Doppler signature, the model will simplifed 
to some of chirplets [30]. 

All the proposed classification algorithms consist of at 
least two stages; signal analysis and feature extraction. 
In the next section, two important method for signal 
analysis is explained. 

III. Proposed Method 

Signal analysis is concerned with the estimation of a 
signal whose TF characteristics are in the desired 
fashion. The advantage of specifying the behavior of 
the signal to be analyzed in TF plane is that its 
characteristics can be time-variant or non-stationary, 
which is not available either in the time or frequency-
domain representation [19]. Further, the modeling and 
description of a nonstationary signal jointly in time 
and frequency can be better understood by Fourier 
transforming the short segments of the signal [31]. 
This information has motivated many papers (e. g., 
[6]–[9], [11], [13]–[16]) to process the micro-Doppler 
in joint TF domain. 
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unknown parameters. Although both approaches  
describe random processes, but the latter uses more 
information about some signal characteristics (for 
example, a sinusoidal signal) and can be compatible 
more accurately with real signatures. Regarding to the 
second approach, microDoppler motion 
mathematically can be written as, 

𝒔𝒔𝒊𝒊[𝑛𝑛]  =  𝑎𝑎𝑖𝑖(𝑛𝑛) × 
𝑒𝑒𝑒𝑒𝑝𝑝 {𝚥𝚥𝑎𝑎𝑖𝑖𝑛𝑛2  +  𝚥𝚥2𝜋𝜋𝛽𝛽𝑖𝑖𝑛𝑛 +  𝚥𝚥2𝜋𝜋𝜁𝜁𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋µ𝑖𝑖𝑛𝑛 + 𝜃𝜃𝑖𝑖)  +
 𝚥𝚥𝜓𝜓𝑖𝑖}      

where 𝑎𝑎𝑖𝑖(𝑛𝑛) is the amplitude of the reflected signal 
from the i-th scatterer of the target, 𝛼𝛼𝑖𝑖  is the rate 
change of the Doppler frequency in a CPI, 𝜷𝜷𝑖𝑖  is 
Doppler frequency of the bulk motion, 𝜻𝜻𝑖𝑖  the 
micromotion spatial displacement of the i-th scatterer, 
µ𝑖𝑖 is the micromotion frequency of the i-th scatterer, 𝜃𝜃𝑖𝑖 

is the initial phase of the micromotion and 𝜓𝜓𝑖𝑖 is the 
initial phase relative to the target range. If I shows total 
number of scatterers inthe range under test, the 

 
2 Since the MTI filter is a linear filter and noise and clutter are 
independent processes. 

reflected signal result from the combination of all 
target components can be written as 

𝒔𝒔[𝑛𝑛]  = ∑ 𝒔𝒔𝑖𝑖[𝑛𝑛].
𝐼𝐼

𝑖𝑖=1

 

Notice that, due to the requirement of the coherency in 
a CPI, main parameters of the radar system (e. g. 
operating frequency, intrapulse coding, etc.) will not 
change within this interval. Consequently, the target 
amplitude is assumed to be constant and its change is 
CPI to CPI (Swerling I and III), but varies dues to 
components of the target, mathematically, 𝑎𝑎𝑖𝑖(𝑛𝑛)  =
 𝛾𝛾𝑖𝑖. Therefore, 

(4) 

𝒔𝒔[𝑛𝑛]  = ∑ 𝛾𝛾𝑖𝑖𝑒𝑒{𝚥𝚥𝑎𝑎𝑖𝑖𝑛𝑛2 + 𝚥𝚥2𝜋𝜋𝛽𝛽𝑖𝑖𝑛𝑛 + 𝚥𝚥2𝜋𝜋𝜁𝜁𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋µ𝑖𝑖𝑛𝑛 + 𝜃𝜃𝑖𝑖) + 𝚥𝚥𝜓𝜓𝑖𝑖}𝐼𝐼
𝑖𝑖=1    

where probability density function of the unknown 
variable 𝛾𝛾𝑖𝑖 , is Rayleigh with the assumption of 
Swerling I for amplitude fluctuation of the target, 
while it is chi-square if we assume Swerling III for the 
amplitude fluctuation. Notice that the model provided 
in (4) will be simplified to the model presented in [13], 
if we assume the chirp rate 𝑎𝑎𝑖𝑖  =  0. Also, neglecting 
the micro-Doppler signature, the model will simplifed 
to some of chirplets [30]. 

All the proposed classification algorithms consist of at 
least two stages; signal analysis and feature extraction. 
In the next section, two important method for signal 
analysis is explained. 

III. Proposed Method 

Signal analysis is concerned with the estimation of a 
signal whose TF characteristics are in the desired 
fashion. The advantage of specifying the behavior of 
the signal to be analyzed in TF plane is that its 
characteristics can be time-variant or non-stationary, 
which is not available either in the time or frequency-
domain representation [19]. Further, the modeling and 
description of a nonstationary signal jointly in time 
and frequency can be better understood by Fourier 
transforming the short segments of the signal [31]. 
This information has motivated many papers (e. g., 
[6]–[9], [11], [13]–[16]) to process the micro-Doppler 
in joint TF domain. 
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II. Signal Model 

 
Let 𝑥𝑥 ∈ 𝐶𝐶𝑁𝑁 be the discrete time reflected signal 
from a point target, contaminated with clutter 𝑐𝑐 ∈ 𝐶𝐶𝑁𝑁  

and white gaussian noise 𝑤𝑤 ∈ 𝐶𝐶𝑁𝑁 w ∈ CN with zero 
mean and variance σ2. The n-th sample of the received 
baseband signal is [10], 

x[n] = s[n] + c[n] + w[n],    (1) 

where n = 1, . . . , N with N stands for number of pulses 
in CPI. The received signal passes from MTI filter to 
suppress clutter and improve Signal to Clutter Ratio 
(SCR). In this paper, without loss of generality we 
assume that the residual clutter is small enough and 
can be disregarded. The n-th sample of the received 
signal, after match filtering and at the output of the 
MTI filter is, 

x[n] = s[n] + ν[n],    (2) 

where 𝝂𝝂 ∈  𝐶𝐶𝑁𝑁 based on central limit theorem2, is 
approximated by a zero mean colored Gaussian 
process of variance 𝜎𝜎2 whose real and imaginary 
components are identically distributed. 

Signal modeling basically can be done through two 
methods [1], [15]; as a stochastic process, or as the 
assumption of a deterministic structure but with 
unknown parameters. Although both approaches  
describe random processes, but the latter uses more 
information about some signal characteristics (for 
example, a sinusoidal signal) and can be compatible 
more accurately with real signatures. Regarding to the 
second approach, microDoppler motion 
mathematically can be written as, 

𝒔𝒔𝒊𝒊[𝑛𝑛]  =  𝑎𝑎𝑖𝑖(𝑛𝑛) × 
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where 𝑎𝑎𝑖𝑖(𝑛𝑛) is the amplitude of the reflected signal 
from the i-th scatterer of the target, 𝛼𝛼𝑖𝑖  is the rate 
change of the Doppler frequency in a CPI, 𝜷𝜷𝑖𝑖  is 
Doppler frequency of the bulk motion, 𝜻𝜻𝑖𝑖  the 
micromotion spatial displacement of the i-th scatterer, 
µ𝑖𝑖 is the micromotion frequency of the i-th scatterer, 𝜃𝜃𝑖𝑖 

is the initial phase of the micromotion and 𝜓𝜓𝑖𝑖 is the 
initial phase relative to the target range. If I shows total 
number of scatterers inthe range under test, the 
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reflected signal result from the combination of all 
target components can be written as 

𝒔𝒔[𝑛𝑛]  = ∑ 𝒔𝒔𝑖𝑖[𝑛𝑛].
𝐼𝐼

𝑖𝑖=1

 

Notice that, due to the requirement of the coherency in 
a CPI, main parameters of the radar system (e. g. 
operating frequency, intrapulse coding, etc.) will not 
change within this interval. Consequently, the target 
amplitude is assumed to be constant and its change is 
CPI to CPI (Swerling I and III), but varies dues to 
components of the target, mathematically, 𝑎𝑎𝑖𝑖(𝑛𝑛)  =
 𝛾𝛾𝑖𝑖. Therefore, 

(4) 

𝒔𝒔[𝑛𝑛]  = ∑ 𝛾𝛾𝑖𝑖𝑒𝑒{𝚥𝚥𝑎𝑎𝑖𝑖𝑛𝑛2 + 𝚥𝚥2𝜋𝜋𝛽𝛽𝑖𝑖𝑛𝑛 + 𝚥𝚥2𝜋𝜋𝜁𝜁𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋µ𝑖𝑖𝑛𝑛 + 𝜃𝜃𝑖𝑖) + 𝚥𝚥𝜓𝜓𝑖𝑖}𝐼𝐼
𝑖𝑖=1    

where probability density function of the unknown 
variable 𝛾𝛾𝑖𝑖 , is Rayleigh with the assumption of 
Swerling I for amplitude fluctuation of the target, 
while it is chi-square if we assume Swerling III for the 
amplitude fluctuation. Notice that the model provided 
in (4) will be simplified to the model presented in [13], 
if we assume the chirp rate 𝑎𝑎𝑖𝑖  =  0. Also, neglecting 
the micro-Doppler signature, the model will simplifed 
to some of chirplets [30]. 

All the proposed classification algorithms consist of at 
least two stages; signal analysis and feature extraction. 
In the next section, two important method for signal 
analysis is explained. 

III. Proposed Method 

Signal analysis is concerned with the estimation of a 
signal whose TF characteristics are in the desired 
fashion. The advantage of specifying the behavior of 
the signal to be analyzed in TF plane is that its 
characteristics can be time-variant or non-stationary, 
which is not available either in the time or frequency-
domain representation [19]. Further, the modeling and 
description of a nonstationary signal jointly in time 
and frequency can be better understood by Fourier 
transforming the short segments of the signal [31]. 
This information has motivated many papers (e. g., 
[6]–[9], [11], [13]–[16]) to process the micro-Doppler 
in joint TF domain. 
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process of variance 𝜎𝜎2 whose real and imaginary 
components are identically distributed. 

Signal modeling basically can be done through two 
methods [1], [15]; as a stochastic process, or as the 
assumption of a deterministic structure but with 
unknown parameters. Although both approaches  
describe random processes, but the latter uses more 
information about some signal characteristics (for 
example, a sinusoidal signal) and can be compatible 
more accurately with real signatures. Regarding to the 
second approach, microDoppler motion 
mathematically can be written as, 
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initial phase relative to the target range. If I shows total 
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reflected signal result from the combination of all 
target components can be written as 

𝒔𝒔[𝑛𝑛]  = ∑ 𝒔𝒔𝑖𝑖[𝑛𝑛].
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Notice that, due to the requirement of the coherency in 
a CPI, main parameters of the radar system (e. g. 
operating frequency, intrapulse coding, etc.) will not 
change within this interval. Consequently, the target 
amplitude is assumed to be constant and its change is 
CPI to CPI (Swerling I and III), but varies dues to 
components of the target, mathematically, 𝑎𝑎𝑖𝑖(𝑛𝑛)  =
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where probability density function of the unknown 
variable 𝛾𝛾𝑖𝑖 , is Rayleigh with the assumption of 
Swerling I for amplitude fluctuation of the target, 
while it is chi-square if we assume Swerling III for the 
amplitude fluctuation. Notice that the model provided 
in (4) will be simplified to the model presented in [13], 
if we assume the chirp rate 𝑎𝑎𝑖𝑖  =  0. Also, neglecting 
the micro-Doppler signature, the model will simplifed 
to some of chirplets [30]. 

All the proposed classification algorithms consist of at 
least two stages; signal analysis and feature extraction. 
In the next section, two important method for signal 
analysis is explained. 

III. Proposed Method 

Signal analysis is concerned with the estimation of a 
signal whose TF characteristics are in the desired 
fashion. The advantage of specifying the behavior of 
the signal to be analyzed in TF plane is that its 
characteristics can be time-variant or non-stationary, 
which is not available either in the time or frequency-
domain representation [19]. Further, the modeling and 
description of a nonstationary signal jointly in time 
and frequency can be better understood by Fourier 
transforming the short segments of the signal [31]. 
This information has motivated many papers (e. g., 
[6]–[9], [11], [13]–[16]) to process the micro-Doppler 
in joint TF domain. 
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A. STFT 
 
The STFT of the micro-Doppler signature is [15] 

𝜉𝜉(𝜔𝜔, 𝑘𝑘;  𝛴𝛴)  = ∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥𝚥𝚥𝑁𝑁−1

𝑛𝑛=0   (5) 

where 𝑘𝑘 =  0, . . . , 𝐾𝐾 −  1, 𝜔𝜔 is the angular frequency 
and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 

B. GLCT 

The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
Doppler is [19], 

                                                                              (6) 

𝛤𝛤(𝜔𝜔, 𝑘𝑘, 𝛼𝛼, 𝜓𝜓;  𝛴𝛴) = 

∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥[

𝛼𝛼
2
(𝑛𝑛−𝑘𝑘)2+𝜔𝜔(𝑛𝑛−𝑘𝑘)+𝜓𝜓]𝑁𝑁−1

𝑛𝑛=0   
 
where 𝛼𝛼 is the chirp rate and 𝜓𝜓 is the initial phase with 
𝜔𝜔 as the angular frequency and ℎ(. ) as the smoothing 
window of length 𝛴𝛴. Analogous to STFT, GLCT 
originates from a mother chirplet, which is basically a 
window function and can be modified to get the  

                                                                                 (7) 

𝛤𝛤(𝜔𝜔, 𝑘𝑘, 𝛼𝛼, 𝜓𝜓;  𝛴𝛴) = 

∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥[𝛼𝛼

2(𝑛𝑛−𝑘𝑘)2+𝜔𝜔(𝑛𝑛−𝑘𝑘)+𝜓𝜓]
𝑁𝑁−1

𝑛𝑛=0
= 

∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥

𝛼𝛼
2𝑛𝑛2𝑒𝑒𝚥𝚥𝚥𝚥𝚥𝚥𝚥𝚥𝑒𝑒−𝚥𝚥𝚥𝚥𝚥𝚥

𝑁𝑁−1

𝑛𝑛=0
≡ 

𝛤𝛤(𝜔𝜔, 𝑘𝑘, 𝛼𝛼;  𝛴𝛴) 

 

which shows the initial phase 𝜓𝜓 will not appear in the 

 
3 Orthogonality here means that there is no redundancy or 
overlapping of information between the moments. 

magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be defined as 

𝜇𝜇𝑝𝑝,𝑞𝑞 =  ∫ ∫ 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞
𝑦𝑦𝑥𝑥 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (8) 

where (𝑝𝑝, 𝑞𝑞)  ∈  𝑍𝑍+ and 𝑝𝑝 + 𝑞𝑞 is the degree of the 
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orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 
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𝑚𝑚 ∈  [−𝑛𝑛; +𝑛𝑛], and 
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A. STFT 
 
The STFT of the micro-Doppler signature is [15] 

𝜉𝜉(𝜔𝜔, 𝑘𝑘;  𝛴𝛴)  = ∑ 𝑠𝑠[𝑛𝑛]ℎΣ
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and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 
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The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
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magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be defined as 
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where (𝑝𝑝, 𝑞𝑞)  ∈  𝑍𝑍+ and 𝑝𝑝 + 𝑞𝑞 is the degree of the 
moments. Note, (8) represents the projection of 
𝑓𝑓(𝑥𝑥, 𝑦𝑦) on monomial 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞. Since 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞  is not an 
orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 

𝑧𝑧𝑛𝑛
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w.r.t. the center of the image, respectively, 𝑛𝑛 ∈  𝑍𝑍 is 
the degree of the polynomial with frequency m, i.e., 
𝑚𝑚 ∈  [−𝑛𝑛; +𝑛𝑛], and 

 is the angular frequency 
and ( )h .  is the smoothing window of the fixed length

A. STFT 
 
The STFT of the micro-Doppler signature is [15] 

𝜉𝜉(𝜔𝜔, 𝑘𝑘;  𝛴𝛴)  = ∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥𝚥𝚥𝑁𝑁−1

𝑛𝑛=0   (5) 

where 𝑘𝑘 =  0, . . . , 𝐾𝐾 −  1, 𝜔𝜔 is the angular frequency 
and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 

B. GLCT 

The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
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magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
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the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
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ophthalmology, Zernike polynomials are used to 
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spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
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orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 
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orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
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magnitude of GLCT. It is worth noting that GLCT 
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stationary signal. Now, we shall see how the chirp rate 
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moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
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orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 
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the degree of the polynomial with frequency m, i.e., 
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𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 
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The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
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and chirping in frequency. The GLCT of the micro-
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orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 
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𝑚𝑚 ∈  [−𝑛𝑛; +𝑛𝑛], and 

 is the initial phase 
with 
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where 𝑘𝑘 =  0, . . . , 𝐾𝐾 −  1, 𝜔𝜔 is the angular frequency 
and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 

B. GLCT 

The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
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STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
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originates from a mother chirplet, which is basically a 
window function and can be modified to get the  
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magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be defined as 

𝜇𝜇𝑝𝑝,𝑞𝑞 =  ∫ ∫ 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞
𝑦𝑦𝑥𝑥 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (8) 

where (𝑝𝑝, 𝑞𝑞)  ∈  𝑍𝑍+ and 𝑝𝑝 + 𝑞𝑞 is the degree of the 
moments. Note, (8) represents the projection of 
𝑓𝑓(𝑥𝑥, 𝑦𝑦) on monomial 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞. Since 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞  is not an 
orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 

𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃) = 𝜌𝜌𝑛𝑛

𝑚𝑚(𝑟𝑟)exp (𝑗𝑗𝑗𝑗𝑗𝑗)   (9) 

where 𝑟𝑟 ≡ √𝑥𝑥2 + 𝑦𝑦2  and 𝜃𝜃 ≡  tan−1(𝑦𝑦

𝑥𝑥
) are the 

length and angle of the position vector of a point (𝑥𝑥, 𝑦𝑦) 
w.r.t. the center of the image, respectively, 𝑛𝑛 ∈  𝑍𝑍 is 
the degree of the polynomial with frequency m, i.e., 
𝑚𝑚 ∈  [−𝑛𝑛; +𝑛𝑛], and 

. Analogous to STFT, GLCT originates 
from a mother chirplet, which is basically a window 
function and can be modified to get the desired effects in TF 
representation. In the TF plane, we are mainly interested in 
the magnitude and hence if we consider the absolute value of 
the GLCT, we get

A. STFT 
 
The STFT of the micro-Doppler signature is [15] 

𝜉𝜉(𝜔𝜔, 𝑘𝑘;  𝛴𝛴)  = ∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥𝚥𝚥𝑁𝑁−1

𝑛𝑛=0   (5) 

where 𝑘𝑘 =  0, . . . , 𝐾𝐾 −  1, 𝜔𝜔 is the angular frequency 
and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 

B. GLCT 

The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
Doppler is [19], 
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where 𝛼𝛼 is the chirp rate and 𝜓𝜓 is the initial phase with 
𝜔𝜔 as the angular frequency and ℎ(. ) as the smoothing 
window of length 𝛴𝛴. Analogous to STFT, GLCT 
originates from a mother chirplet, which is basically a 
window function and can be modified to get the  
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magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be defined as 

𝜇𝜇𝑝𝑝,𝑞𝑞 =  ∫ ∫ 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞
𝑦𝑦𝑥𝑥 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (8) 

where (𝑝𝑝, 𝑞𝑞)  ∈  𝑍𝑍+ and 𝑝𝑝 + 𝑞𝑞 is the degree of the 
moments. Note, (8) represents the projection of 
𝑓𝑓(𝑥𝑥, 𝑦𝑦) on monomial 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞. Since 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞  is not an 
orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 

𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃) = 𝜌𝜌𝑛𝑛

𝑚𝑚(𝑟𝑟)exp (𝑗𝑗𝑗𝑗𝑗𝑗)   (9) 

where 𝑟𝑟 ≡ √𝑥𝑥2 + 𝑦𝑦2  and 𝜃𝜃 ≡  tan−1(𝑦𝑦
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) are the 

length and angle of the position vector of a point (𝑥𝑥, 𝑦𝑦) 
w.r.t. the center of the image, respectively, 𝑛𝑛 ∈  𝑍𝑍 is 
the degree of the polynomial with frequency m, i.e., 
𝑚𝑚 ∈  [−𝑛𝑛; +𝑛𝑛], and 
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which shows the initial phase 

A. STFT 
 
The STFT of the micro-Doppler signature is [15] 

𝜉𝜉(𝜔𝜔, 𝑘𝑘;  𝛴𝛴)  = ∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥𝚥𝚥𝑁𝑁−1

𝑛𝑛=0   (5) 

where 𝑘𝑘 =  0, . . . , 𝐾𝐾 −  1, 𝜔𝜔 is the angular frequency 
and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 

B. GLCT 

The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
Doppler is [19], 
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where 𝛼𝛼 is the chirp rate and 𝜓𝜓 is the initial phase with 
𝜔𝜔 as the angular frequency and ℎ(. ) as the smoothing 
window of length 𝛴𝛴. Analogous to STFT, GLCT 
originates from a mother chirplet, which is basically a 
window function and can be modified to get the  
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magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be defined as 
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where (𝑝𝑝, 𝑞𝑞)  ∈  𝑍𝑍+ and 𝑝𝑝 + 𝑞𝑞 is the degree of the 
moments. Note, (8) represents the projection of 
𝑓𝑓(𝑥𝑥, 𝑦𝑦) on monomial 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞. Since 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞  is not an 
orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 

𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃) = 𝜌𝜌𝑛𝑛

𝑚𝑚(𝑟𝑟)exp (𝑗𝑗𝑗𝑗𝑗𝑗)   (9) 

where 𝑟𝑟 ≡ √𝑥𝑥2 + 𝑦𝑦2  and 𝜃𝜃 ≡  tan−1(𝑦𝑦
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length and angle of the position vector of a point (𝑥𝑥, 𝑦𝑦) 
w.r.t. the center of the image, respectively, 𝑛𝑛 ∈  𝑍𝑍 is 
the degree of the polynomial with frequency m, i.e., 
𝑚𝑚 ∈  [−𝑛𝑛; +𝑛𝑛], and 
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magnitude of GLCT. It is worth noting that GLCT equals 
STFT when α is set to 0. In terms of the joint TF resolution, 
for a gaussian window of length 

A. STFT 
 
The STFT of the micro-Doppler signature is [15] 

𝜉𝜉(𝜔𝜔, 𝑘𝑘;  𝛴𝛴)  = ∑ 𝑠𝑠[𝑛𝑛]ℎΣ
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and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 

B. GLCT 

The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
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where 𝛼𝛼 is the chirp rate and 𝜓𝜓 is the initial phase with 
𝜔𝜔 as the angular frequency and ℎ(. ) as the smoothing 
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originates from a mother chirplet, which is basically a 
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magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be defined as 
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𝑦𝑦𝑥𝑥 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (8) 

where (𝑝𝑝, 𝑞𝑞)  ∈  𝑍𝑍+ and 𝑝𝑝 + 𝑞𝑞 is the degree of the 
moments. Note, (8) represents the projection of 
𝑓𝑓(𝑥𝑥, 𝑦𝑦) on monomial 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞. Since 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞  is not an 
orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 

𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃) = 𝜌𝜌𝑛𝑛
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where 𝑟𝑟 ≡ √𝑥𝑥2 + 𝑦𝑦2  and 𝜃𝜃 ≡  tan−1(𝑦𝑦
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length and angle of the position vector of a point (𝑥𝑥, 𝑦𝑦) 
w.r.t. the center of the image, respectively, 𝑛𝑛 ∈  𝑍𝑍 is 
the degree of the polynomial with frequency m, i.e., 
𝑚𝑚 ∈  [−𝑛𝑛; +𝑛𝑛], and 

, the minimum frequency 
bandwidth that can be achieved is 

A. STFT 
 
The STFT of the micro-Doppler signature is [15] 

𝜉𝜉(𝜔𝜔, 𝑘𝑘;  𝛴𝛴)  = ∑ 𝑠𝑠[𝑛𝑛]ℎΣ
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and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 

B. GLCT 

The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
Doppler is [19], 
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magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
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moments. Note, (8) represents the projection of 
𝑓𝑓(𝑥𝑥, 𝑦𝑦) on monomial 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞. Since 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞  is not an 
orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 
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w.r.t. the center of the image, respectively, 𝑛𝑛 ∈  𝑍𝑍 is 
the degree of the polynomial with frequency m, i.e., 
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a generalization of STFT, it can only perform as well as the 
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where 𝑘𝑘 =  0, . . . , 𝐾𝐾 −  1, 𝜔𝜔 is the angular frequency 
and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 
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The GLCT uses a different representation of the signal 
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magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
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moments. Note, (8) represents the projection of 
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orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 
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w.r.t. the center of the image, respectively, 𝑛𝑛 ∈  𝑍𝑍 is 
the degree of the polynomial with frequency m, i.e., 
𝑚𝑚 ∈  [−𝑛𝑛; +𝑛𝑛], and 
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higher-order errors observed in interferometric analyses. 
In optometry and ophthalmology, Zernike polynomials are 
used to describe aberrations of the cornea or lens from an 
ideal spherical shape, which result in refraction errors. Let 
a piecewise continuous function ( )f x,  y  (with bounded 
support) be the intensity function of a real TF image in 
Cartesian coordinates. The regular moments of ( )f x,  y  can 
be defined as

A. STFT 
 
The STFT of the micro-Doppler signature is [15] 

𝜉𝜉(𝜔𝜔, 𝑘𝑘;  𝛴𝛴)  = ∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥𝚥𝚥𝑁𝑁−1

𝑛𝑛=0   (5) 

where 𝑘𝑘 =  0, . . . , 𝐾𝐾 −  1, 𝜔𝜔 is the angular frequency 
and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 

B. GLCT 

The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
Doppler is [19], 
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magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 
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characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be defined as 

𝜇𝜇𝑝𝑝,𝑞𝑞 =  ∫ ∫ 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞
𝑦𝑦𝑥𝑥 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (8) 

where (𝑝𝑝, 𝑞𝑞)  ∈  𝑍𝑍+ and 𝑝𝑝 + 𝑞𝑞 is the degree of the 
moments. Note, (8) represents the projection of 
𝑓𝑓(𝑥𝑥, 𝑦𝑦) on monomial 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞. Since 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞  is not an 
orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 

𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃) = 𝜌𝜌𝑛𝑛

𝑚𝑚(𝑟𝑟)exp (𝑗𝑗𝑗𝑗𝑗𝑗)   (9) 

where 𝑟𝑟 ≡ √𝑥𝑥2 + 𝑦𝑦2  and 𝜃𝜃 ≡  tan−1(𝑦𝑦

𝑥𝑥
) are the 

length and angle of the position vector of a point (𝑥𝑥, 𝑦𝑦) 
w.r.t. the center of the image, respectively, 𝑛𝑛 ∈  𝑍𝑍 is 
the degree of the polynomial with frequency m, i.e., 
𝑚𝑚 ∈  [−𝑛𝑛; +𝑛𝑛], and 

 � (8)

where ( )p,  q   Z+∈  and p q+  is the degree of the 
moments. Note, (8) represents the projection of ( )f x,  y  on 
monomial p qx y . Since p qx y  is not an orthogonal set, 

A. STFT 
 
The STFT of the micro-Doppler signature is [15] 

𝜉𝜉(𝜔𝜔, 𝑘𝑘;  𝛴𝛴)  = ∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥𝚥𝚥𝑁𝑁−1

𝑛𝑛=0   (5) 

where 𝑘𝑘 =  0, . . . , 𝐾𝐾 −  1, 𝜔𝜔 is the angular frequency 
and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 

B. GLCT 

The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
Doppler is [19], 
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𝛤𝛤(𝜔𝜔, 𝑘𝑘, 𝛼𝛼, 𝜓𝜓;  𝛴𝛴) = 

∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥[
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𝑛𝑛=0   
 
where 𝛼𝛼 is the chirp rate and 𝜓𝜓 is the initial phase with 
𝜔𝜔 as the angular frequency and ℎ(. ) as the smoothing 
window of length 𝛴𝛴. Analogous to STFT, GLCT 
originates from a mother chirplet, which is basically a 
window function and can be modified to get the  
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𝛤𝛤(𝜔𝜔, 𝑘𝑘, 𝛼𝛼, 𝜓𝜓;  𝛴𝛴) = 
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which shows the initial phase 𝜓𝜓 will not appear in the 

 
3 Orthogonality here means that there is no redundancy or 
overlapping of information between the moments. 

magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be defined as 

𝜇𝜇𝑝𝑝,𝑞𝑞 =  ∫ ∫ 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞
𝑦𝑦𝑥𝑥 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (8) 

where (𝑝𝑝, 𝑞𝑞)  ∈  𝑍𝑍+ and 𝑝𝑝 + 𝑞𝑞 is the degree of the 
moments. Note, (8) represents the projection of 
𝑓𝑓(𝑥𝑥, 𝑦𝑦) on monomial 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞. Since 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞  is not an 
orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 

𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃) = 𝜌𝜌𝑛𝑛

𝑚𝑚(𝑟𝑟)exp (𝑗𝑗𝑗𝑗𝑗𝑗)   (9) 

where 𝑟𝑟 ≡ √𝑥𝑥2 + 𝑦𝑦2  and 𝜃𝜃 ≡  tan−1(𝑦𝑦

𝑥𝑥
) are the 

length and angle of the position vector of a point (𝑥𝑥, 𝑦𝑦) 
w.r.t. the center of the image, respectively, 𝑛𝑛 ∈  𝑍𝑍 is 
the degree of the polynomial with frequency m, i.e., 
𝑚𝑚 ∈  [−𝑛𝑛; +𝑛𝑛], and 

 
are not independent moments. When the moments are 
generated from a set of orthogonal polynomials, we refer 
to these polynomials as pseudo Zernike polynomials. The 
pseudo Zernike polynomials are a set of complex polynomials 
described as

A. STFT 
 
The STFT of the micro-Doppler signature is [15] 

𝜉𝜉(𝜔𝜔, 𝑘𝑘;  𝛴𝛴)  = ∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥𝚥𝚥𝑁𝑁−1

𝑛𝑛=0   (5) 

where 𝑘𝑘 =  0, . . . , 𝐾𝐾 −  1, 𝜔𝜔 is the angular frequency 
and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 

B. GLCT 

The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
Doppler is [19], 
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∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥[
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𝑛𝑛=0   
 
where 𝛼𝛼 is the chirp rate and 𝜓𝜓 is the initial phase with 
𝜔𝜔 as the angular frequency and ℎ(. ) as the smoothing 
window of length 𝛴𝛴. Analogous to STFT, GLCT 
originates from a mother chirplet, which is basically a 
window function and can be modified to get the  
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𝛤𝛤(𝜔𝜔, 𝑘𝑘, 𝛼𝛼, 𝜓𝜓;  𝛴𝛴) = 

∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥[𝛼𝛼

2(𝑛𝑛−𝑘𝑘)2+𝜔𝜔(𝑛𝑛−𝑘𝑘)+𝜓𝜓]
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𝑛𝑛=0
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∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥
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which shows the initial phase 𝜓𝜓 will not appear in the 
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magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be defined as 

𝜇𝜇𝑝𝑝,𝑞𝑞 =  ∫ ∫ 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞
𝑦𝑦𝑥𝑥 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (8) 

where (𝑝𝑝, 𝑞𝑞)  ∈  𝑍𝑍+ and 𝑝𝑝 + 𝑞𝑞 is the degree of the 
moments. Note, (8) represents the projection of 
𝑓𝑓(𝑥𝑥, 𝑦𝑦) on monomial 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞. Since 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞  is not an 
orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
as pseudo Zernike polynomials. The pseudo Zernike 
polynomials are a set of complex polynomials 
described as 

𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃) = 𝜌𝜌𝑛𝑛

𝑚𝑚(𝑟𝑟)exp (𝑗𝑗𝑗𝑗𝑗𝑗)   (9) 

where 𝑟𝑟 ≡ √𝑥𝑥2 + 𝑦𝑦2  and 𝜃𝜃 ≡  tan−1(𝑦𝑦

𝑥𝑥
) are the 

length and angle of the position vector of a point (𝑥𝑥, 𝑦𝑦) 
w.r.t. the center of the image, respectively, 𝑛𝑛 ∈  𝑍𝑍 is 
the degree of the polynomial with frequency m, i.e., 
𝑚𝑚 ∈  [−𝑛𝑛; +𝑛𝑛], and 

 � (9)

where 2 2r x y  ≡ +  and 

A. STFT 
 
The STFT of the micro-Doppler signature is [15] 

𝜉𝜉(𝜔𝜔, 𝑘𝑘;  𝛴𝛴)  = ∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥𝚥𝚥𝑁𝑁−1

𝑛𝑛=0   (5) 

where 𝑘𝑘 =  0, . . . , 𝐾𝐾 −  1, 𝜔𝜔 is the angular frequency 
and ℎ(. ) is the smoothing window of the fixed length 
𝛴𝛴. It is obvious that due to fixed window length in 
STFT, it does not provide good resolution at all the 
frequencies. In practice, the procedure for computing 
STFTs is to divide a longer time signal into shorter 
segments of equal length and then compute the K-
point FFT separately on each shorter segment. The 
magnitude squared of the STFT yields the spectrogram 
of the function. 

B. GLCT 

The GLCT uses a different representation of the signal 
components, which in this case are called Chirplets 
[12], [19]–[23]. This transform considers time 
shifting, frequency shifting, scaling, chirping in time, 
and chirping in frequency. The GLCT of the micro-
Doppler is [19], 
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where 𝛼𝛼 is the chirp rate and 𝜓𝜓 is the initial phase with 
𝜔𝜔 as the angular frequency and ℎ(. ) as the smoothing 
window of length 𝛴𝛴. Analogous to STFT, GLCT 
originates from a mother chirplet, which is basically a 
window function and can be modified to get the  
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∑ 𝑠𝑠[𝑛𝑛]ℎΣ
∗ [𝑛𝑛 − 𝑘𝑘]𝑒𝑒−𝚥𝚥𝚥𝚥[𝛼𝛼

2(𝑛𝑛−𝑘𝑘)2+𝜔𝜔(𝑛𝑛−𝑘𝑘)+𝜓𝜓]
𝑁𝑁−1

𝑛𝑛=0
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magnitude of GLCT. It is worth noting that GLCT 
equals STFT when α is set to 0. In terms of the joint 
TF resolution, for a gaussian window of length 𝛴𝛴, the 
minimum frequency bandwidth that can be achieved is 
1
Σ. This is the frequency bandwidth introduced due to 
the window. Since GLCT is a generalization of STFT, 
it can only perform as well as the STFT does for a 
stationary signal. Now, we shall see how the chirp rate 
𝛼𝛼 affects the frequency resolution of the GLCT. 

In the next section we introduce a family of geometric 
moments, namely Zernike Moment (ZM) to extract 
invariant features from the TF representation. 

C. Pseudo Zernike Moments 

The pseudo ZMs can be defined as a set of complete 
complex orthogonal3 basis functions based on Zernike 
polynomials that are square intergrable and defined 
over the unit circle. Zernike polynomials are used to 
characterize higher-order errors observed in 
interferometric analyses. In optometry and 
ophthalmology, Zernike polynomials are used to 
describe aberrations of the cornea or lens from an ideal 
spherical shape, which result in refraction errors. 
Let a piecewise continuous function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (with 
bounded support) be the intensity function of a real TF 
image in Cartesian coordinates. The regular moments 
of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be defined as 

𝜇𝜇𝑝𝑝,𝑞𝑞 =  ∫ ∫ 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞
𝑦𝑦𝑥𝑥 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (8) 

where (𝑝𝑝, 𝑞𝑞)  ∈  𝑍𝑍+ and 𝑝𝑝 + 𝑞𝑞 is the degree of the 
moments. Note, (8) represents the projection of 
𝑓𝑓(𝑥𝑥, 𝑦𝑦) on monomial 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞. Since 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞  is not an 
orthogonal set, 𝜇𝜇𝑝𝑝,𝑞𝑞  are not independent moments. 
When the moments are generated from a set of 
orthogonal polynomials, we refer to these polynomials 
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D. Target Classification 

Classification is a technique where we categorize data 
into a given number of classes. The main goal of a 
classification problem is to identify the category/class 
to which a new data will fall under. In classical 
machine learning, there are several algorithms 
including Logistic Regression, Naive Bayes, 
Stochastic gradient descent, k-Nearest Neighbors 
(k-NN), Decision Tree, Random forest, and Support 
vector machine, well-known as the powerful 
classifiers. 
In logistic regression, the probabilities describing the 
possible outcomes of a single trial are modeled using 
a logistic function. Logistic regression is most useful 
for understanding the influence of several independent 
variables on a single outcome variable. This method 
works only when the predicted variable is binary, 
assumes all predictors are independent of each other, 
and assumes data is free of missing values. Naive 
Bayes algorithm based on Bayes’ theorem with the 
assumption of independence between every pair of 
features. Naive Bayes classifiers work well in many 
real-world situations such as document classification 

and spam filtering. This algorithm requires 
a small amount of training data to estimate the 
necessary parameters. Naive Bayes classifiers are 
extremely fast compared to more sophisticated 
methods. However, this algorithm is known to be a bad 
estimator. Stochastic gradient descent is a simple and 
very efficient approach to fit linear models. It is 
particularly useful when the number of samples is very 
large. It supports different loss functions and penalties 
for classification. However, this algorithm requires a 
number of hyper-parameters and it is sensitive to 
feature scaling. k-NN simply stores instances of the 
training data and the classification is computed from a 
simple majority vote of the k nearest neighbors of each 
point. This algorithm is simple to implement, robust to 
noisy training data, and effective if training data is 
large. However its computation cost is high as it needs 
to computer the distance of each instance to all the 
training samples. Decision tree produces a sequence of 
rules that can be used to classify the data. This 
method is simple to understand and visualize, requires 
little data preparation, and can handle both numerical 
and categorical data. However, Decision tree can be 
unstable because small variations in the data might 
result in a completely different tree being generated. 
Random forest classifier is a meta-estimator that fits a 
number of decision trees on various sub-samples of 
datasets and uses average to improve the predictive 
accuracy of the model and controls over-fitting. The 
sub-sample size is always the same as the original 
input sample size but the samples are drawn with 
replacement. Random forest classifier is more accurate 
than decision trees in most cases, however, it has slow 
real time prediction, difficult to implement, and 
complex algorithm. Finally, Support Vector Machine 
(SVM) is a representation of the training data as points 
in space separated into categories by a clear gap that is 
as wide as possible. New examples are then mapped 
into that same space and predicted to belong to a 
category based on which side of the gap they fall. This 
method is effective in high dimensional spaces and 
uses a subset of training points in the decision function 
so it is also memory efficient. 

A block diagram of the whole classification algorithm 
is shown in Fig. 1. The reflected signal from the target 
first will face with some pre-processing such as down 
conversion and match filtering. Then, the clutter 
suppression block will improve SCR using a high-pass 
filter (MTI filter). TF image is the next step which can 
be provide either with STFT or GLCT. The magnitude 
then will be calculated and finally, the feature vector 

� (11)

Where 

(10) 

𝜌𝜌𝑛𝑛
𝑚𝑚(𝑟𝑟) ≡ ∑

(−1)𝑘𝑘(2𝑛𝑛 + 1 − 𝑘𝑘)! 𝑟𝑟𝑛𝑛−𝑘𝑘

𝑘𝑘! (𝑛𝑛 + |𝑚𝑚| + 1 − 𝑘𝑘)! (𝑛𝑛 − |𝑚𝑚| − 𝑘𝑘)!

𝑛𝑛−|𝑚𝑚|

𝑘𝑘=0
 

is the radial polynomial. When defined over a unite 
circle, i.e., 𝑟𝑟 ≤  1, the pseudo Zernike polynomials 
exhibit orthogonality, i.e., 

     (11) 

∫ ∫[𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃)]∗ [𝑧𝑧𝑛𝑛′

𝑚𝑚′(𝑟𝑟, 𝜃𝜃)] 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
1

0

2𝜋𝜋

0

= 𝜋𝜋
𝑛𝑛 + 1 𝜎𝜎𝑛𝑛𝑛𝑛′𝜎𝜎𝑚𝑚𝑚𝑚′ 

Where 𝜎𝜎𝑖𝑖𝑖𝑖′ is the Kronecker delta function. Now, the 
pseudo ZM can be obtained by projecting the image 
onto the pseudo Zernike polynomials as 

(12) 

𝑎𝑎𝑛𝑛
𝑚𝑚 = 𝑛𝑛 + 1

𝜋𝜋 ∫ ∫[𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃)]∗𝑓𝑓(𝑟𝑟, 𝜃𝜃)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

1

0

2𝜋𝜋

0

 

Where 𝑓𝑓(𝑟𝑟, 𝜃𝜃) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) ⇂𝑥𝑥=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑦𝑦=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 . 

 

D. Target Classification 

Classification is a technique where we categorize data 
into a given number of classes. The main goal of a 
classification problem is to identify the category/class 
to which a new data will fall under. In classical 
machine learning, there are several algorithms 
including Logistic Regression, Naive Bayes, 
Stochastic gradient descent, k-Nearest Neighbors 
(k-NN), Decision Tree, Random forest, and Support 
vector machine, well-known as the powerful 
classifiers. 
In logistic regression, the probabilities describing the 
possible outcomes of a single trial are modeled using 
a logistic function. Logistic regression is most useful 
for understanding the influence of several independent 
variables on a single outcome variable. This method 
works only when the predicted variable is binary, 
assumes all predictors are independent of each other, 
and assumes data is free of missing values. Naive 
Bayes algorithm based on Bayes’ theorem with the 
assumption of independence between every pair of 
features. Naive Bayes classifiers work well in many 
real-world situations such as document classification 

and spam filtering. This algorithm requires 
a small amount of training data to estimate the 
necessary parameters. Naive Bayes classifiers are 
extremely fast compared to more sophisticated 
methods. However, this algorithm is known to be a bad 
estimator. Stochastic gradient descent is a simple and 
very efficient approach to fit linear models. It is 
particularly useful when the number of samples is very 
large. It supports different loss functions and penalties 
for classification. However, this algorithm requires a 
number of hyper-parameters and it is sensitive to 
feature scaling. k-NN simply stores instances of the 
training data and the classification is computed from a 
simple majority vote of the k nearest neighbors of each 
point. This algorithm is simple to implement, robust to 
noisy training data, and effective if training data is 
large. However its computation cost is high as it needs 
to computer the distance of each instance to all the 
training samples. Decision tree produces a sequence of 
rules that can be used to classify the data. This 
method is simple to understand and visualize, requires 
little data preparation, and can handle both numerical 
and categorical data. However, Decision tree can be 
unstable because small variations in the data might 
result in a completely different tree being generated. 
Random forest classifier is a meta-estimator that fits a 
number of decision trees on various sub-samples of 
datasets and uses average to improve the predictive 
accuracy of the model and controls over-fitting. The 
sub-sample size is always the same as the original 
input sample size but the samples are drawn with 
replacement. Random forest classifier is more accurate 
than decision trees in most cases, however, it has slow 
real time prediction, difficult to implement, and 
complex algorithm. Finally, Support Vector Machine 
(SVM) is a representation of the training data as points 
in space separated into categories by a clear gap that is 
as wide as possible. New examples are then mapped 
into that same space and predicted to belong to a 
category based on which side of the gap they fall. This 
method is effective in high dimensional spaces and 
uses a subset of training points in the decision function 
so it is also memory efficient. 

A block diagram of the whole classification algorithm 
is shown in Fig. 1. The reflected signal from the target 
first will face with some pre-processing such as down 
conversion and match filtering. Then, the clutter 
suppression block will improve SCR using a high-pass 
filter (MTI filter). TF image is the next step which can 
be provide either with STFT or GLCT. The magnitude 
then will be calculated and finally, the feature vector 

 is the Kronecker delta function. Now, the 
pseudo ZM can be obtained by projecting the image onto the 
pseudo Zernike polynomials as

(10) 

𝜌𝜌𝑛𝑛
𝑚𝑚(𝑟𝑟) ≡ ∑

(−1)𝑘𝑘(2𝑛𝑛 + 1 − 𝑘𝑘)! 𝑟𝑟𝑛𝑛−𝑘𝑘

𝑘𝑘! (𝑛𝑛 + |𝑚𝑚| + 1 − 𝑘𝑘)! (𝑛𝑛 − |𝑚𝑚| − 𝑘𝑘)!

𝑛𝑛−|𝑚𝑚|

𝑘𝑘=0
 

is the radial polynomial. When defined over a unite 
circle, i.e., 𝑟𝑟 ≤  1, the pseudo Zernike polynomials 
exhibit orthogonality, i.e., 

     (11) 

∫ ∫[𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃)]∗ [𝑧𝑧𝑛𝑛′

𝑚𝑚′(𝑟𝑟, 𝜃𝜃)] 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
1

0

2𝜋𝜋

0

= 𝜋𝜋
𝑛𝑛 + 1 𝜎𝜎𝑛𝑛𝑛𝑛′𝜎𝜎𝑚𝑚𝑚𝑚′ 

Where 𝜎𝜎𝑖𝑖𝑖𝑖′ is the Kronecker delta function. Now, the 
pseudo ZM can be obtained by projecting the image 
onto the pseudo Zernike polynomials as 

(12) 

𝑎𝑎𝑛𝑛
𝑚𝑚 = 𝑛𝑛 + 1

𝜋𝜋 ∫ ∫[𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃)]∗𝑓𝑓(𝑟𝑟, 𝜃𝜃)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

1

0

2𝜋𝜋

0

 

Where 𝑓𝑓(𝑟𝑟, 𝜃𝜃) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) ⇂𝑥𝑥=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑦𝑦=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 . 

 

D. Target Classification 

Classification is a technique where we categorize data 
into a given number of classes. The main goal of a 
classification problem is to identify the category/class 
to which a new data will fall under. In classical 
machine learning, there are several algorithms 
including Logistic Regression, Naive Bayes, 
Stochastic gradient descent, k-Nearest Neighbors 
(k-NN), Decision Tree, Random forest, and Support 
vector machine, well-known as the powerful 
classifiers. 
In logistic regression, the probabilities describing the 
possible outcomes of a single trial are modeled using 
a logistic function. Logistic regression is most useful 
for understanding the influence of several independent 
variables on a single outcome variable. This method 
works only when the predicted variable is binary, 
assumes all predictors are independent of each other, 
and assumes data is free of missing values. Naive 
Bayes algorithm based on Bayes’ theorem with the 
assumption of independence between every pair of 
features. Naive Bayes classifiers work well in many 
real-world situations such as document classification 

and spam filtering. This algorithm requires 
a small amount of training data to estimate the 
necessary parameters. Naive Bayes classifiers are 
extremely fast compared to more sophisticated 
methods. However, this algorithm is known to be a bad 
estimator. Stochastic gradient descent is a simple and 
very efficient approach to fit linear models. It is 
particularly useful when the number of samples is very 
large. It supports different loss functions and penalties 
for classification. However, this algorithm requires a 
number of hyper-parameters and it is sensitive to 
feature scaling. k-NN simply stores instances of the 
training data and the classification is computed from a 
simple majority vote of the k nearest neighbors of each 
point. This algorithm is simple to implement, robust to 
noisy training data, and effective if training data is 
large. However its computation cost is high as it needs 
to computer the distance of each instance to all the 
training samples. Decision tree produces a sequence of 
rules that can be used to classify the data. This 
method is simple to understand and visualize, requires 
little data preparation, and can handle both numerical 
and categorical data. However, Decision tree can be 
unstable because small variations in the data might 
result in a completely different tree being generated. 
Random forest classifier is a meta-estimator that fits a 
number of decision trees on various sub-samples of 
datasets and uses average to improve the predictive 
accuracy of the model and controls over-fitting. The 
sub-sample size is always the same as the original 
input sample size but the samples are drawn with 
replacement. Random forest classifier is more accurate 
than decision trees in most cases, however, it has slow 
real time prediction, difficult to implement, and 
complex algorithm. Finally, Support Vector Machine 
(SVM) is a representation of the training data as points 
in space separated into categories by a clear gap that is 
as wide as possible. New examples are then mapped 
into that same space and predicted to belong to a 
category based on which side of the gap they fall. This 
method is effective in high dimensional spaces and 
uses a subset of training points in the decision function 
so it is also memory efficient. 

A block diagram of the whole classification algorithm 
is shown in Fig. 1. The reflected signal from the target 
first will face with some pre-processing such as down 
conversion and match filtering. Then, the clutter 
suppression block will improve SCR using a high-pass 
filter (MTI filter). TF image is the next step which can 
be provide either with STFT or GLCT. The magnitude 
then will be calculated and finally, the feature vector 

� (12)

Where 

(10) 

𝜌𝜌𝑛𝑛
𝑚𝑚(𝑟𝑟) ≡ ∑

(−1)𝑘𝑘(2𝑛𝑛 + 1 − 𝑘𝑘)! 𝑟𝑟𝑛𝑛−𝑘𝑘

𝑘𝑘! (𝑛𝑛 + |𝑚𝑚| + 1 − 𝑘𝑘)! (𝑛𝑛 − |𝑚𝑚| − 𝑘𝑘)!

𝑛𝑛−|𝑚𝑚|

𝑘𝑘=0
 

is the radial polynomial. When defined over a unite 
circle, i.e., 𝑟𝑟 ≤  1, the pseudo Zernike polynomials 
exhibit orthogonality, i.e., 

     (11) 

∫ ∫[𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃)]∗ [𝑧𝑧𝑛𝑛′

𝑚𝑚′(𝑟𝑟, 𝜃𝜃)] 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
1

0

2𝜋𝜋

0

= 𝜋𝜋
𝑛𝑛 + 1 𝜎𝜎𝑛𝑛𝑛𝑛′𝜎𝜎𝑚𝑚𝑚𝑚′ 

Where 𝜎𝜎𝑖𝑖𝑖𝑖′ is the Kronecker delta function. Now, the 
pseudo ZM can be obtained by projecting the image 
onto the pseudo Zernike polynomials as 

(12) 

𝑎𝑎𝑛𝑛
𝑚𝑚 = 𝑛𝑛 + 1

𝜋𝜋 ∫ ∫[𝑧𝑧𝑛𝑛
𝑚𝑚(𝑟𝑟, 𝜃𝜃)]∗𝑓𝑓(𝑟𝑟, 𝜃𝜃)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

1

0

2𝜋𝜋

0

 

Where 𝑓𝑓(𝑟𝑟, 𝜃𝜃) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) ⇂𝑥𝑥=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑦𝑦=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 . 

 

D. Target Classification 

Classification is a technique where we categorize data 
into a given number of classes. The main goal of a 
classification problem is to identify the category/class 
to which a new data will fall under. In classical 
machine learning, there are several algorithms 
including Logistic Regression, Naive Bayes, 
Stochastic gradient descent, k-Nearest Neighbors 
(k-NN), Decision Tree, Random forest, and Support 
vector machine, well-known as the powerful 
classifiers. 
In logistic regression, the probabilities describing the 
possible outcomes of a single trial are modeled using 
a logistic function. Logistic regression is most useful 
for understanding the influence of several independent 
variables on a single outcome variable. This method 
works only when the predicted variable is binary, 
assumes all predictors are independent of each other, 
and assumes data is free of missing values. Naive 
Bayes algorithm based on Bayes’ theorem with the 
assumption of independence between every pair of 
features. Naive Bayes classifiers work well in many 
real-world situations such as document classification 

and spam filtering. This algorithm requires 
a small amount of training data to estimate the 
necessary parameters. Naive Bayes classifiers are 
extremely fast compared to more sophisticated 
methods. However, this algorithm is known to be a bad 
estimator. Stochastic gradient descent is a simple and 
very efficient approach to fit linear models. It is 
particularly useful when the number of samples is very 
large. It supports different loss functions and penalties 
for classification. However, this algorithm requires a 
number of hyper-parameters and it is sensitive to 
feature scaling. k-NN simply stores instances of the 
training data and the classification is computed from a 
simple majority vote of the k nearest neighbors of each 
point. This algorithm is simple to implement, robust to 
noisy training data, and effective if training data is 
large. However its computation cost is high as it needs 
to computer the distance of each instance to all the 
training samples. Decision tree produces a sequence of 
rules that can be used to classify the data. This 
method is simple to understand and visualize, requires 
little data preparation, and can handle both numerical 
and categorical data. However, Decision tree can be 
unstable because small variations in the data might 
result in a completely different tree being generated. 
Random forest classifier is a meta-estimator that fits a 
number of decision trees on various sub-samples of 
datasets and uses average to improve the predictive 
accuracy of the model and controls over-fitting. The 
sub-sample size is always the same as the original 
input sample size but the samples are drawn with 
replacement. Random forest classifier is more accurate 
than decision trees in most cases, however, it has slow 
real time prediction, difficult to implement, and 
complex algorithm. Finally, Support Vector Machine 
(SVM) is a representation of the training data as points 
in space separated into categories by a clear gap that is 
as wide as possible. New examples are then mapped 
into that same space and predicted to belong to a 
category based on which side of the gap they fall. This 
method is effective in high dimensional spaces and 
uses a subset of training points in the decision function 
so it is also memory efficient. 

A block diagram of the whole classification algorithm 
is shown in Fig. 1. The reflected signal from the target 
first will face with some pre-processing such as down 
conversion and match filtering. Then, the clutter 
suppression block will improve SCR using a high-pass 
filter (MTI filter). TF image is the next step which can 
be provide either with STFT or GLCT. The magnitude 
then will be calculated and finally, the feature vector 

.

D. Target Classification
Classification is a technique where we categorize 

data into a given number of classes. The main goal of a 

classification problem is to identify the category/class to which 
a new data will fall under. In classical machine learning, there 
are several algorithms including Logistic Regression, Naive 
Bayes, Stochastic gradient descent, k-Nearest Neighbors 
(k-NN), Decision Tree, Random forest, and Support vector 
machine, well-known as the powerful classifiers. In logistic 
regression, the probabilities describing the possible outcomes 
of a single trial are modeled using a logistic function. Logistic 
regression is most useful for understanding the influence of 
several independent variables on a single outcome variable. 
This method works only when the predicted variable is binary, 
assumes all predictors are independent of each other, and 
assumes data is free of missing values. Naive Bayes algorithm 
based on Bayes’ theorem with the assumption of independence 
between every pair of features. Naive Bayes classifiers 
work well in many real-world situations such as document 
classification and spam filtering. This algorithm requires 
a small amount of training data to estimate the necessary 
parameters. Naive Bayes classifiers are extremely fast 
compared to more sophisticated methods. However, this 
algorithm is known to be a bad estimator. Stochastic gradient 
descent is a simple and very efficient approach to fit linear 
models. It is particularly useful when the number of samples 
is very large. It supports different loss functions and penalties 
for classification. However, this algorithm requires a number 
of hyper-parameters and it is sensitive to feature scaling. 
k-NN simply stores instances of the training data and the 
classification is computed from a simple majority vote of the 
k nearest neighbors of each point. This algorithm is simple 
to implement, robust to noisy training data, and effective if 
training data is large. However its computation cost is high as 
it needs to computer the distance of each instance to all the 
training samples. Decision tree produces a sequence of rules 
that can be used to classify the data. This method is simple to 
understand and visualize, requires little data preparation, and 
can handle both numerical and categorical data. However, 
Decision tree can be unstable because small variations in 
the data might result in a completely different tree being 
generated. Random forest classifier is a meta-estimator that 
fits a number of decision trees on various sub-samples of 
datasets and uses average to improve the predictive accuracy 
of the model and controls over-fitting. The sub-sample size 
is always the same as the original input sample size but the 
samples are drawn with replacement. Random forest classifier 
is more accurate than decision trees in most cases, however, 
it has slow real time prediction, difficult to implement, and 
complex algorithm. Finally, Support Vector Machine (SVM) 
is a representation of the training data as points in space 
separated into categories by a clear gap that is as wide as 
possible. New examples are then mapped into that same space 
and predicted to belong to a category based on which side of 
the gap they fall. This method is effective in high dimensional 
spaces and uses a subset of training points in the decision 
function so it is also memory efficient.

A block diagram of the whole classification algorithm 
is shown in Fig. 1. The reflected signal from the target 
first will face with some pre-processing such as down 
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conversion and match filtering. Then, the clutter suppression 
block will improve SCR using a high-pass filter (MTI filter). 
TF image is the next step which can be provide either with 
STFT or GLCT. The magnitude then will be calculated and 
finally, the feature vector will extracted trough pseudo ZMs. 
A typical classifier can be used to determine type of target. 
Notice that the use of ZMs [11], [13] allows the introduction 
of important characteristics in the representation of a micro-
Doppler signature, in order to fit different requirements. 
In particular translational invariance allows the unique 
identification of targets with different main Doppler shifts but 
belonging to the same class.

Further, the k-NN is regarded as the most effective 
classifier since it computes the distances between testing 
sample and all training samples, and then chooses the target 
type corresponding to the minimum distance as the type of the 
testing sample. According to the Fig. 1, there are two stages, 
i.e., training stage and classification stage, in the classification 
procedure. The training stage is done when the training sets 
have infinity Signal to Noise Ratio (SNR).

IV. Experimental Results
In this section, we illustrate effectiveness of 

STFT and GLCT in classification rate of the classifier 
algorithm. We assumed an X-band radar system1with 
bandwidth B =1MHz and Pulse Repetition Frequency 
PRF =5kHz. We consider coherent interval time TCPI = 
0.8192s which2 means 4096 pulses in a CPI. As to the TF 
analysis, we use a sampling rate3 5kHz, window size 256 
points with overlap 50%. Also a smoothing hamming window 
is used for both STFT and GLCT. The primary components 
of the reflected signal, depending on the type of target can 
be torso, legs, arms, blade, rolling tire, etc. According to 
the model provided in (4), we have plenty of parameters to 
characterize each target amplitude fluctuation, movement 
and micro-motion including, γ, α, β, ζ, µ, θ and ψ. In order to 
observe micro-Doppler effect, we fix the parameters α, β, θ, ψ 
which are not directly related to the micro-Doppler motion. 

1 -We assume a low-resolution radar system to show effectiveness of the 
proposed classification algorithm for this system.
2  Note that CPI time is the interval that one coherently integrate the reflected 
signal from the target. Assuming PRF = 5000Hz,in TCPI = 0.8192 the 
received 4096 pulses can obtain 36.12 dBprocessing gain. Decreasing the 
CPI time, cause to reduction inprocessing gain, and consequently affect the 
classification rate.
3 - Which is equal to the PRF

This assumption means that we have considered a unify 
Doppler frequency and chirp rate for all the targets which 
makes the classification task more strict. Also, Swirling I is 
assumed target amplitude fluctuation with mean 10 for all the 
targets but variances4 as specified in TABLE I. The parameter 
ζ, µ which show the amplitude and frequency of the micro-
motion, respectively, are considered as unknown zero-mean 
Gaussian random variables with variance as depicted in 
TABLE I. Further, in all cases, number of total components 
for every target assumed to be I = 5, we used Zernike moment 
until order 11 for the feature vector and number of Chirplets 
in GLCT are assumed to be 7.

In Fig. 2 the GLCT and STFT of the noise-free signal 

4 Notice that 

will extracted trough pseudo ZMs. A typical classifier 
can be used to determine type of target. Notice that the 
use of ZMs [11], [13] allows the introduction of 
important characteristics in the representation of a 
micro-Doppler signature, in order to fit different 
requirements. In particular translational invariance 
allows the unique identification of targets with 
different main Doppler shifts but belonging to the 
same class. 

Further, the k-NN is regarded as the most effective 
classifier since it computes the distances between 
testing sample and all training samples, and then 
chooses the target type corresponding to the minimum 
distance as the type of the testing sample. According 
to the Fig. 1, there are two stages, i.e., training stage 
and classification stage, in the classification 
procedure. The training stage is done when the training 
sets have infinity Signal to Noise Ratio (SNR). 

IV. Experimental Results 

In this section, we illustrate effectiveness of STFT and 
GLCT in classification rate of the classifier algorithm. 
We assumed an X-band radar system4 with bandwidth 
B =1MHz and Pulse Repetition Frequency 
PRF =5kHz. We consider coherent interval time 
TCPI = 0.8192s which5 means 4096 pulses in a CPI. As 
to the TF analysis, we use a sampling rate 6  5kHz, 
window size 256 points with overlap 50%. Also a 
smoothing hamming window is used for both STFT 
and GLCT. The primary components of the reflected 
signal, depending on the type of target can be torso, 
legs, arms, blade, rolling tire, etc. According to the 
model provided in (4), we have plenty of parameters 
to characterize each target amplitude fluctuation, 
movement and micro-motion including, γ, α, β, ζ, µ, θ 
and ψ. In order to observe micro-Doppler effect, we fix 
the parameters α, β, θ, ψ which are not directly related 
to the micro-Doppler motion. This assumption means 
that we have considered a unify Doppler frequency 
and chirp rate for all the targets which makes the 
classification task more strict. Also, Swirling I is 
assumed target amplitude fluctuation with mean 10 for 
all the targets but variances7 as specified in TABLE I. 
The parameter ζ, µ which show the amplitude and 

 
4 We assume a low-resolution radar system to show effectiveness 
of the proposed classification algorithm for this system. 
5 Note that CPI time is the interval that one coherently integrate 
the reflected signal from the target. Assuming PRF = 5000Hz, 
in TCPI = 0.8192 the received 4096 pulses can obtain 36.12 dB 

frequency of the micro-motion, respectively, are 
considered as unknown zero-mean Gaussian random 
variables with variance as depicted in TABLE I. 
Further, in all cases, number of total components for 
every target assumed to be I = 5, we used Zernike 
moment until order 11 for the feature vector and 
number of Chirplets in GLCT are assumed to be 7. 

In Fig. 2 the GLCT and STFT of the noise-free signal 
for a person walking with a constant velocity is 
depicted. The signal reflected from the torso will have 
a constant Doppler shift while signal reflected from the 
components of the target, swinging legs and arms will 
be modulating at cadence frequency, which is the step 
or leg swing rate. In general, the arms and legs will 
have the same periodicity since the arms swing to 
counterbalance the legs. The shorter, thinner legs of 
the animals must have a narrower and sharper Doppler 
pattern compared to the broader pattern for the person 
which are depicted in Fig. 3. In the other hand, drone 
with the rotating blades spread more Doppler 
frequency as illustrated Fig. 4. Finally, Fig. 5 shows 
the TF analysis of the reflected signal of the vehicle. 
As its observable in TF images of the different 
presented figures, the more compatible GLCT extract 
the components more accurately than STFT which 
affects the classification rate. Fig. 6 compare four 
classes of targets in TCPI when SNR varies from 
-10dB to +30dB. The classification rate is averaged 
over 100 trials in each SNR. The Zernike vector 
extracted form the noise free signal is used as the 
training set in kNN classifier for each target. When a new 
sample arrives, kNN finds the k neighbors nearest to the 
new sample from the training space based on some 
suitable similarity or distance metric. The plurality 
class among the nearest neighbors is the class label of 
the new sample. As illustrated in Fig. 6, animal, 
personnel, drone and vehicle behave are classified 
better when GLCT is used for feature extraction 
instead of STFT. The difference in classification rate 
is more significant in low SNRs. The results show that 
extending the analysis domain to shear, scale, 
translation, etc., which has led to the evolution 
improves the performance of an equal classifier. 

processing gain. Decreasing the CPI time, cause to reduction in 
processing gain, and consequently affect the classification rate. 
6 Which is equal to the PRF 
7 Notice that 𝜎𝜎𝑧𝑧2 shows the variance of the parameter z in TABLE 
I. 

shows the variance of the parameter z in TABLE I.

Figure 1 Block scheme of the classifier algorithm 

  

Fig. 1: Block scheme of the classifier algorithm
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for a person walking with a constant velocity is depicted. 
The signal reflected from the torso will have a constant 
Doppler shift while signal reflected from the components 
of the target, swinging legs and arms will be modulating at 
cadence frequency, which is the step or leg swing rate. In 
general, the arms and legs will have the same periodicity 
since the arms swing to counterbalance the legs. The shorter, 
thinner legs of the animals must have a narrower and sharper 
Doppler pattern compared to the broader pattern for the 
person which are depicted in Fig. 3. In the other hand, drone 
with the rotating blades spread more Doppler frequency as 
illustrated Fig. 4. Finally, Fig. 5 shows the TF analysis of the 

reflected signal of the vehicle. As its observable in TF images 
of the different presented Figures, the more compatible GLCT 
extract the components more accurately than STFT which 
affects the classification rate. Fig. 6 compare four classes of 
targets in TCPI when SNR varies from -10dB to +30dB. The 
classification rate is averaged over 100 trials in each SNR. The 
Zernike vector extracted form the noise free signal is used 
as the training set in kNN classifier for each target. When a 
new sample arrives, kNN finds the k neighbors nearest to the 
new sample from the training space based on some suitable 
similarity or distance metric. The plurality class among the 
nearest neighbors is the class label of the new sample. As 
illustrated in Fig. 6, animal, personnel, drone and vehicle 
behave are classified better when GLCT is used for feature 
extraction instead of STFT. The difference in classification 
rate is more significant in low SNRs. The results show that 
extending the analysis domain to shear, scale, translation, etc., 
which has led to the evolution improves the performance of 
an equal classifier.

A. Comparison with the counterparts
In [15], employing low-resolution radar systems, 

a micro-Doppler feature extraction based on time 
frequency spectrogram is proposed to categorize ground 
moving targets into three types: single walking person, 
two people walking, and a moving wheeled vehicle. The 
main innovation of this paper is the definition of a novel 
3-dimensional micro-Doppler feature vector extracted 
from the time-frequency spectrograms to represent the 
micro-motion characteristics of single walking person, 
two people walking and a moving wheeled vehicle. In this 
paper, the 3-dimensional features are extracted based on:

• Feature 1: the variance of the time-frequency spectrogram. 
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Fig. 4: Drone Signature. 
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Fig. 4: Drone Signature.
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• Feature 2: the bandwidth of the target’s Doppler 
modulations in the time-frequency spectrogram. 
• Feature 3: the variance of the frequencies corresponding 
to the largest values in each column of the time-frequency 
spectrogram.

Then, to perform the classification, the extracted features 
in the training stage are utilized to train a SVM which is then 
used to determine the category of each test acquisition. The 
results of the proposed method in this paper is reported in 
TABLE II. In [17], a similar problem for target classification 
in Synthetic Aperture Radar (SAR) is considered by using the 
weighted Krawtchouk polynomials. The performance of the 
proposed method in classification of the vehicle is reported in 
TABLE II. Note that the extracted features are normalized and 
then trained to the k-NN classification algorithm. Finally, in [9] 
the use of principle component analysis (PCA) and 2-D PCA 
is proposed as the data driven feature extraction approaches. 
The feature extraction is taken over the spectrogram of the 
raw data. The results are reported in TABLE II. Note that all 
the comparisons all done with a noiseless raw data. According 
to TABLE II, we can see the proposed algorithm of this 
paper can obtain a better performance in comparison with 

the counterparts. Indeed the more accurate estimation of the 
time-frequency representation of the reflected signal, lead to 
a better performance.

B. Computational Complexity
In the sequel, a comparison between the run-time 

(s) for classification of the reflected signal of one CPI,  
i. e., 4096 pulses, of the different methods proposed in [9], 
[15], [17], and that of proposed in this paper. The reported 
values are obtained with a standard PC with Intel (R) 
Core(TM) i7-600U CPU@ 2.80GHz with installed memory 
(RAM) 8.00 GB. According to TABLE III, in these examples, 
the computational complexity of the proposed method and 
Krawtchouk [17] are relatively in a same order. Notice that, 
even-though [15] has lower computational complexity, its 
performance is very sensitive to the predefined values for 
Doppler and bandwidth spread of the targets.

C. Effect of the Swerling Models of the Classification 
Performance
The Swerling target models give the statistical model for the 
radar cross-section (RCS) of a given object, i.e., amplitude of 
the reflected signal. Indeed, using the Swerling models the 
amplitude of the reflected signal assumed to be a random 
variable and its distribution is modeled in a family of the chi-

 
 

 

 

 

 

 

   

Fig. 6: Classification rate of four-class problem in different SNRs. 
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squared distributions [10]. Different cases of the Swerling 
models are briefly described below:

• Swerling I: This case describes a target whose magnitude 
of the backscattered signal is relatively constant during the 
dwell time. It varies according to a Rayleigh probability 
density function. The radar cross-section is constant from 
pulse-to-pulse, but varies independently from scan to scan.

• Swerling II: The Swerling II target is similar to Swerling 
I, using the same equation, except the RCS values changes 
faster and varies from pulse to pulse additionally. The Swerling 
cases I and II applies to a target that is made up of many 
independent scatterers of roughly equal areas like airplanes. 
However, in Swerling case II there is no rotating surveillance 
antenna but a focused onto a target tracking radar.

• Swerling III: This case describes a target whose 
magnitude of the backscattered signal is relatively constant 
during the dwell time. It varies according to a Chi-square 
probability density function with twodegrees of freedom. The 
radar cross-section is constant from pulse-to-pulse, but varies 
independentlyfrom scan to scan.

• Swerling IV: The Swerling case IV is similar to Swerling 
III, but the RCS varies from pulse to pulse rather than from 
scan to scan.

Note that in general, the cases I and III apply for search 
radars [10], which is the case we considered in this paper. 
Indeed pulse-to-pulse fluctuations happens when there is a 
change in the coherence time of the radar system, i.e., changing 
the carrier frequency, transmitting phase, etc. The fluctuation 
loss depends on the probability of detection and for the radar 
that is assumed in this paper, at Pd = 0.9 is shown in Fig. 7. In 
ground surveillance radar systems (the radar of this paper), 
during a coherent pulse interval (CPI), targets remain within 
a resolution cell. Also, as the need for coherent processing, the 
main parameters of the system like frequency, phase or pulse 
repetition interval (PRT) remains fixed. As a result, within 
one CPI the amplitude of the reflected signal is a random 
variable that can varies scan-to-scan. This means that in each 
CPI, the received Signal-to-Noise-Ratio (SNR) of the received 
signal will changes. Consequently, since the classification rate 
is dependent to the received SNR values, the performance will 
changes accordingly. In Fig. 8, performance of the proposed 
GLCT algorithm under Swerling models I and III is depicted. 
A comparison between this Figure and Fig. 6 of the paper 
indicates that the classification rate decreased considering the 
Swerling models. As expected, the loss in classification rate 
for Swerling III is less than that of Swerling I.

V. Conclusion
In this paper, the chirplet transform is applied to extract 

micro-Doppler features from different target reflections. 
Precisely, we have shown the micro-Doppler signature of 
the reflected signal in a radar system can be analyzed more 
accurately by using GLCT rather than STFT. Hence, in the low 
SNR cases the micro-motion components are contaminated 
by the noise and more accurate TF representation plays more 
significant role in the target classification procedure. Indeed, 
we have used ZMs feature vector to reach high capability of 

recognition.
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